Gel-based morphological design of zirconium metal–organic frameworks
The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the f...
Uložené v:
| Vydané v: | Chemical science (Cambridge) Ročník 8; číslo 5; s. 3939 - 3948 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Royal Society of Chemistry
01.05.2017
|
| Predmet: | |
| ISSN: | 2041-6520, 2041-6539, 2041-6539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr
4+
-based MOFs: UiO-66-X (X = H, NH
2
, NO
2
, (OH)
2
), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO
2
. Electron microscopy, combined with N
2
physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations. |
|---|---|
| AbstractList | The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr
4+
-based MOFs: UiO-66-X (X = H, NH
2
, NO
2
, (OH)
2
), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO
2
. Electron microscopy, combined with N
2
physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations. The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations. The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 mu m diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations. The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr -based MOFs: UiO-66-X (X = H, NH , NO , (OH) ), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO . Electron microscopy, combined with N physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations. The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero-or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X - H, NH2, NO2, (OH)(2)), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N-2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 mm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations. The ability of zirconium metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations. |
| Author | De Vos, Dirk Keen, David A. Willhammar, Tom Bueken, Bart Baron, Gino V. Ameloot, Rob Van Velthoven, Niels Stassen, Ivo Denayer, Joeri F. M. Stassin, Timothée Bals, Sara Bennett, Thomas D. |
| AuthorAffiliation | e Department of Chemical Engineering , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium c Department of Materials and Environmental Chemistry , Stockholm University , S-106 91 Stockholm , Sweden a Centre for Surface Chemistry and Catalysis , Department of Microbial and Molecular Systems (M2S) , KU Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium . Email: dirk.devos@kuleuven.be d ISIS Facility , Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxon OX11 0QX , UK f Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , UK . Email: tdb35@cam.ac.uk b EMAT , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium |
| AuthorAffiliation_xml | – name: c Department of Materials and Environmental Chemistry , Stockholm University , S-106 91 Stockholm , Sweden – name: f Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , UK . Email: tdb35@cam.ac.uk – name: b EMAT , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium – name: e Department of Chemical Engineering , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium – name: a Centre for Surface Chemistry and Catalysis , Department of Microbial and Molecular Systems (M2S) , KU Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium . Email: dirk.devos@kuleuven.be – name: d ISIS Facility , Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxon OX11 0QX , UK |
| Author_xml | – sequence: 1 givenname: Bart orcidid: 0000-0002-4610-7204 surname: Bueken fullname: Bueken, Bart organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium – sequence: 2 givenname: Niels surname: Van Velthoven fullname: Van Velthoven, Niels organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium – sequence: 3 givenname: Tom orcidid: 0000-0001-6120-1218 surname: Willhammar fullname: Willhammar, Tom organization: EMAT, University of Antwerp, 2020 Antwerp, Belgium, Department of Materials and Environmental Chemistry – sequence: 4 givenname: Timothée surname: Stassin fullname: Stassin, Timothée organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium – sequence: 5 givenname: Ivo orcidid: 0000-0003-3997-653X surname: Stassen fullname: Stassen, Ivo organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium – sequence: 6 givenname: David A. surname: Keen fullname: Keen, David A. organization: ISIS Facility, Rutherford Appleton Laboratory, Didcot, UK – sequence: 7 givenname: Gino V. surname: Baron fullname: Baron, Gino V. organization: Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium – sequence: 8 givenname: Joeri F. M. surname: Denayer fullname: Denayer, Joeri F. M. organization: Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium – sequence: 9 givenname: Rob orcidid: 0000-0003-3178-5480 surname: Ameloot fullname: Ameloot, Rob organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium – sequence: 10 givenname: Sara surname: Bals fullname: Bals, Sara organization: EMAT, University of Antwerp, 2020 Antwerp, Belgium – sequence: 11 givenname: Dirk surname: De Vos fullname: De Vos, Dirk organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium – sequence: 12 givenname: Thomas D. orcidid: 0000-0003-3717-3119 surname: Bennett fullname: Bennett, Thomas D. organization: Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28553536$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-143393$$DView record from Swedish Publication Index (Stockholms universitet) |
| BookMark | eNqNkc9OFTEUxhuDEUQ2PoCZJTGMtj2nvXc2JOTyRxMSF6LbptN2LpXO9NrOSHTlO_CGPIklF1CIC04X5yT9fV--5HtJNoY4OEJeM_qOUWjeL-TnBRWS8sNnZItTZLUU0Gzc35xukp2cv9EyAEzw2QuyyedCgAC5RY5PXKhbnZ2t-phW5zHEpTc6VNZlvxyq2FW_fDJx8FNf9W7U4fr3VUxLPXhTdUn37jKmi_yKPO90yG7ndm-TL8dHZ4sP9emnk4-Lg9PaCORjjUyXx7DhIC100krt2hlFI8FgKw3SecuRM255a2lnu0YjtxJAFI2BDrbJ3to3X7rV1KpV8r1OP1XUXh36rweqRFN5UgwBGij4_hovbO-sccOYdHigevgz-HO1jD-UKHpsRDHYvTVI8fvk8qh6n40LQQ8uTlmxhiJHlMieggLCDGFe0Df_xrrPc1dLAegaMCnmnFynjB_16ONNSh8Uo-qmfPW3_CJ5-0hy5_of-A8AJq9u |
| CitedBy_id | crossref_primary_10_1038_s43246_023_00412_0 crossref_primary_10_1016_j_mcat_2023_113342 crossref_primary_10_1016_j_cej_2020_126744 crossref_primary_10_1016_j_seppur_2025_134310 crossref_primary_10_1021_acs_iecr_4c04567 crossref_primary_10_1002_smll_202206718 crossref_primary_10_1039_D5TA03279B crossref_primary_10_1016_j_jcis_2022_08_010 crossref_primary_10_1038_s41598_023_32647_9 crossref_primary_10_1039_D0CY00901F crossref_primary_10_1016_j_aca_2024_343274 crossref_primary_10_1016_j_seppur_2025_132138 crossref_primary_10_1039_D1RA01703A crossref_primary_10_1016_j_ccr_2025_216474 crossref_primary_10_1039_C7CC09739E crossref_primary_10_1016_j_jece_2021_105484 crossref_primary_10_1016_j_psep_2021_05_022 crossref_primary_10_1016_j_surfin_2021_101469 crossref_primary_10_1016_j_micromeso_2025_113707 crossref_primary_10_1002_aic_18673 crossref_primary_10_1016_j_micromeso_2023_112974 crossref_primary_10_1016_j_colsurfa_2024_133777 crossref_primary_10_1088_2058_6272_acc3d2 crossref_primary_10_1002_sstr_202100197 crossref_primary_10_1002_admt_202300743 crossref_primary_10_1016_j_jcis_2021_08_003 crossref_primary_10_1002_anie_202410411 crossref_primary_10_1002_adfm_202309089 crossref_primary_10_1002_chem_202005151 crossref_primary_10_1016_j_ccr_2021_214107 crossref_primary_10_1039_C8SC04044C crossref_primary_10_3390_en15041489 crossref_primary_10_1016_j_chemosphere_2024_141272 crossref_primary_10_1134_S107032842105002X crossref_primary_10_1016_j_ceramint_2025_06_097 crossref_primary_10_1039_C9QI01564G crossref_primary_10_1016_j_pecs_2020_100870 crossref_primary_10_1021_jacs_0c00270 crossref_primary_10_1038_s42004_019_0184_6 crossref_primary_10_1039_C7CC03478D crossref_primary_10_1002_ange_202101644 crossref_primary_10_1002_vjch_201900050 crossref_primary_10_1039_D0RA09035B crossref_primary_10_1016_j_jece_2024_114538 crossref_primary_10_1016_j_cej_2025_159257 crossref_primary_10_1016_j_ccr_2020_213544 crossref_primary_10_1039_D5CC04076K crossref_primary_10_1016_j_cej_2019_06_026 crossref_primary_10_1080_1040841X_2021_1950120 crossref_primary_10_1016_j_poly_2018_01_004 crossref_primary_10_1016_j_micromeso_2022_111825 crossref_primary_10_1016_j_aca_2018_09_066 crossref_primary_10_1016_j_cej_2022_135764 crossref_primary_10_1039_D2EW00941B crossref_primary_10_1016_j_chemosphere_2025_144193 crossref_primary_10_1016_j_cej_2024_155853 crossref_primary_10_1002_adfm_202008357 crossref_primary_10_1016_j_micromeso_2025_113726 crossref_primary_10_1002_anie_202101644 crossref_primary_10_1039_D0SC01204A crossref_primary_10_1039_D3SC00905J crossref_primary_10_1016_j_inoche_2025_114975 crossref_primary_10_1038_s41467_019_09881_9 crossref_primary_10_1002_smll_202301894 crossref_primary_10_3390_gels9100815 crossref_primary_10_1007_s12598_025_03519_0 crossref_primary_10_1016_j_ccr_2025_216822 crossref_primary_10_1016_j_cej_2023_144786 crossref_primary_10_1016_j_seppur_2025_133153 crossref_primary_10_1016_j_jece_2025_117531 crossref_primary_10_1002_adfm_202507474 crossref_primary_10_1002_adma_202300951 crossref_primary_10_1002_adma_202405532 crossref_primary_10_1016_j_cej_2023_145238 crossref_primary_10_1016_j_memsci_2024_123508 crossref_primary_10_1002_chem_201802189 crossref_primary_10_1002_adma_202416669 crossref_primary_10_1039_D5AY00896D crossref_primary_10_1016_j_ccr_2021_214125 crossref_primary_10_1002_adfm_202308376 crossref_primary_10_1002_admi_202400628 crossref_primary_10_1016_j_ccr_2020_213651 crossref_primary_10_1016_j_mtnano_2022_100293 crossref_primary_10_1002_cctc_202500640 crossref_primary_10_1002_ange_202410411 crossref_primary_10_1002_admi_202500166 crossref_primary_10_1016_j_jcis_2023_10_150 crossref_primary_10_1016_j_jhazmat_2023_131783 crossref_primary_10_1107_S1600577522011614 crossref_primary_10_1007_s41061_019_0250_7 crossref_primary_10_1007_s10971_023_06242_3 crossref_primary_10_1016_j_jhazmat_2022_129852 crossref_primary_10_1002_cssc_202401463 crossref_primary_10_1002_anie_201911499 crossref_primary_10_1002_adma_201802497 crossref_primary_10_1016_j_micromeso_2024_113355 crossref_primary_10_1039_C8SC04732D crossref_primary_10_1016_j_cjche_2021_10_010 crossref_primary_10_1016_j_cej_2020_124765 crossref_primary_10_1002_ejic_202101082 crossref_primary_10_1021_jacs_5c04345 crossref_primary_10_1002_aenm_202100154 crossref_primary_10_1002_chem_202000993 crossref_primary_10_1016_j_cej_2024_156241 crossref_primary_10_1016_j_enmm_2023_100869 crossref_primary_10_1002_adma_202211859 crossref_primary_10_1002_advs_202409290 crossref_primary_10_1039_C9SC04543K crossref_primary_10_1016_j_seppur_2021_120229 crossref_primary_10_1021_acsaom_5c00062 crossref_primary_10_1002_ange_201911499 crossref_primary_10_1016_j_foodchem_2025_145752 crossref_primary_10_1016_j_micromeso_2019_04_008 crossref_primary_10_1016_j_apmt_2024_102573 crossref_primary_10_1016_j_seppur_2025_134462 crossref_primary_10_1016_j_redox_2025_103778 crossref_primary_10_1016_j_jhazmat_2020_122765 crossref_primary_10_1016_j_jhazmat_2024_134055 crossref_primary_10_1016_j_cej_2022_135033 crossref_primary_10_1007_s40843_020_1585_1 crossref_primary_10_1016_j_ccr_2022_214520 crossref_primary_10_1016_j_ccr_2025_216680 crossref_primary_10_1016_j_surfin_2020_100587 crossref_primary_10_1039_D0QI00840K crossref_primary_10_1039_D0RA00868K crossref_primary_10_1039_D4CS00435C crossref_primary_10_1016_j_bios_2024_117012 crossref_primary_10_1016_j_cej_2023_143394 crossref_primary_10_1016_j_micromeso_2025_113532 crossref_primary_10_1038_s41467_018_04834_0 crossref_primary_10_1038_s41467_024_47498_9 crossref_primary_10_1016_j_jcis_2021_08_159 crossref_primary_10_1016_j_micromeso_2022_112043 crossref_primary_10_1002_er_6608 crossref_primary_10_1016_j_ccr_2020_213461 crossref_primary_10_1038_nmat5050 crossref_primary_10_1002_anie_202503855 crossref_primary_10_1016_j_jcis_2019_11_074 crossref_primary_10_1134_S0040579525700095 crossref_primary_10_1016_j_micromeso_2024_113445 crossref_primary_10_1039_C9SC04961D crossref_primary_10_1002_ange_202503855 crossref_primary_10_1038_s41467_019_10185_1 crossref_primary_10_1039_D0SC01356K crossref_primary_10_1002_asia_202500532 crossref_primary_10_1002_aoc_6777 crossref_primary_10_1002_adma_202412708 crossref_primary_10_1016_j_matpr_2018_10_371 crossref_primary_10_1016_j_ccr_2019_213016 crossref_primary_10_1016_j_ccr_2025_216464 crossref_primary_10_1007_s10934_020_00984_z crossref_primary_10_1002_adfm_202305979 crossref_primary_10_1002_adsu_202000200 crossref_primary_10_1016_j_micromeso_2021_111452 crossref_primary_10_1002_aic_17872 crossref_primary_10_1002_adma_202101257 crossref_primary_10_1038_s41578_018_0054_3 |
| Cites_doi | 10.1039/C4CS00032C 10.1021/cr200256v 10.1002/adma.201601351 10.1002/adma.200801851 10.1107/S0365110X56001558 10.1039/c0jm02416c 10.1002/cphc.200800642 10.1021/acs.chemmater.6b00602 10.1021/jacs.6b06959 10.1002/ange.201502094 10.1002/chem.201600313 10.1002/anie.201606656 10.1126/science.1230444 10.1038/ncomms2757 10.1039/c3cc43017k 10.1016/j.ces.2009.08.029 10.1021/ja8057953 10.1039/b910175f 10.1021/cr200324t 10.1016/j.ccr.2015.12.004 10.1039/C4CS00127C 10.1021/cm504806p 10.1039/C5CS00837A 10.1021/ic402514n 10.1021/jacs.5b13220 10.1021/ja4050828 10.1107/S0021889800019993 10.1107/S0021889811021455 10.1002/anie.201302682 10.1016/j.micromeso.2004.06.027 10.1103/PhysRevB.71.224107 10.1038/srep10556 10.1016/j.micromeso.2013.02.025 10.1039/C1CS15276A 10.1039/C4TA06396A 10.1039/C4CS00096J 10.1039/b600709k 10.1021/cr200274s 10.1039/C6CC01955B 10.1039/c3ra40741a 10.1039/C5CP06798G 10.1039/C4CS00093E 10.1039/C4TA03992K 10.1039/C5DT04330A 10.1039/C4CS00106K 10.1016/j.cattod.2014.05.041 10.1039/C4CS00094C 10.1021/la3004118 10.1016/j.ultramic.2011.11.004 10.1016/j.chroma.2014.08.077 10.1021/cm900166h 10.1021/ja500330a 10.1016/j.ccr.2015.08.008 10.1021/am303089g 10.1039/c3cy20813c 10.1039/C4CS00081A 10.1002/jssc.201600423 10.1002/adma.201501448 10.1002/asia.201600698 10.1002/9780470727102 10.1039/C6CC02517J 10.1002/anie.200905627 10.1021/cm501859p 10.1002/ejic.201600410 10.1002/chem.201600330 10.1021/jacs.6b00069 10.1021/cr200190s 10.1021/acs.cgd.6b00076 10.1557/jmr.2004.19.1.3 10.1021/cr4006473 10.1039/C4CS00006D 10.1002/chem.201003211 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry 2017 2017 |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry 2017 2017 |
| DBID | AAYXX CITATION NPM 7X8 7SR 8BQ 8FD JG9 5PM ADTPV AOWAS DG7 |
| DOI | 10.1039/C6SC05602D |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Stockholms universitet |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
| DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 3948 |
| ExternalDocumentID | oai_DiVA_org_su_143393 PMC5433495 28553536 10_1039_C6SC05602D |
| Genre | Journal Article |
| GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFBY AAFWJ AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ACRPL ADBBV ADMRA ADNMO AEFDR AENEX AESAV AETIL AFLYV AFPKN AFRZK AFVBQ AGEGJ AGMRB AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI AOIJS APEMP ASPBG AUDPV AVWKF AZFZN BCNDV BLAPV BSQNT C6K CAG CITATION COF D0L ECGLT EE0 EF- F5P FEDTE GROUPED_DOAJ H13 HVGLF HYE HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS ROL RPM RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH NPM 7X8 7SR 8BQ 8FD JG9 5PM ADTPV AOWAS DG7 |
| ID | FETCH-LOGICAL-c542t-41a1a1149236d3f6d6aeb704c63c4b6c408b24212d2bd0fdf9a42d6335149c3f3 |
| IEDL.DBID | RRC |
| ISICitedReferencesCount | 242 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400553000077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-6520 2041-6539 |
| IngestDate | Tue Nov 04 16:53:15 EST 2025 Tue Nov 04 01:56:02 EST 2025 Sun Nov 09 13:58:18 EST 2025 Sun Nov 09 14:28:37 EST 2025 Mon Jul 21 05:48:37 EDT 2025 Sat Nov 29 05:53:50 EST 2025 Tue Nov 18 20:51:59 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c542t-41a1a1149236d3f6d6aeb704c63c4b6c408b24212d2bd0fdf9a42d6335149c3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3717-3119 0000-0001-6120-1218 0000-0002-4610-7204 0000-0003-3997-653X 0000-0003-3178-5480 |
| OpenAccessLink | http://dx.doi.org/10.1039/c6sc05602d |
| PMID | 28553536 |
| PQID | 1903437438 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_su_143393 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5433495 proquest_miscellaneous_1904244641 proquest_miscellaneous_1903437438 pubmed_primary_28553536 crossref_citationtrail_10_1039_C6SC05602D crossref_primary_10_1039_C6SC05602D |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-01 |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationTitleAlternate | Chem Sci |
| PublicationYear | 2017 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Schüth (C6SC05602D-(cit69)/*[position()=1]) 2008 Chanut (C6SC05602D-(cit39)/*[position()=1]) 2016; 2016 Kreno (C6SC05602D-(cit11)/*[position()=1]) 2012; 112 Furukawa (C6SC05602D-(cit75)/*[position()=1]) 2014; 136 Li (C6SC05602D-(cit4)/*[position()=1]) 2012; 112 Bai (C6SC05602D-(cit22)/*[position()=1]) 2016; 45 Rouquerol (C6SC05602D-(cit57)/*[position()=1]) 1999 Valvekens (C6SC05602D-(cit2)/*[position()=1]) 2013; 3 Stavila (C6SC05602D-(cit12)/*[position()=1]) 2014; 43 Zhu (C6SC05602D-(cit30)/*[position()=1]) 2016; 28 Chen (C6SC05602D-(cit28)/*[position()=1]) 2016; 138 Goris (C6SC05602D-(cit56)/*[position()=1]) 2012; 113 Ragon (C6SC05602D-(cit49)/*[position()=1]) 2015; 3 Moreira (C6SC05602D-(cit37)/*[position()=1]) 2012; 28 Rezaei (C6SC05602D-(cit14)/*[position()=1]) 2009; 64 Sutar (C6SC05602D-(cit41)/*[position()=1]) 2016; 52 Taddei (C6SC05602D-(cit66)/*[position()=1]) 2016; 52 Devic (C6SC05602D-(cit21)/*[position()=1]) 2014; 43 Kandiah (C6SC05602D-(cit47)/*[position()=1]) 2010; 20 Surblé (C6SC05602D-(cit70)/*[position()=1]) 2006 Mondloch (C6SC05602D-(cit52)/*[position()=1]) 2013; 135 Decoste (C6SC05602D-(cit33)/*[position()=1]) 2014; 114 Millange (C6SC05602D-(cit71)/*[position()=1]) 2010; 49 Horcajada (C6SC05602D-(cit42)/*[position()=1]) 2009; 21 Nandasiri (C6SC05602D-(cit36)/*[position()=1]) 2016; 311 Thornton (C6SC05602D-(cit68)/*[position()=1]) 2016; 45 Liu (C6SC05602D-(cit3)/*[position()=1]) 2014; 43 Clearfield (C6SC05602D-(cit72)/*[position()=1]) 1956; 9 Ramaswamy (C6SC05602D-(cit10)/*[position()=1]) 2014; 43 Chaudhari (C6SC05602D-(cit45)/*[position()=1]) 2015; 27 Hu (C6SC05602D-(cit74)/*[position()=1]) 2016; 16 Shearer (C6SC05602D-(cit67)/*[position()=1]) 2014; 26 Bradshaw (C6SC05602D-(cit16)/*[position()=1]) 2012; 41 Zhu (C6SC05602D-(cit29)/*[position()=1]) 2016; 22 Bennett (C6SC05602D-(cit62)/*[position()=1]) 2016; 138 Aguado (C6SC05602D-(cit64)/*[position()=1]) 2004; 75 Soper (C6SC05602D-(cit53)/*[position()=1]) 2011 Giménez-Marqués (C6SC05602D-(cit9)/*[position()=1]) 2016; 307 Rhodes (C6SC05602D-(cit13)/*[position()=1]) 2008 Liu (C6SC05602D-(cit51)/*[position()=1]) 2016; 11 Yang (C6SC05602D-(cit48)/*[position()=1]) 2013; 52 Van de Voorde (C6SC05602D-(cit34)/*[position()=1]) 2015; 3 Furukawa (C6SC05602D-(cit1)/*[position()=1]) 2013; 341 Bradshaw (C6SC05602D-(cit17)/*[position()=1]) 2014; 43 He (C6SC05602D-(cit6)/*[position()=1]) 2014; 43 Oliver (C6SC05602D-(cit58)/*[position()=1]) 2004; 19 Kim (C6SC05602D-(cit38)/*[position()=1]) 2015; 245 Mahmood (C6SC05602D-(cit46)/*[position()=1]) 2015; 5 Bueken (C6SC05602D-(cit60)/*[position()=1]) 2016; 22 Fu (C6SC05602D-(cit23)/*[position()=1]) 2013; 49 Li (C6SC05602D-(cit43)/*[position()=1]) 2013; 4 Ragon (C6SC05602D-(cit50)/*[position()=1]) 2014; 53 Schaate (C6SC05602D-(cit59)/*[position()=1]) 2011; 17 Furukawa (C6SC05602D-(cit18)/*[position()=1]) 2014; 43 Cavka (C6SC05602D-(cit20)/*[position()=1]) 2008; 130 Bennett (C6SC05602D-(cit35)/*[position()=1]) 2016; 18 Yan (C6SC05602D-(cit25)/*[position()=1]) 2014; 1366 Peterson (C6SC05602D-(cit32)/*[position()=1]) 2013; 179 Platero-Prats (C6SC05602D-(cit61)/*[position()=1]) 2016; 138 Zhao (C6SC05602D-(cit31)/*[position()=1]) 2016; 55 Shearer (C6SC05602D-(cit73)/*[position()=1]) 2016; 28 Van de Voorde (C6SC05602D-(cit7)/*[position()=1]) 2014; 43 Morris (C6SC05602D-(cit15)/*[position()=1]) 2008; 10 Cravillon (C6SC05602D-(cit65)/*[position()=1]) 2009; 21 Pinto (C6SC05602D-(cit24)/*[position()=1]) 2013; 5 Soper (C6SC05602D-(cit54)/*[position()=1]) 2011; 44 Suh (C6SC05602D-(cit5)/*[position()=1]) 2012; 112 Lv (C6SC05602D-(cit19)/*[position()=1]) 2016; 40 López-Maya (C6SC05602D-(cit27)/*[position()=1]) 2015; 127 Xia (C6SC05602D-(cit44)/*[position()=1]) 2013; 3 Keen (C6SC05602D-(cit55)/*[position()=1]) 2001; 34 Lohe (C6SC05602D-(cit40)/*[position()=1]) 2009 Horcajada (C6SC05602D-(cit8)/*[position()=1]) 2012; 112 Stassen (C6SC05602D-(cit26)/*[position()=1]) 2015; 27 Gateshki (C6SC05602D-(cit63)/*[position()=1]) 2005; 71 |
| References_xml | – volume: 43 start-page: 5657 year: 2014 ident: C6SC05602D-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00032C – volume: 112 start-page: 1232 year: 2012 ident: C6SC05602D-(cit8)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200256v – volume: 28 start-page: 7652 year: 2016 ident: C6SC05602D-(cit30)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601351 – volume: 21 start-page: 1931 year: 2009 ident: C6SC05602D-(cit42)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200801851 – volume: 9 start-page: 555 year: 1956 ident: C6SC05602D-(cit72)/*[position()=1] publication-title: Acta Crystallogr. doi: 10.1107/S0365110X56001558 – volume: 20 start-page: 9848 year: 2010 ident: C6SC05602D-(cit47)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm02416c – volume: 10 start-page: 327 year: 2008 ident: C6SC05602D-(cit15)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.200800642 – volume: 28 start-page: 3749 year: 2016 ident: C6SC05602D-(cit73)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00602 – volume: 138 start-page: 10810 year: 2016 ident: C6SC05602D-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06959 – volume: 127 start-page: 6894 year: 2015 ident: C6SC05602D-(cit27)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201502094 – volume: 22 start-page: 8751 year: 2016 ident: C6SC05602D-(cit29)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201600313 – volume: 55 start-page: 13224 year: 2016 ident: C6SC05602D-(cit31)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606656 – volume: 341 start-page: 974 year: 2013 ident: C6SC05602D-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1230444 – volume: 4 start-page: 1774 year: 2013 ident: C6SC05602D-(cit43)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2757 – volume: 49 start-page: 7162 year: 2013 ident: C6SC05602D-(cit23)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc43017k – volume: 64 start-page: 5182 year: 2009 ident: C6SC05602D-(cit14)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.08.029 – volume: 130 start-page: 13850 year: 2008 ident: C6SC05602D-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8057953 – start-page: 6056 year: 2009 ident: C6SC05602D-(cit40)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b910175f – volume: 112 start-page: 1105 year: 2012 ident: C6SC05602D-(cit11)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200324t – volume: 311 start-page: 38 year: 2016 ident: C6SC05602D-(cit36)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.12.004 – volume: 43 start-page: 5431 year: 2014 ident: C6SC05602D-(cit17)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00127C – volume: 27 start-page: 1801 year: 2015 ident: C6SC05602D-(cit26)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm504806p – volume: 45 start-page: 2327 year: 2016 ident: C6SC05602D-(cit22)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00837A – volume: 53 start-page: 2491 year: 2014 ident: C6SC05602D-(cit50)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic402514n – volume: 138 start-page: 3484 year: 2016 ident: C6SC05602D-(cit62)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13220 – volume: 135 start-page: 10294 year: 2013 ident: C6SC05602D-(cit52)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4050828 – volume: 34 start-page: 172 year: 2001 ident: C6SC05602D-(cit55)/*[position()=1] publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889800019993 – volume: 44 start-page: 714 year: 2011 ident: C6SC05602D-(cit54)/*[position()=1] publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811021455 – volume: 52 start-page: 10316 year: 2013 ident: C6SC05602D-(cit48)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201302682 – volume: 75 start-page: 41 year: 2004 ident: C6SC05602D-(cit64)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2004.06.027 – volume: 71 start-page: 224107 year: 2005 ident: C6SC05602D-(cit63)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.71.224107 – volume: 5 start-page: 10556 year: 2015 ident: C6SC05602D-(cit46)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep10556 – volume: 179 start-page: 48 year: 2013 ident: C6SC05602D-(cit32)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.02.025 – volume: 41 start-page: 2344 year: 2012 ident: C6SC05602D-(cit16)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15276A – volume: 3 start-page: 1737 year: 2015 ident: C6SC05602D-(cit34)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06396A – volume: 43 start-page: 5994 year: 2014 ident: C6SC05602D-(cit12)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00096J – start-page: 1518 year: 2006 ident: C6SC05602D-(cit70)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b600709k – volume: 112 start-page: 782 year: 2012 ident: C6SC05602D-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200274s – volume: 52 start-page: 8055 year: 2016 ident: C6SC05602D-(cit41)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC01955B – volume: 3 start-page: 11007 year: 2013 ident: C6SC05602D-(cit44)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c3ra40741a – volume: 18 start-page: 2192 year: 2016 ident: C6SC05602D-(cit35)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP06798G – volume: 43 start-page: 5913 year: 2014 ident: C6SC05602D-(cit10)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00093E – volume: 3 start-page: 3294 year: 2015 ident: C6SC05602D-(cit49)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03992K – volume-title: Handbook of Heterogeneous Catalysis year: 2008 ident: C6SC05602D-(cit69)/*[position()=1] – volume: 45 start-page: 4352 year: 2016 ident: C6SC05602D-(cit68)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT04330A – volume: 43 start-page: 5700 year: 2014 ident: C6SC05602D-(cit18)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00106K – volume: 245 start-page: 54 year: 2015 ident: C6SC05602D-(cit38)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2014.05.041 – volume-title: Tech. Rep. RAL-TR-2011-013 year: 2011 ident: C6SC05602D-(cit53)/*[position()=1] – volume: 43 start-page: 6011 year: 2014 ident: C6SC05602D-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00094C – volume: 28 start-page: 5715 year: 2012 ident: C6SC05602D-(cit37)/*[position()=1] publication-title: Langmuir doi: 10.1021/la3004118 – volume: 113 start-page: 120 year: 2012 ident: C6SC05602D-(cit56)/*[position()=1] publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2011.11.004 – volume: 1366 start-page: 45 year: 2014 ident: C6SC05602D-(cit25)/*[position()=1] publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2014.08.077 – volume: 21 start-page: 1410 year: 2009 ident: C6SC05602D-(cit65)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm900166h – volume: 136 start-page: 4369 year: 2014 ident: C6SC05602D-(cit75)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500330a – volume: 307 start-page: 342 year: 2016 ident: C6SC05602D-(cit9)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.08.008 – volume: 5 start-page: 2360 year: 2013 ident: C6SC05602D-(cit24)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am303089g – volume: 3 start-page: 1435 year: 2013 ident: C6SC05602D-(cit2)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy20813c – volume: 43 start-page: 6097 year: 2014 ident: C6SC05602D-(cit21)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00081A – volume: 40 start-page: 272 year: 2016 ident: C6SC05602D-(cit19)/*[position()=1] publication-title: J. Sep. Sci. doi: 10.1002/jssc.201600423 – volume: 27 start-page: 4438 year: 2015 ident: C6SC05602D-(cit45)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501448 – volume: 11 start-page: 2278 year: 2016 ident: C6SC05602D-(cit51)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201600698 – volume-title: Introduction to particle technology year: 2008 ident: C6SC05602D-(cit13)/*[position()=1] doi: 10.1002/9780470727102 – volume: 52 start-page: 6411 year: 2016 ident: C6SC05602D-(cit66)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC02517J – volume: 49 start-page: 763 year: 2010 ident: C6SC05602D-(cit71)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905627 – volume: 26 start-page: 4068 year: 2014 ident: C6SC05602D-(cit67)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm501859p – volume: 2016 start-page: 4416 year: 2016 ident: C6SC05602D-(cit39)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201600410 – volume: 22 start-page: 3264 year: 2016 ident: C6SC05602D-(cit60)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201600330 – volume: 138 start-page: 4178 year: 2016 ident: C6SC05602D-(cit61)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00069 – volume: 112 start-page: 869 year: 2012 ident: C6SC05602D-(cit4)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200190s – volume-title: Absorption by Powders and Porous Solids year: 1999 ident: C6SC05602D-(cit57)/*[position()=1] – volume: 16 start-page: 2295 year: 2016 ident: C6SC05602D-(cit74)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00076 – volume: 19 start-page: 3 year: 2004 ident: C6SC05602D-(cit58)/*[position()=1] publication-title: J. Mater. Res. doi: 10.1557/jmr.2004.19.1.3 – volume: 114 start-page: 5695 year: 2014 ident: C6SC05602D-(cit33)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr4006473 – volume: 43 start-page: 5766 year: 2014 ident: C6SC05602D-(cit7)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00006D – volume: 17 start-page: 6643 year: 2011 ident: C6SC05602D-(cit59)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201003211 |
| SSID | ssj0000331527 |
| Score | 2.602875 |
| Snippet | The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of... The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of... The ability of zirconium metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and... |
| SourceID | swepub pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3939 |
| SubjectTerms | Adsorptivity Catalysis Catalysts Chemistry Gels Mass transfer Metal-organic frameworks Nanoparticles Porosity |
| Title | Gel-based morphological design of zirconium metal–organic frameworks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28553536 https://www.proquest.com/docview/1903437438 https://www.proquest.com/docview/1904244641 https://pubmed.ncbi.nlm.nih.gov/PMC5433495 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-143393 |
| Volume | 8 |
| WOSCitedRecordID | wos000400553000077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAUL databaseName: Royal Society Of Chemistry Journals 2008- customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RRC dateStart: 20100101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VCgkuvKEpsAqiHDhYxB7bsY9VysIBVag8tLcosR0RqZut9sGBE_-h_5Bfgu1sFkUFVOWYsZLMN_LMeCbfABx5kB2rXUMaVJxwRZFU2uaEWU0rbbjRdUT6Q356qmYz_XEPjv5RwUf9ppCfCu-lM3YSNtpcBNM9Oyt2BykZ4nY0K8s4JVKwbKAhHa0eO54r0eTVpsgRdWh0N9O713vRe3BnG06mxz3-92HPdQ_gVjFMcXsI03funARXZdP5wut02OtSG1s30kWT_miXPiluN_N07nwo_uvnZT_qyaTN0Lm1egRfpm8_F-_JdnYCMYKzNeG08hcN9GvSYiOtrFydZ9xINLyWhmeqjtVgy2qbNbbRFWdWYmjs1wYbfAz73aJzB5BmtFGa1rl23pVJamqjeMUD9k74ZEkk8HpQbGm2xOJhvsV5GQvcqMs_mkng5U72oqfT-KvUiwGf0qsrlDCqzi02q9KHL8jRRz3qvzLh7z3JaQJPekx3z2JKCBQoE8hHaO8EAtv2-E7Xfous24Ij-mwygVe9XYyWnLRfj0sPTrna-GQKUePhtb70KdxmIU6IHZTPYH-93LjncNN8X7er5QRu5DM1iccEk2j0vwEt_vnf |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gel-based+morphological+design+of+zirconium+metal-organic+frameworks&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Bueken%2C+Bart&rft.au=Van+Velthoven%2C+Niels&rft.au=Willhammar%2C+Tom&rft.au=Stassin%2C+Timoth%C3%A9e&rft.date=2017-05-01&rft.issn=2041-6520&rft.volume=8&rft.issue=5&rft.spage=3939&rft_id=info:doi/10.1039%2Fc6sc05602d&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |