Gel-based morphological design of zirconium metal–organic frameworks

The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chemical science (Cambridge) Ročník 8; číslo 5; s. 3939 - 3948
Hlavní autori: Bueken, Bart, Van Velthoven, Niels, Willhammar, Tom, Stassin, Timothée, Stassen, Ivo, Keen, David A., Baron, Gino V., Denayer, Joeri F. M., Ameloot, Rob, Bals, Sara, De Vos, Dirk, Bennett, Thomas D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Royal Society of Chemistry 01.05.2017
Predmet:
ISSN:2041-6520, 2041-6539, 2041-6539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr 4+ -based MOFs: UiO-66-X (X = H, NH 2 , NO 2 , (OH) 2 ), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO 2 . Electron microscopy, combined with N 2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
AbstractList The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr 4+ -based MOFs: UiO-66-X (X = H, NH 2 , NO 2 , (OH) 2 ), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO 2 . Electron microscopy, combined with N 2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 mu m diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr -based MOFs: UiO-66-X (X = H, NH , NO , (OH) ), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO . Electron microscopy, combined with N physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero-or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X - H, NH2, NO2, (OH)(2)), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N-2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 mm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
The ability of zirconium metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
Author De Vos, Dirk
Keen, David A.
Willhammar, Tom
Bueken, Bart
Baron, Gino V.
Ameloot, Rob
Van Velthoven, Niels
Stassen, Ivo
Denayer, Joeri F. M.
Stassin, Timothée
Bals, Sara
Bennett, Thomas D.
AuthorAffiliation e Department of Chemical Engineering , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
c Department of Materials and Environmental Chemistry , Stockholm University , S-106 91 Stockholm , Sweden
a Centre for Surface Chemistry and Catalysis , Department of Microbial and Molecular Systems (M2S) , KU Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium . Email: dirk.devos@kuleuven.be
d ISIS Facility , Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxon OX11 0QX , UK
f Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , UK . Email: tdb35@cam.ac.uk
b EMAT , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
AuthorAffiliation_xml – name: c Department of Materials and Environmental Chemistry , Stockholm University , S-106 91 Stockholm , Sweden
– name: f Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , UK . Email: tdb35@cam.ac.uk
– name: b EMAT , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
– name: e Department of Chemical Engineering , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
– name: a Centre for Surface Chemistry and Catalysis , Department of Microbial and Molecular Systems (M2S) , KU Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium . Email: dirk.devos@kuleuven.be
– name: d ISIS Facility , Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxon OX11 0QX , UK
Author_xml – sequence: 1
  givenname: Bart
  orcidid: 0000-0002-4610-7204
  surname: Bueken
  fullname: Bueken, Bart
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium
– sequence: 2
  givenname: Niels
  surname: Van Velthoven
  fullname: Van Velthoven, Niels
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium
– sequence: 3
  givenname: Tom
  orcidid: 0000-0001-6120-1218
  surname: Willhammar
  fullname: Willhammar, Tom
  organization: EMAT, University of Antwerp, 2020 Antwerp, Belgium, Department of Materials and Environmental Chemistry
– sequence: 4
  givenname: Timothée
  surname: Stassin
  fullname: Stassin, Timothée
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium
– sequence: 5
  givenname: Ivo
  orcidid: 0000-0003-3997-653X
  surname: Stassen
  fullname: Stassen, Ivo
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium
– sequence: 6
  givenname: David A.
  surname: Keen
  fullname: Keen, David A.
  organization: ISIS Facility, Rutherford Appleton Laboratory, Didcot, UK
– sequence: 7
  givenname: Gino V.
  surname: Baron
  fullname: Baron, Gino V.
  organization: Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
– sequence: 8
  givenname: Joeri F. M.
  surname: Denayer
  fullname: Denayer, Joeri F. M.
  organization: Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
– sequence: 9
  givenname: Rob
  orcidid: 0000-0003-3178-5480
  surname: Ameloot
  fullname: Ameloot, Rob
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium
– sequence: 10
  givenname: Sara
  surname: Bals
  fullname: Bals, Sara
  organization: EMAT, University of Antwerp, 2020 Antwerp, Belgium
– sequence: 11
  givenname: Dirk
  surname: De Vos
  fullname: De Vos, Dirk
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium
– sequence: 12
  givenname: Thomas D.
  orcidid: 0000-0003-3717-3119
  surname: Bennett
  fullname: Bennett, Thomas D.
  organization: Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28553536$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-143393$$DView record from Swedish Publication Index (Stockholms universitet)
BookMark eNqNkc9OFTEUxhuDEUQ2PoCZJTGMtj2nvXc2JOTyRxMSF6LbptN2LpXO9NrOSHTlO_CGPIklF1CIC04X5yT9fV--5HtJNoY4OEJeM_qOUWjeL-TnBRWS8sNnZItTZLUU0Gzc35xukp2cv9EyAEzw2QuyyedCgAC5RY5PXKhbnZ2t-phW5zHEpTc6VNZlvxyq2FW_fDJx8FNf9W7U4fr3VUxLPXhTdUn37jKmi_yKPO90yG7ndm-TL8dHZ4sP9emnk4-Lg9PaCORjjUyXx7DhIC100krt2hlFI8FgKw3SecuRM255a2lnu0YjtxJAFI2BDrbJ3to3X7rV1KpV8r1OP1XUXh36rweqRFN5UgwBGij4_hovbO-sccOYdHigevgz-HO1jD-UKHpsRDHYvTVI8fvk8qh6n40LQQ8uTlmxhiJHlMieggLCDGFe0Df_xrrPc1dLAegaMCnmnFynjB_16ONNSh8Uo-qmfPW3_CJ5-0hy5_of-A8AJq9u
CitedBy_id crossref_primary_10_1038_s43246_023_00412_0
crossref_primary_10_1016_j_mcat_2023_113342
crossref_primary_10_1016_j_cej_2020_126744
crossref_primary_10_1016_j_seppur_2025_134310
crossref_primary_10_1021_acs_iecr_4c04567
crossref_primary_10_1002_smll_202206718
crossref_primary_10_1039_D5TA03279B
crossref_primary_10_1016_j_jcis_2022_08_010
crossref_primary_10_1038_s41598_023_32647_9
crossref_primary_10_1039_D0CY00901F
crossref_primary_10_1016_j_aca_2024_343274
crossref_primary_10_1016_j_seppur_2025_132138
crossref_primary_10_1039_D1RA01703A
crossref_primary_10_1016_j_ccr_2025_216474
crossref_primary_10_1039_C7CC09739E
crossref_primary_10_1016_j_jece_2021_105484
crossref_primary_10_1016_j_psep_2021_05_022
crossref_primary_10_1016_j_surfin_2021_101469
crossref_primary_10_1016_j_micromeso_2025_113707
crossref_primary_10_1002_aic_18673
crossref_primary_10_1016_j_micromeso_2023_112974
crossref_primary_10_1016_j_colsurfa_2024_133777
crossref_primary_10_1088_2058_6272_acc3d2
crossref_primary_10_1002_sstr_202100197
crossref_primary_10_1002_admt_202300743
crossref_primary_10_1016_j_jcis_2021_08_003
crossref_primary_10_1002_anie_202410411
crossref_primary_10_1002_adfm_202309089
crossref_primary_10_1002_chem_202005151
crossref_primary_10_1016_j_ccr_2021_214107
crossref_primary_10_1039_C8SC04044C
crossref_primary_10_3390_en15041489
crossref_primary_10_1016_j_chemosphere_2024_141272
crossref_primary_10_1134_S107032842105002X
crossref_primary_10_1016_j_ceramint_2025_06_097
crossref_primary_10_1039_C9QI01564G
crossref_primary_10_1016_j_pecs_2020_100870
crossref_primary_10_1021_jacs_0c00270
crossref_primary_10_1038_s42004_019_0184_6
crossref_primary_10_1039_C7CC03478D
crossref_primary_10_1002_ange_202101644
crossref_primary_10_1002_vjch_201900050
crossref_primary_10_1039_D0RA09035B
crossref_primary_10_1016_j_jece_2024_114538
crossref_primary_10_1016_j_cej_2025_159257
crossref_primary_10_1016_j_ccr_2020_213544
crossref_primary_10_1039_D5CC04076K
crossref_primary_10_1016_j_cej_2019_06_026
crossref_primary_10_1080_1040841X_2021_1950120
crossref_primary_10_1016_j_poly_2018_01_004
crossref_primary_10_1016_j_micromeso_2022_111825
crossref_primary_10_1016_j_aca_2018_09_066
crossref_primary_10_1016_j_cej_2022_135764
crossref_primary_10_1039_D2EW00941B
crossref_primary_10_1016_j_chemosphere_2025_144193
crossref_primary_10_1016_j_cej_2024_155853
crossref_primary_10_1002_adfm_202008357
crossref_primary_10_1016_j_micromeso_2025_113726
crossref_primary_10_1002_anie_202101644
crossref_primary_10_1039_D0SC01204A
crossref_primary_10_1039_D3SC00905J
crossref_primary_10_1016_j_inoche_2025_114975
crossref_primary_10_1038_s41467_019_09881_9
crossref_primary_10_1002_smll_202301894
crossref_primary_10_3390_gels9100815
crossref_primary_10_1007_s12598_025_03519_0
crossref_primary_10_1016_j_ccr_2025_216822
crossref_primary_10_1016_j_cej_2023_144786
crossref_primary_10_1016_j_seppur_2025_133153
crossref_primary_10_1016_j_jece_2025_117531
crossref_primary_10_1002_adfm_202507474
crossref_primary_10_1002_adma_202300951
crossref_primary_10_1002_adma_202405532
crossref_primary_10_1016_j_cej_2023_145238
crossref_primary_10_1016_j_memsci_2024_123508
crossref_primary_10_1002_chem_201802189
crossref_primary_10_1002_adma_202416669
crossref_primary_10_1039_D5AY00896D
crossref_primary_10_1016_j_ccr_2021_214125
crossref_primary_10_1002_adfm_202308376
crossref_primary_10_1002_admi_202400628
crossref_primary_10_1016_j_ccr_2020_213651
crossref_primary_10_1016_j_mtnano_2022_100293
crossref_primary_10_1002_cctc_202500640
crossref_primary_10_1002_ange_202410411
crossref_primary_10_1002_admi_202500166
crossref_primary_10_1016_j_jcis_2023_10_150
crossref_primary_10_1016_j_jhazmat_2023_131783
crossref_primary_10_1107_S1600577522011614
crossref_primary_10_1007_s41061_019_0250_7
crossref_primary_10_1007_s10971_023_06242_3
crossref_primary_10_1016_j_jhazmat_2022_129852
crossref_primary_10_1002_cssc_202401463
crossref_primary_10_1002_anie_201911499
crossref_primary_10_1002_adma_201802497
crossref_primary_10_1016_j_micromeso_2024_113355
crossref_primary_10_1039_C8SC04732D
crossref_primary_10_1016_j_cjche_2021_10_010
crossref_primary_10_1016_j_cej_2020_124765
crossref_primary_10_1002_ejic_202101082
crossref_primary_10_1021_jacs_5c04345
crossref_primary_10_1002_aenm_202100154
crossref_primary_10_1002_chem_202000993
crossref_primary_10_1016_j_cej_2024_156241
crossref_primary_10_1016_j_enmm_2023_100869
crossref_primary_10_1002_adma_202211859
crossref_primary_10_1002_advs_202409290
crossref_primary_10_1039_C9SC04543K
crossref_primary_10_1016_j_seppur_2021_120229
crossref_primary_10_1021_acsaom_5c00062
crossref_primary_10_1002_ange_201911499
crossref_primary_10_1016_j_foodchem_2025_145752
crossref_primary_10_1016_j_micromeso_2019_04_008
crossref_primary_10_1016_j_apmt_2024_102573
crossref_primary_10_1016_j_seppur_2025_134462
crossref_primary_10_1016_j_redox_2025_103778
crossref_primary_10_1016_j_jhazmat_2020_122765
crossref_primary_10_1016_j_jhazmat_2024_134055
crossref_primary_10_1016_j_cej_2022_135033
crossref_primary_10_1007_s40843_020_1585_1
crossref_primary_10_1016_j_ccr_2022_214520
crossref_primary_10_1016_j_ccr_2025_216680
crossref_primary_10_1016_j_surfin_2020_100587
crossref_primary_10_1039_D0QI00840K
crossref_primary_10_1039_D0RA00868K
crossref_primary_10_1039_D4CS00435C
crossref_primary_10_1016_j_bios_2024_117012
crossref_primary_10_1016_j_cej_2023_143394
crossref_primary_10_1016_j_micromeso_2025_113532
crossref_primary_10_1038_s41467_018_04834_0
crossref_primary_10_1038_s41467_024_47498_9
crossref_primary_10_1016_j_jcis_2021_08_159
crossref_primary_10_1016_j_micromeso_2022_112043
crossref_primary_10_1002_er_6608
crossref_primary_10_1016_j_ccr_2020_213461
crossref_primary_10_1038_nmat5050
crossref_primary_10_1002_anie_202503855
crossref_primary_10_1016_j_jcis_2019_11_074
crossref_primary_10_1134_S0040579525700095
crossref_primary_10_1016_j_micromeso_2024_113445
crossref_primary_10_1039_C9SC04961D
crossref_primary_10_1002_ange_202503855
crossref_primary_10_1038_s41467_019_10185_1
crossref_primary_10_1039_D0SC01356K
crossref_primary_10_1002_asia_202500532
crossref_primary_10_1002_aoc_6777
crossref_primary_10_1002_adma_202412708
crossref_primary_10_1016_j_matpr_2018_10_371
crossref_primary_10_1016_j_ccr_2019_213016
crossref_primary_10_1016_j_ccr_2025_216464
crossref_primary_10_1007_s10934_020_00984_z
crossref_primary_10_1002_adfm_202305979
crossref_primary_10_1002_adsu_202000200
crossref_primary_10_1016_j_micromeso_2021_111452
crossref_primary_10_1002_aic_17872
crossref_primary_10_1002_adma_202101257
crossref_primary_10_1038_s41578_018_0054_3
Cites_doi 10.1039/C4CS00032C
10.1021/cr200256v
10.1002/adma.201601351
10.1002/adma.200801851
10.1107/S0365110X56001558
10.1039/c0jm02416c
10.1002/cphc.200800642
10.1021/acs.chemmater.6b00602
10.1021/jacs.6b06959
10.1002/ange.201502094
10.1002/chem.201600313
10.1002/anie.201606656
10.1126/science.1230444
10.1038/ncomms2757
10.1039/c3cc43017k
10.1016/j.ces.2009.08.029
10.1021/ja8057953
10.1039/b910175f
10.1021/cr200324t
10.1016/j.ccr.2015.12.004
10.1039/C4CS00127C
10.1021/cm504806p
10.1039/C5CS00837A
10.1021/ic402514n
10.1021/jacs.5b13220
10.1021/ja4050828
10.1107/S0021889800019993
10.1107/S0021889811021455
10.1002/anie.201302682
10.1016/j.micromeso.2004.06.027
10.1103/PhysRevB.71.224107
10.1038/srep10556
10.1016/j.micromeso.2013.02.025
10.1039/C1CS15276A
10.1039/C4TA06396A
10.1039/C4CS00096J
10.1039/b600709k
10.1021/cr200274s
10.1039/C6CC01955B
10.1039/c3ra40741a
10.1039/C5CP06798G
10.1039/C4CS00093E
10.1039/C4TA03992K
10.1039/C5DT04330A
10.1039/C4CS00106K
10.1016/j.cattod.2014.05.041
10.1039/C4CS00094C
10.1021/la3004118
10.1016/j.ultramic.2011.11.004
10.1016/j.chroma.2014.08.077
10.1021/cm900166h
10.1021/ja500330a
10.1016/j.ccr.2015.08.008
10.1021/am303089g
10.1039/c3cy20813c
10.1039/C4CS00081A
10.1002/jssc.201600423
10.1002/adma.201501448
10.1002/asia.201600698
10.1002/9780470727102
10.1039/C6CC02517J
10.1002/anie.200905627
10.1021/cm501859p
10.1002/ejic.201600410
10.1002/chem.201600330
10.1021/jacs.6b00069
10.1021/cr200190s
10.1021/acs.cgd.6b00076
10.1557/jmr.2004.19.1.3
10.1021/cr4006473
10.1039/C4CS00006D
10.1002/chem.201003211
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry 2017 2017
Copyright_xml – notice: This journal is © The Royal Society of Chemistry 2017 2017
DBID AAYXX
CITATION
NPM
7X8
7SR
8BQ
8FD
JG9
5PM
ADTPV
AOWAS
DG7
DOI 10.1039/C6SC05602D
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 3948
ExternalDocumentID oai_DiVA_org_su_143393
PMC5433495
28553536
10_1039_C6SC05602D
Genre Journal Article
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFBY
AAFWJ
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ACRPL
ADBBV
ADMRA
ADNMO
AEFDR
AENEX
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AFVBQ
AGEGJ
AGMRB
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
AOIJS
APEMP
ASPBG
AUDPV
AVWKF
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CAG
CITATION
COF
D0L
ECGLT
EE0
EF-
F5P
FEDTE
GROUPED_DOAJ
H13
HVGLF
HYE
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
ROL
RPM
RPMJG
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
NPM
7X8
7SR
8BQ
8FD
JG9
5PM
ADTPV
AOWAS
DG7
ID FETCH-LOGICAL-c542t-41a1a1149236d3f6d6aeb704c63c4b6c408b24212d2bd0fdf9a42d6335149c3f3
IEDL.DBID RRC
ISICitedReferencesCount 242
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400553000077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-6520
2041-6539
IngestDate Tue Nov 04 16:53:15 EST 2025
Tue Nov 04 01:56:02 EST 2025
Sun Nov 09 13:58:18 EST 2025
Sun Nov 09 14:28:37 EST 2025
Mon Jul 21 05:48:37 EDT 2025
Sat Nov 29 05:53:50 EST 2025
Tue Nov 18 20:51:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-41a1a1149236d3f6d6aeb704c63c4b6c408b24212d2bd0fdf9a42d6335149c3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3717-3119
0000-0001-6120-1218
0000-0002-4610-7204
0000-0003-3997-653X
0000-0003-3178-5480
OpenAccessLink http://dx.doi.org/10.1039/c6sc05602d
PMID 28553536
PQID 1903437438
PQPubID 23479
PageCount 10
ParticipantIDs swepub_primary_oai_DiVA_org_su_143393
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5433495
proquest_miscellaneous_1904244641
proquest_miscellaneous_1903437438
pubmed_primary_28553536
crossref_citationtrail_10_1039_C6SC05602D
crossref_primary_10_1039_C6SC05602D
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2017
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Schüth (C6SC05602D-(cit69)/*[position()=1]) 2008
Chanut (C6SC05602D-(cit39)/*[position()=1]) 2016; 2016
Kreno (C6SC05602D-(cit11)/*[position()=1]) 2012; 112
Furukawa (C6SC05602D-(cit75)/*[position()=1]) 2014; 136
Li (C6SC05602D-(cit4)/*[position()=1]) 2012; 112
Bai (C6SC05602D-(cit22)/*[position()=1]) 2016; 45
Rouquerol (C6SC05602D-(cit57)/*[position()=1]) 1999
Valvekens (C6SC05602D-(cit2)/*[position()=1]) 2013; 3
Stavila (C6SC05602D-(cit12)/*[position()=1]) 2014; 43
Zhu (C6SC05602D-(cit30)/*[position()=1]) 2016; 28
Chen (C6SC05602D-(cit28)/*[position()=1]) 2016; 138
Goris (C6SC05602D-(cit56)/*[position()=1]) 2012; 113
Ragon (C6SC05602D-(cit49)/*[position()=1]) 2015; 3
Moreira (C6SC05602D-(cit37)/*[position()=1]) 2012; 28
Rezaei (C6SC05602D-(cit14)/*[position()=1]) 2009; 64
Sutar (C6SC05602D-(cit41)/*[position()=1]) 2016; 52
Taddei (C6SC05602D-(cit66)/*[position()=1]) 2016; 52
Devic (C6SC05602D-(cit21)/*[position()=1]) 2014; 43
Kandiah (C6SC05602D-(cit47)/*[position()=1]) 2010; 20
Surblé (C6SC05602D-(cit70)/*[position()=1]) 2006
Mondloch (C6SC05602D-(cit52)/*[position()=1]) 2013; 135
Decoste (C6SC05602D-(cit33)/*[position()=1]) 2014; 114
Millange (C6SC05602D-(cit71)/*[position()=1]) 2010; 49
Horcajada (C6SC05602D-(cit42)/*[position()=1]) 2009; 21
Nandasiri (C6SC05602D-(cit36)/*[position()=1]) 2016; 311
Thornton (C6SC05602D-(cit68)/*[position()=1]) 2016; 45
Liu (C6SC05602D-(cit3)/*[position()=1]) 2014; 43
Clearfield (C6SC05602D-(cit72)/*[position()=1]) 1956; 9
Ramaswamy (C6SC05602D-(cit10)/*[position()=1]) 2014; 43
Chaudhari (C6SC05602D-(cit45)/*[position()=1]) 2015; 27
Hu (C6SC05602D-(cit74)/*[position()=1]) 2016; 16
Shearer (C6SC05602D-(cit67)/*[position()=1]) 2014; 26
Bradshaw (C6SC05602D-(cit16)/*[position()=1]) 2012; 41
Zhu (C6SC05602D-(cit29)/*[position()=1]) 2016; 22
Bennett (C6SC05602D-(cit62)/*[position()=1]) 2016; 138
Aguado (C6SC05602D-(cit64)/*[position()=1]) 2004; 75
Soper (C6SC05602D-(cit53)/*[position()=1]) 2011
Giménez-Marqués (C6SC05602D-(cit9)/*[position()=1]) 2016; 307
Rhodes (C6SC05602D-(cit13)/*[position()=1]) 2008
Liu (C6SC05602D-(cit51)/*[position()=1]) 2016; 11
Yang (C6SC05602D-(cit48)/*[position()=1]) 2013; 52
Van de Voorde (C6SC05602D-(cit34)/*[position()=1]) 2015; 3
Furukawa (C6SC05602D-(cit1)/*[position()=1]) 2013; 341
Bradshaw (C6SC05602D-(cit17)/*[position()=1]) 2014; 43
He (C6SC05602D-(cit6)/*[position()=1]) 2014; 43
Oliver (C6SC05602D-(cit58)/*[position()=1]) 2004; 19
Kim (C6SC05602D-(cit38)/*[position()=1]) 2015; 245
Mahmood (C6SC05602D-(cit46)/*[position()=1]) 2015; 5
Bueken (C6SC05602D-(cit60)/*[position()=1]) 2016; 22
Fu (C6SC05602D-(cit23)/*[position()=1]) 2013; 49
Li (C6SC05602D-(cit43)/*[position()=1]) 2013; 4
Ragon (C6SC05602D-(cit50)/*[position()=1]) 2014; 53
Schaate (C6SC05602D-(cit59)/*[position()=1]) 2011; 17
Furukawa (C6SC05602D-(cit18)/*[position()=1]) 2014; 43
Cavka (C6SC05602D-(cit20)/*[position()=1]) 2008; 130
Bennett (C6SC05602D-(cit35)/*[position()=1]) 2016; 18
Yan (C6SC05602D-(cit25)/*[position()=1]) 2014; 1366
Peterson (C6SC05602D-(cit32)/*[position()=1]) 2013; 179
Platero-Prats (C6SC05602D-(cit61)/*[position()=1]) 2016; 138
Zhao (C6SC05602D-(cit31)/*[position()=1]) 2016; 55
Shearer (C6SC05602D-(cit73)/*[position()=1]) 2016; 28
Van de Voorde (C6SC05602D-(cit7)/*[position()=1]) 2014; 43
Morris (C6SC05602D-(cit15)/*[position()=1]) 2008; 10
Cravillon (C6SC05602D-(cit65)/*[position()=1]) 2009; 21
Pinto (C6SC05602D-(cit24)/*[position()=1]) 2013; 5
Soper (C6SC05602D-(cit54)/*[position()=1]) 2011; 44
Suh (C6SC05602D-(cit5)/*[position()=1]) 2012; 112
Lv (C6SC05602D-(cit19)/*[position()=1]) 2016; 40
López-Maya (C6SC05602D-(cit27)/*[position()=1]) 2015; 127
Xia (C6SC05602D-(cit44)/*[position()=1]) 2013; 3
Keen (C6SC05602D-(cit55)/*[position()=1]) 2001; 34
Lohe (C6SC05602D-(cit40)/*[position()=1]) 2009
Horcajada (C6SC05602D-(cit8)/*[position()=1]) 2012; 112
Stassen (C6SC05602D-(cit26)/*[position()=1]) 2015; 27
Gateshki (C6SC05602D-(cit63)/*[position()=1]) 2005; 71
References_xml – volume: 43
  start-page: 5657
  year: 2014
  ident: C6SC05602D-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00032C
– volume: 112
  start-page: 1232
  year: 2012
  ident: C6SC05602D-(cit8)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200256v
– volume: 28
  start-page: 7652
  year: 2016
  ident: C6SC05602D-(cit30)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601351
– volume: 21
  start-page: 1931
  year: 2009
  ident: C6SC05602D-(cit42)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801851
– volume: 9
  start-page: 555
  year: 1956
  ident: C6SC05602D-(cit72)/*[position()=1]
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X56001558
– volume: 20
  start-page: 9848
  year: 2010
  ident: C6SC05602D-(cit47)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm02416c
– volume: 10
  start-page: 327
  year: 2008
  ident: C6SC05602D-(cit15)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200800642
– volume: 28
  start-page: 3749
  year: 2016
  ident: C6SC05602D-(cit73)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00602
– volume: 138
  start-page: 10810
  year: 2016
  ident: C6SC05602D-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06959
– volume: 127
  start-page: 6894
  year: 2015
  ident: C6SC05602D-(cit27)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201502094
– volume: 22
  start-page: 8751
  year: 2016
  ident: C6SC05602D-(cit29)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201600313
– volume: 55
  start-page: 13224
  year: 2016
  ident: C6SC05602D-(cit31)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606656
– volume: 341
  start-page: 974
  year: 2013
  ident: C6SC05602D-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 4
  start-page: 1774
  year: 2013
  ident: C6SC05602D-(cit43)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2757
– volume: 49
  start-page: 7162
  year: 2013
  ident: C6SC05602D-(cit23)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43017k
– volume: 64
  start-page: 5182
  year: 2009
  ident: C6SC05602D-(cit14)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.08.029
– volume: 130
  start-page: 13850
  year: 2008
  ident: C6SC05602D-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8057953
– start-page: 6056
  year: 2009
  ident: C6SC05602D-(cit40)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b910175f
– volume: 112
  start-page: 1105
  year: 2012
  ident: C6SC05602D-(cit11)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200324t
– volume: 311
  start-page: 38
  year: 2016
  ident: C6SC05602D-(cit36)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.12.004
– volume: 43
  start-page: 5431
  year: 2014
  ident: C6SC05602D-(cit17)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00127C
– volume: 27
  start-page: 1801
  year: 2015
  ident: C6SC05602D-(cit26)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm504806p
– volume: 45
  start-page: 2327
  year: 2016
  ident: C6SC05602D-(cit22)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00837A
– volume: 53
  start-page: 2491
  year: 2014
  ident: C6SC05602D-(cit50)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402514n
– volume: 138
  start-page: 3484
  year: 2016
  ident: C6SC05602D-(cit62)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13220
– volume: 135
  start-page: 10294
  year: 2013
  ident: C6SC05602D-(cit52)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4050828
– volume: 34
  start-page: 172
  year: 2001
  ident: C6SC05602D-(cit55)/*[position()=1]
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889800019993
– volume: 44
  start-page: 714
  year: 2011
  ident: C6SC05602D-(cit54)/*[position()=1]
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811021455
– volume: 52
  start-page: 10316
  year: 2013
  ident: C6SC05602D-(cit48)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201302682
– volume: 75
  start-page: 41
  year: 2004
  ident: C6SC05602D-(cit64)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2004.06.027
– volume: 71
  start-page: 224107
  year: 2005
  ident: C6SC05602D-(cit63)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.71.224107
– volume: 5
  start-page: 10556
  year: 2015
  ident: C6SC05602D-(cit46)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep10556
– volume: 179
  start-page: 48
  year: 2013
  ident: C6SC05602D-(cit32)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2013.02.025
– volume: 41
  start-page: 2344
  year: 2012
  ident: C6SC05602D-(cit16)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15276A
– volume: 3
  start-page: 1737
  year: 2015
  ident: C6SC05602D-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06396A
– volume: 43
  start-page: 5994
  year: 2014
  ident: C6SC05602D-(cit12)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00096J
– start-page: 1518
  year: 2006
  ident: C6SC05602D-(cit70)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b600709k
– volume: 112
  start-page: 782
  year: 2012
  ident: C6SC05602D-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200274s
– volume: 52
  start-page: 8055
  year: 2016
  ident: C6SC05602D-(cit41)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01955B
– volume: 3
  start-page: 11007
  year: 2013
  ident: C6SC05602D-(cit44)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c3ra40741a
– volume: 18
  start-page: 2192
  year: 2016
  ident: C6SC05602D-(cit35)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06798G
– volume: 43
  start-page: 5913
  year: 2014
  ident: C6SC05602D-(cit10)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00093E
– volume: 3
  start-page: 3294
  year: 2015
  ident: C6SC05602D-(cit49)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03992K
– volume-title: Handbook of Heterogeneous Catalysis
  year: 2008
  ident: C6SC05602D-(cit69)/*[position()=1]
– volume: 45
  start-page: 4352
  year: 2016
  ident: C6SC05602D-(cit68)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT04330A
– volume: 43
  start-page: 5700
  year: 2014
  ident: C6SC05602D-(cit18)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00106K
– volume: 245
  start-page: 54
  year: 2015
  ident: C6SC05602D-(cit38)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2014.05.041
– volume-title: Tech. Rep. RAL-TR-2011-013
  year: 2011
  ident: C6SC05602D-(cit53)/*[position()=1]
– volume: 43
  start-page: 6011
  year: 2014
  ident: C6SC05602D-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00094C
– volume: 28
  start-page: 5715
  year: 2012
  ident: C6SC05602D-(cit37)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la3004118
– volume: 113
  start-page: 120
  year: 2012
  ident: C6SC05602D-(cit56)/*[position()=1]
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2011.11.004
– volume: 1366
  start-page: 45
  year: 2014
  ident: C6SC05602D-(cit25)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2014.08.077
– volume: 21
  start-page: 1410
  year: 2009
  ident: C6SC05602D-(cit65)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm900166h
– volume: 136
  start-page: 4369
  year: 2014
  ident: C6SC05602D-(cit75)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500330a
– volume: 307
  start-page: 342
  year: 2016
  ident: C6SC05602D-(cit9)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.08.008
– volume: 5
  start-page: 2360
  year: 2013
  ident: C6SC05602D-(cit24)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am303089g
– volume: 3
  start-page: 1435
  year: 2013
  ident: C6SC05602D-(cit2)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy20813c
– volume: 43
  start-page: 6097
  year: 2014
  ident: C6SC05602D-(cit21)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00081A
– volume: 40
  start-page: 272
  year: 2016
  ident: C6SC05602D-(cit19)/*[position()=1]
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201600423
– volume: 27
  start-page: 4438
  year: 2015
  ident: C6SC05602D-(cit45)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501448
– volume: 11
  start-page: 2278
  year: 2016
  ident: C6SC05602D-(cit51)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201600698
– volume-title: Introduction to particle technology
  year: 2008
  ident: C6SC05602D-(cit13)/*[position()=1]
  doi: 10.1002/9780470727102
– volume: 52
  start-page: 6411
  year: 2016
  ident: C6SC05602D-(cit66)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC02517J
– volume: 49
  start-page: 763
  year: 2010
  ident: C6SC05602D-(cit71)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200905627
– volume: 26
  start-page: 4068
  year: 2014
  ident: C6SC05602D-(cit67)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm501859p
– volume: 2016
  start-page: 4416
  year: 2016
  ident: C6SC05602D-(cit39)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201600410
– volume: 22
  start-page: 3264
  year: 2016
  ident: C6SC05602D-(cit60)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201600330
– volume: 138
  start-page: 4178
  year: 2016
  ident: C6SC05602D-(cit61)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00069
– volume: 112
  start-page: 869
  year: 2012
  ident: C6SC05602D-(cit4)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200190s
– volume-title: Absorption by Powders and Porous Solids
  year: 1999
  ident: C6SC05602D-(cit57)/*[position()=1]
– volume: 16
  start-page: 2295
  year: 2016
  ident: C6SC05602D-(cit74)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b00076
– volume: 19
  start-page: 3
  year: 2004
  ident: C6SC05602D-(cit58)/*[position()=1]
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2004.19.1.3
– volume: 114
  start-page: 5695
  year: 2014
  ident: C6SC05602D-(cit33)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr4006473
– volume: 43
  start-page: 5766
  year: 2014
  ident: C6SC05602D-(cit7)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00006D
– volume: 17
  start-page: 6643
  year: 2011
  ident: C6SC05602D-(cit59)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201003211
SSID ssj0000331527
Score 2.602875
Snippet The ability of metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of...
The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of...
The ability of zirconium metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3939
SubjectTerms Adsorptivity
Catalysis
Catalysts
Chemistry
Gels
Mass transfer
Metal-organic frameworks
Nanoparticles
Porosity
Title Gel-based morphological design of zirconium metal–organic frameworks
URI https://www.ncbi.nlm.nih.gov/pubmed/28553536
https://www.proquest.com/docview/1903437438
https://www.proquest.com/docview/1904244641
https://pubmed.ncbi.nlm.nih.gov/PMC5433495
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-143393
Volume 8
WOSCitedRecordID wos000400553000077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAUL
  databaseName: Royal Society Of Chemistry Journals 2008-
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: RRC
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://pubs.rsc.org/
  providerName: Royal Society of Chemistry
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VCgkuvKEpsAqiHDhYxB7bsY9VysIBVag8tLcosR0RqZut9sGBE_-h_5Bfgu1sFkUFVOWYsZLMN_LMeCbfABx5kB2rXUMaVJxwRZFU2uaEWU0rbbjRdUT6Q356qmYz_XEPjv5RwUf9ppCfCu-lM3YSNtpcBNM9Oyt2BykZ4nY0K8s4JVKwbKAhHa0eO54r0eTVpsgRdWh0N9O713vRe3BnG06mxz3-92HPdQ_gVjFMcXsI03funARXZdP5wut02OtSG1s30kWT_miXPiluN_N07nwo_uvnZT_qyaTN0Lm1egRfpm8_F-_JdnYCMYKzNeG08hcN9GvSYiOtrFydZ9xINLyWhmeqjtVgy2qbNbbRFWdWYmjs1wYbfAz73aJzB5BmtFGa1rl23pVJamqjeMUD9k74ZEkk8HpQbGm2xOJhvsV5GQvcqMs_mkng5U72oqfT-KvUiwGf0qsrlDCqzi02q9KHL8jRRz3qvzLh7z3JaQJPekx3z2JKCBQoE8hHaO8EAtv2-E7Xfous24Ij-mwygVe9XYyWnLRfj0sPTrna-GQKUePhtb70KdxmIU6IHZTPYH-93LjncNN8X7er5QRu5DM1iccEk2j0vwEt_vnf
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gel-based+morphological+design+of+zirconium+metal-organic+frameworks&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Bueken%2C+Bart&rft.au=Van+Velthoven%2C+Niels&rft.au=Willhammar%2C+Tom&rft.au=Stassin%2C+Timoth%C3%A9e&rft.date=2017-05-01&rft.issn=2041-6520&rft.volume=8&rft.issue=5&rft.spage=3939&rft_id=info:doi/10.1039%2Fc6sc05602d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon