Raspberry Pi–powered imaging for plant phenotyping
Premise of the Study Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost‐prohibitive. To make high‐throughput phenotyping methods more accessible, low‐cost microcomputers and ca...
Uloženo v:
| Vydáno v: | Applications in plant sciences Ročník 6; číslo 3; s. e1031 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
John Wiley & Sons, Inc
01.03.2018
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 2168-0450, 2168-0450 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Premise of the Study
Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost‐prohibitive. To make high‐throughput phenotyping methods more accessible, low‐cost microcomputers and cameras can be used to acquire plant image data.
Methods and Results
We used low‐cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi–controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open‐source image processing software such as PlantCV.
Conclusions
This protocol describes three low‐cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open‐source image processing tools, these imaging platforms provide viable low‐cost solutions for incorporating high‐throughput phenomics into a wide range of research programs. |
|---|---|
| AbstractList | Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data.PREMISE OF THE STUDYImage-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data.We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV.METHODS AND RESULTSWe used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV.This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.CONCLUSIONSThis protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs. Premise of the Study Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost‐prohibitive. To make high‐throughput phenotyping methods more accessible, low‐cost microcomputers and cameras can be used to acquire plant image data. Methods and Results We used low‐cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi–controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open‐source image processing software such as PlantCV. Conclusions This protocol describes three low‐cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open‐source image processing tools, these imaging platforms provide viable low‐cost solutions for incorporating high‐throughput phenomics into a wide range of research programs. Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs. Premise of the StudyImage‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost‐prohibitive. To make high‐throughput phenotyping methods more accessible, low‐cost microcomputers and cameras can be used to acquire plant image data.Methods and ResultsWe used low‐cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi–controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open‐source image processing software such as PlantCV.ConclusionsThis protocol describes three low‐cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open‐source image processing tools, these imaging platforms provide viable low‐cost solutions for incorporating high‐throughput phenomics into a wide range of research programs. PREMISE OF THE STUDY: Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost‐prohibitive. To make high‐throughput phenotyping methods more accessible, low‐cost microcomputers and cameras can be used to acquire plant image data. METHODS AND RESULTS: We used low‐cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi–controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open‐source image processing software such as PlantCV. CONCLUSIONS: This protocol describes three low‐cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open‐source image processing tools, these imaging platforms provide viable low‐cost solutions for incorporating high‐throughput phenomics into a wide range of research programs. |
| Author | Tielking, Allison Elizabeth Castillo, S. Tovar, Jose C. Hoyer, J. Steen Lin, Andy Carrington, James C. Gehan, Malia A. Fahlgren, Noah Nusinow, Dmitri A. Tessman, Monica Miller, Michael Callen, Steven T. |
| AuthorAffiliation | 1 Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA 2 Computational and Systems Biology Program Washington University in St. Louis One Brookings Drive St. Louis Missouri 63130 USA |
| AuthorAffiliation_xml | – name: 2 Computational and Systems Biology Program Washington University in St. Louis One Brookings Drive St. Louis Missouri 63130 USA – name: 1 Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA |
| Author_xml | – sequence: 1 givenname: Jose C. surname: Tovar fullname: Tovar, Jose C. organization: Donald Danforth Plant Science Center – sequence: 2 givenname: J. Steen surname: Hoyer fullname: Hoyer, J. Steen organization: Washington University in St. Louis – sequence: 3 givenname: Andy surname: Lin fullname: Lin, Andy organization: Donald Danforth Plant Science Center – sequence: 4 givenname: Allison surname: Tielking fullname: Tielking, Allison organization: Donald Danforth Plant Science Center – sequence: 5 givenname: Steven T. surname: Callen fullname: Callen, Steven T. organization: Donald Danforth Plant Science Center – sequence: 6 givenname: S. surname: Elizabeth Castillo fullname: Elizabeth Castillo, S. organization: Donald Danforth Plant Science Center – sequence: 7 givenname: Michael surname: Miller fullname: Miller, Michael organization: Donald Danforth Plant Science Center – sequence: 8 givenname: Monica surname: Tessman fullname: Tessman, Monica organization: Donald Danforth Plant Science Center – sequence: 9 givenname: Noah surname: Fahlgren fullname: Fahlgren, Noah organization: Donald Danforth Plant Science Center – sequence: 10 givenname: James C. surname: Carrington fullname: Carrington, James C. organization: Donald Danforth Plant Science Center – sequence: 11 givenname: Dmitri A. surname: Nusinow fullname: Nusinow, Dmitri A. organization: Donald Danforth Plant Science Center – sequence: 12 givenname: Malia A. orcidid: 0000-0002-3238-2627 surname: Gehan fullname: Gehan, Malia A. email: mgehan@danforthcenter.org organization: Donald Danforth Plant Science Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29732261$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkclKBDEQhoOMOONy8AWkwYseRrN0Op2LIOIGguJyDul09Zihp9MmPcrcfAff0Ccx44YKai4pqr76-atqGfUa1wBC6wTvEIzprm4DixEjC2hASZYPccpx70vcR2shjHF8eUzJdAn1qRSM0owMUHqpQ1uA97Pkwj4_PrXuATyUiZ3okW1GSeV80ta66ZL2FhrXzdqYXUWLla4DrL3_K-jm6PD64GR4dn58erB_NjQ8pWSYYZ4BmIJJLhkmNDXCUKYLZmhaEFpUVJdMZAaEzlhZashplRNe5RIbzgCzFbT3pttOiwmUBprO61q1PrrzM-W0Vd8rjb1VI3eveC45kTQKbL0LeHc3hdCpiQ0G6jgQuGlQVJCccU6w-B_FjAvMJJUR3fyBjt3UN3ETKi6VC8FZlkVq46v5T9cfu4_A9htgvAvBQ_WJEKzmp1Xz06r5aSO7-4M1ttOddfO5bf1Xx4OtYfa7tNq_uGKvHS8xGrP1 |
| CitedBy_id | crossref_primary_10_1093_pcp_pcaa064 crossref_primary_10_1111_nph_18876 crossref_primary_10_12688_f1000research_140649_1 crossref_primary_10_1002_aps3_11280 crossref_primary_10_1186_s13007_024_01268_2 crossref_primary_10_1016_j_compag_2024_109299 crossref_primary_10_1186_s13007_023_00981_8 crossref_primary_10_1098_rsob_210353 crossref_primary_10_1002_aps3_11485 crossref_primary_10_1002_adsr_202400163 crossref_primary_10_1111_tpj_14189 crossref_primary_10_1016_j_procs_2020_02_041 crossref_primary_10_1002_ppj2_20014 crossref_primary_10_1093_jxb_erac243 crossref_primary_10_1016_j_tig_2024_09_008 crossref_primary_10_1002_tpg2_70100 crossref_primary_10_1038_s41587_019_0152_9 crossref_primary_10_1016_j_cosrev_2024_100636 crossref_primary_10_1186_s13007_020_00647_9 crossref_primary_10_3390_bios12010016 crossref_primary_10_1111_2041_210X_13688 crossref_primary_10_1111_2041_210X_13645 crossref_primary_10_1186_s13007_019_0546_1 crossref_primary_10_3390_inventions6020042 crossref_primary_10_1002_aps3_1039 crossref_primary_10_3389_fpls_2019_00227 crossref_primary_10_3390_s24175515 crossref_primary_10_1002_asjc_2220 crossref_primary_10_1002_aps3_11507 crossref_primary_10_1111_tpj_16587 crossref_primary_10_3390_agriculture15030227 crossref_primary_10_1093_jxb_erac470 crossref_primary_10_1093_icb_icac043 crossref_primary_10_1093_plphys_kiab155 crossref_primary_10_3390_s18082647 crossref_primary_10_1111_2041_210X_13652 crossref_primary_10_1002_aps3_11502 crossref_primary_10_34133_plantphenomics_0153 crossref_primary_10_1093_plphys_kiae097 crossref_primary_10_3390_s21103552 crossref_primary_10_7717_peerj_5727 crossref_primary_10_3389_fpls_2023_1252166 crossref_primary_10_1002_ppj2_70034 crossref_primary_10_1270_jsbbs_21070 crossref_primary_10_3390_asi6010001 crossref_primary_10_1016_j_scienta_2021_110433 crossref_primary_10_3389_feduc_2020_00048 crossref_primary_10_1002_pld3_102 crossref_primary_10_1111_tpj_14699 crossref_primary_10_1002_ppj2_20023 crossref_primary_10_1016_j_compag_2024_108896 crossref_primary_10_4018_IJCVIP_353913 crossref_primary_10_34133_plantphenomics_0265 crossref_primary_10_1016_j_atech_2022_100093 crossref_primary_10_3389_fpls_2023_1271539 |
| Cites_doi | 10.1038/ncomms13342 10.1016/S0981-9428(00)80097-2 10.1016/j.cois.2015.03.002 10.1016/j.tplants.2013.09.008 10.1111/tpj.13472 10.1371/journal.pgen.1006841 10.1104/pp.16.01516 10.1371/journal.pone.0097047 10.1105/tpc.114.129601 10.1038/ncomms6087 10.1534/g3.115.023515 10.1104/pp.16.01122 10.7554/eLife.13292 10.1111/nph.14243 10.1111/j.1469-8137.2005.01609.x 10.1104/pp.109.150748 10.3390/s17010214 10.1016/j.molp.2015.06.005 |
| ContentType | Journal Article |
| Copyright | is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
| DOI | 10.1002/aps3.1031 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 2168-0450 |
| EndPage | n/a |
| ExternalDocumentID | PMC5895192 29732261 10_1002_aps3_1031 APS31031 |
| Genre | article Journal Article |
| GeographicLocations | New York United States--US |
| GeographicLocations_xml | – name: New York – name: United States--US |
| GrantInformation_xml | – fundername: Donald Danforth Plant Science Center and the National Science Foundation funderid: IOS‐1456796; IOS‐1202682; EPSCoR IIA‐1355406; IIA‐1430427; IIA‐1430428; MCB‐1330562; DBI‐1156581 – fundername: Donald Danforth Plant Science Center and the National Science Foundation grantid: IOS‐1456796; IOS‐1202682; EPSCoR IIA‐1355406; IIA‐1430427; IIA‐1430428; MCB‐1330562; DBI‐1156581 |
| GroupedDBID | 0R~ 1OC 24P 5VS 8FE 8FH AAEFD AAHBH AAMMB AAPSS ABDBF ACCMX ACGFO ACGFS ACUHS ACXQS ADBBV ADEHT ADHSS ADKYN ADRAZ ADRYA ADZMN AEFGJ AEGXH AENEX AEPYG AFKRA AFNWH AGXDD AIAGR AIDQK AIDYY AKPMI ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BBNVY BCNDV BENPR BHPHI CCPQU EBS EJD GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IGS IPNFZ ITC KQ8 LK8 M48 M7P M~E O9- OK1 PHGZM PHGZT PIMPY PQ0 PQGLB PROAC PUEGO RBO RIG RNS ROL RPM RZN TBO WIN AAYXX AFFHD CITATION NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c5421-6056eecb395930124c7c23ab3c24b12bf2ad376ce7a63ddae82f815f890c53e03 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429700000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-0450 |
| IngestDate | Tue Nov 04 01:58:29 EST 2025 Fri Sep 05 17:27:04 EDT 2025 Fri Sep 05 12:35:17 EDT 2025 Wed Aug 13 10:00:48 EDT 2025 Sat Oct 25 11:10:37 EDT 2025 Tue Nov 18 22:12:46 EST 2025 Sat Nov 29 07:17:44 EST 2025 Sun Sep 21 06:27:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | low‐cost phenotyping Raspberry Pi morphology imaging |
| Language | English |
| License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5421-6056eecb395930124c7c23ab3c24b12bf2ad376ce7a63ddae82f815f890c53e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally. |
| ORCID | 0000-0002-3238-2627 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faps3.1031 |
| PMID | 29732261 |
| PQID | 2265775366 |
| PQPubID | 4368373 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5895192 proquest_miscellaneous_2718355107 proquest_miscellaneous_2035703929 proquest_journals_2265775366 pubmed_primary_29732261 crossref_primary_10_1002_aps3_1031 crossref_citationtrail_10_1002_aps3_1031 wiley_primary_10_1002_aps3_1031_APS31031 |
| PublicationCentury | 2000 |
| PublicationDate | March 2018 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Applications in plant sciences |
| PublicationTitleAlternate | Appl Plant Sci |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 2016; 5 2016; 6 2016; 7 2014; 5 2017; 90 2017; 17 2017; 13 1999; 37 2016; 212 2014; 26 2010; 152 2017 2016 2017; 173 2014; 19 2013; 110 2014 2014; 9 2015; 9 2015; 8 2017; 126 2006; 169 2016; 172 Bodner G. (e_1_2_5_4_1) 2017; 126 Huang H. (e_1_2_5_12_1) 2016; 5 Leister D. (e_1_2_5_16_1) 1999; 37 Upton E. (e_1_2_5_24_1) 2014 Al‐Tamimi N. (e_1_2_5_2_1) 2016; 7 Feldman M. J. (e_1_2_5_7_1) 2017; 13 Figuière H. (e_1_2_5_8_1) 2017 Topp C. N. (e_1_2_5_23_1) 2013; 110 Mutka A. M. (e_1_2_5_19_1) 2016; 172 Honsdorf N. (e_1_2_5_11_1) 2014; 9 Yang W. (e_1_2_5_25_1) 2014; 5 Zhang X. (e_1_2_5_26_1) 2017; 173 Minervini M. (e_1_2_5_17_1) 2017; 90 Fahlgren N. (e_1_2_5_6_1) 2015; 8 Monk S. (e_1_2_5_18_1) 2016 Pauli D. (e_1_2_5_20_1) 2016; 6 e_1_2_5_15_1 Granier C. (e_1_2_5_10_1) 2006; 169 Chen D. (e_1_2_5_5_1) 2014; 26 Poorter H. (e_1_2_5_21_1) 2016; 212 Shafiekhani A. (e_1_2_5_22_1) 2017; 17 Goggin F. L. (e_1_2_5_9_1) 2015; 9 Iyer‐Pascuzzi A. S. (e_1_2_5_13_1) 2010; 152 Araus J. L. (e_1_2_5_3_1) 2014; 19 Jahnke S. (e_1_2_5_14_1) 2016; 172 41132917 - Appl Plant Sci. 2025 Sep 26;13(5):e70022. doi: 10.1002/aps3.70022. |
| References_xml | – volume: 8 start-page: 1520 year: 2015 end-page: 1535 article-title: A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in publication-title: Molecular Plant – volume: 13 start-page: e1006841 year: 2017 article-title: Time dependent genetic analysis links field and controlled environment phenotypes in the model C grass publication-title: PLoS Genetics – volume: 173 start-page: 1554 year: 2017 end-page: 1564 article-title: High‐throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth publication-title: Plant Physiology – volume: 172 start-page: 1358 year: 2016 end-page: 1370 article-title: phenoSeeder–A robot system for automated handling and phenotyping of individual seeds publication-title: Plant Physiology – volume: 17 start-page: 214 year: 2017 article-title: Vinobot and Vinoculer: Two robotic platforms for high‐throughput field phenotyping publication-title: Sensors – volume: 9 start-page: 69 year: 2015 end-page: 76 article-title: Applying high‐throughput phenotyping to plant–insect interactions: Picturing more resistant crops publication-title: Current Opinion in Insect Science – volume: 9 start-page: e97047 year: 2014 article-title: High‐throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines publication-title: PLoS ONE – volume: 37 start-page: 671 year: 1999 end-page: 678 article-title: Large‐scale evaluation of plant growth in by non‐invasive image analysis publication-title: Plant Physiology and Biochemistry – volume: 152 start-page: 1148 year: 2010 end-page: 1157 article-title: Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems publication-title: Plant Physiology – volume: 169 start-page: 623 year: 2006 end-page: 635 article-title: PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in permitted the identification of an accession with low sensitivity to soil water deficit publication-title: New Phytologist – volume: 5 start-page: 5087 year: 2014 article-title: Combining high‐throughput phenotyping and genome‐wide association studies to reveal natural genetic variation in rice publication-title: Nature Communications – volume: 19 start-page: 52 year: 2014 end-page: 61 article-title: Field high‐throughput phenotyping: The new crop breeding frontier publication-title: Trends in Plant Science – volume: 26 start-page: 4636 year: 2014 end-page: 4655 article-title: Dissecting the phenotypic components of crop plant growth and drought responses based on high‐throughput image analysis publication-title: Plant Cell – volume: 212 start-page: 838 year: 2016 end-page: 855 article-title: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field publication-title: New Phytologist – year: 2017 – volume: 5 start-page: e13292 year: 2016 article-title: PCH1 integrates circadian and light‐signaling pathways to control photoperiod‐responsive growth in publication-title: eLife – year: 2016 – volume: 126 start-page: e56251 year: 2017 article-title: RGB and spectral root imaging for plant phenotyping and physiological research: Experimental setup and imaging protocols publication-title: Journal of Visualized Experiments: JoVE – volume: 172 start-page: 650 year: 2016 end-page: 660 article-title: Quantitative, image‐based phenotyping methods provide insight into spatial and temporal dimensions of plant disease publication-title: Plant Physiology – volume: 6 start-page: 865 year: 2016 end-page: 879 article-title: Field‐based high‐throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress‐responsive traits in cotton publication-title: G3: Genes, Genomes, Genetics – volume: 110 start-page: E1695 year: 2013 end-page: E1704 article-title: 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture publication-title: Proceedings of the National Academy of Science USA – year: 2014 – volume: 7 start-page: 13342 year: 2016 article-title: Salinity tolerance loci revealed in rice using high‐throughput non‐invasive phenotyping publication-title: Nature Communications – volume: 90 start-page: 204 year: 2017 end-page: 216 article-title: Phenotiki: An open software and hardware platform for affordable and easy image‐based phenotyping of rosette‐shaped plants publication-title: Plant Journal – volume: 7 start-page: 13342 year: 2016 ident: e_1_2_5_2_1 article-title: Salinity tolerance loci revealed in rice using high‐throughput non‐invasive phenotyping publication-title: Nature Communications doi: 10.1038/ncomms13342 – ident: e_1_2_5_15_1 – volume: 37 start-page: 671 year: 1999 ident: e_1_2_5_16_1 article-title: Large‐scale evaluation of plant growth in Arabidopsis thaliana by non‐invasive image analysis publication-title: Plant Physiology and Biochemistry doi: 10.1016/S0981-9428(00)80097-2 – volume: 9 start-page: 69 year: 2015 ident: e_1_2_5_9_1 article-title: Applying high‐throughput phenotyping to plant–insect interactions: Picturing more resistant crops publication-title: Current Opinion in Insect Science doi: 10.1016/j.cois.2015.03.002 – volume: 19 start-page: 52 year: 2014 ident: e_1_2_5_3_1 article-title: Field high‐throughput phenotyping: The new crop breeding frontier publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2013.09.008 – volume-title: Version 2.5.14 (2017‐06‐05). gPhoto–opensource digital camera access and remote control year: 2017 ident: e_1_2_5_8_1 – volume: 110 start-page: E1695 year: 2013 ident: e_1_2_5_23_1 article-title: 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture publication-title: Proceedings of the National Academy of Science USA – volume: 90 start-page: 204 year: 2017 ident: e_1_2_5_17_1 article-title: Phenotiki: An open software and hardware platform for affordable and easy image‐based phenotyping of rosette‐shaped plants publication-title: Plant Journal doi: 10.1111/tpj.13472 – volume: 13 start-page: e1006841 year: 2017 ident: e_1_2_5_7_1 article-title: Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1006841 – volume: 126 start-page: e56251 year: 2017 ident: e_1_2_5_4_1 article-title: RGB and spectral root imaging for plant phenotyping and physiological research: Experimental setup and imaging protocols publication-title: Journal of Visualized Experiments: JoVE – volume: 173 start-page: 1554 year: 2017 ident: e_1_2_5_26_1 article-title: High‐throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth publication-title: Plant Physiology doi: 10.1104/pp.16.01516 – volume-title: Raspberry Pi cookbook: Software and hardware problems and solutions year: 2016 ident: e_1_2_5_18_1 – volume: 9 start-page: e97047 year: 2014 ident: e_1_2_5_11_1 article-title: High‐throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines publication-title: PLoS ONE doi: 10.1371/journal.pone.0097047 – volume: 26 start-page: 4636 year: 2014 ident: e_1_2_5_5_1 article-title: Dissecting the phenotypic components of crop plant growth and drought responses based on high‐throughput image analysis publication-title: Plant Cell doi: 10.1105/tpc.114.129601 – volume: 5 start-page: 5087 year: 2014 ident: e_1_2_5_25_1 article-title: Combining high‐throughput phenotyping and genome‐wide association studies to reveal natural genetic variation in rice publication-title: Nature Communications doi: 10.1038/ncomms6087 – volume: 172 start-page: 650 year: 2016 ident: e_1_2_5_19_1 article-title: Quantitative, image‐based phenotyping methods provide insight into spatial and temporal dimensions of plant disease publication-title: Plant Physiology – volume: 6 start-page: 865 year: 2016 ident: e_1_2_5_20_1 article-title: Field‐based high‐throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress‐responsive traits in cotton publication-title: G3: Genes, Genomes, Genetics doi: 10.1534/g3.115.023515 – volume-title: Raspberry Pi user guide year: 2014 ident: e_1_2_5_24_1 – volume: 172 start-page: 1358 year: 2016 ident: e_1_2_5_14_1 article-title: phenoSeeder–A robot system for automated handling and phenotyping of individual seeds publication-title: Plant Physiology doi: 10.1104/pp.16.01122 – volume: 5 start-page: e13292 year: 2016 ident: e_1_2_5_12_1 article-title: PCH1 integrates circadian and light‐signaling pathways to control photoperiod‐responsive growth in Arabidopsis publication-title: eLife doi: 10.7554/eLife.13292 – volume: 212 start-page: 838 year: 2016 ident: e_1_2_5_21_1 article-title: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field publication-title: New Phytologist doi: 10.1111/nph.14243 – volume: 169 start-page: 623 year: 2006 ident: e_1_2_5_10_1 article-title: PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit publication-title: New Phytologist doi: 10.1111/j.1469-8137.2005.01609.x – volume: 152 start-page: 1148 year: 2010 ident: e_1_2_5_13_1 article-title: Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems publication-title: Plant Physiology doi: 10.1104/pp.109.150748 – volume: 17 start-page: 214 year: 2017 ident: e_1_2_5_22_1 article-title: Vinobot and Vinoculer: Two robotic platforms for high‐throughput field phenotyping publication-title: Sensors doi: 10.3390/s17010214 – volume: 8 start-page: 1520 year: 2015 ident: e_1_2_5_6_1 article-title: A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria publication-title: Molecular Plant doi: 10.1016/j.molp.2015.06.005 – reference: 41132917 - Appl Plant Sci. 2025 Sep 26;13(5):e70022. doi: 10.1002/aps3.70022. |
| SSID | ssj0000816894 |
| Score | 2.3649335 |
| Snippet | Premise of the Study
Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent... Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy... Premise of the StudyImage‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent... PREMISE OF THE STUDY: Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1031 |
| SubjectTerms | Cameras color computer software Computers Data analysis Documentation Image processing imaging low‐cost phenotyping Metadata morphology phenomics phenotype Phenotyping Plant extracts Plant sciences Protocol Protocol Note Protocol Notes raspberries Raspberry Pi Research programs Shutdowns Software species diversity |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7RhQOXtrTQbnkoRT1widavJM4JQQWCQ1FUQIJTlDiOuhJN0s1SaW_9D_2H_SXMJNnAisep54wUezz2fLbH3wfwhaV022K4y3nOXBXglEpzrVyJmwnlMWNZmDdiE8HZmb66CqPueXTdlVXO18RmoW7ZnqluGxfhUVYaOjEfIWjwAkTavr9f_XJJQ4ruWjtBjVewTMRbbADL0em36Lo_c2lEJkI1JxhiYpRUtaR353wxLT3Cmo9LJh9C2SYXHb_5v714C687TOoctEG0Bku2eAcrhyXixtl7UN-TukrtZDJzovG_P38r0lWzmTP-2QgcOYh6neoGB8ihcrFyOqMXWOtweXx08fXE7bQWXOMpwV3c1fjWmlQSUTEmLWUCI2SSSiNUykWaiyTDtcjYIPFlliVWi1xzL9c40J60TG7AoCgL-xEcnfkZ44lOjWeVzPJQ5cwIYZmwWiojh7A3d3VsOiJy0sO4iVsKZRHTqMQ0KkPY7U2rln3jKaOtua_jbgLW8b1rh_C5_4xTh-5DksKWt2jDJPGPIUB8wQZzN0Iy3CQP4UMbAn1LSPYL_4MNCBaCozcg6u7FL8X4R0Ph7WlEtqFAVzRh9Hzn4oPonKTg-KeXe7kJqwjldFsdtwWD6eTWbsOK-T0d15OdbiLcAbfqGkc priority: 102 providerName: ProQuest |
| Title | Raspberry Pi–powered imaging for plant phenotyping |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faps3.1031 https://www.ncbi.nlm.nih.gov/pubmed/29732261 https://www.proquest.com/docview/2265775366 https://www.proquest.com/docview/2035703929 https://www.proquest.com/docview/2718355107 https://pubmed.ncbi.nlm.nih.gov/PMC5895192 |
| Volume | 6 |
| WOSCitedRecordID | wos000429700000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2168-0450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816894 issn: 2168-0450 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2168-0450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816894 issn: 2168-0450 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2168-0450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816894 issn: 2168-0450 databaseCode: M7P dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2168-0450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816894 issn: 2168-0450 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2168-0450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816894 issn: 2168-0450 databaseCode: PIMPY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2168-0450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816894 issn: 2168-0450 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2168-0450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816894 issn: 2168-0450 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2qOl2w4f0YKKOAWLCJ6lcSj1i1qBVdMIoKiGEV2Y6jjlQy0WRaaXb9B_6QL-FeZyYwKiAkNlEi3yiO7Wuf68c5AK-YpdUWx2POKxarDF3KVlrFEoMJlTDn2bgKYhPZZKKn03G-A282Z2E6foh-wo08I_TX5ODGtgc_SUNN00o6Mo6hz4BzmVGTFirvJ1iCokQQQhR4E9OXN8xCTBz0b2-PRzdA5s29kr9i2DAIndz5r-zfhdtr7Bkddo3lHuz4-j7sHc0RH64egDozbWP9YrGK8tn3628N6af5Mpp9DUJGEaLbqLnAiohoW9h8uaKTVg_h08nxx7fv4rWmQuwSJXiM0UvqvbOSCIlxcFIuc0IaK51QlgtbCVNin-N8ZlJZlsZrUWmeVBorNJGeyUewW89r_wQiXaYl40Zbl3gly2qsKuaE8Ex4LZWTQ3i9KdnCrQnHSffiouiokkVBZVBQGQzhZW_adCwbvzPa31RPsXa0tkD0mGQYcqXpEF70yegitO5haj-_RBsmiWcMgeBfbHCMRuiFwfAQHnc13ueE5L3wO5iBbKst9AZE0b2dUs_OA1V3ohHBjgUWRWgLf_654jD_QJJv_Om_mz6DWwjfdLcjbh92l4tL_xz23NVy1i5GwRvwmk31CAZHx5P8bBRmHEa0vxVTBvnp-_wLPn0-nfwAHAwTYA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VbSW4UN5dWiAgkLhEdWwncQ4IlUfVVdtVBEVqTyFxHHWlkoTNFrS3_of-D34Uv4SZvGBV6K0Hzh4ltufhz_Z4PoDnLKHbFu3YjpMxW_roUkmmpC1wMyFdpg0Lsppswh-P1eFhEC7Bj-4tDKVVdjGxDtRpoemMfBNhgusjtva81-VXm1ij6Ha1o9BozGLXzL_jlq16NXqH-n3B-fb7g7c7dssqYGtXcsdG_O4ZoxNBJXkxPEvtay7iRGguE4cnGY9T9Dpt_NgTaRobxTPluJnCIbnCMIHfvQbLEo2dDWA5HO2HR_2pTk1jEciuhBHjm3FZCXrZ7iwufBfQ7MWkzD_Bcr3aba_-b_N0C262uNraahzhNiyZ_A6svCkQ-87vgvwQV2ViptO5FU5-np2XxA1nUmvypSZpshC5W-UJGplFKW_FbE6vyO7Bpyvp8X0Y5EVu1sBSqZcyJ1aJdo0UaRbIjGnODeNGCanFEF52yox0W0ydOD1OoqYMNI9I7xHpfQjPetGyqSDyN6GNTptRG0Sq6Lcqh_C0b0b3pzudODfFKcowQTXUEOReIoP4A2ElbvSH8KAxsr4nRF2G_8EO-Avm1wtQ-fHFlnxyXJchdxWi84DjVNSG-u_BRVvhR6Kzcx5ePsoncH3nYH8v2huNd9fhBkJT1WT7bcBgNj01j2BFf5tNqunj1u0s-HzVFvwLf2trBg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0q0wqx4Q2dtkBAILGJxq8kzgKhlnZEVTSKCkjdpYlji5HaJEymRbPjH_o3fA5fwnVeMCp01wVrXyV-HF8f29f3ALwkqb1tUdSl1BBXBDilUiOFy3EzITyiNAlNLTYRTCby6CiMVuBH9xbGhlV2PrF21Fmh7Bn5CGmCFyC39v2RacMiot3x2_KraxWk7E1rJ6fRQORAL77h9q16s7-LY_2KsfHep3fv3VZhwFWeYNRFLu9rrVJu0_OiqxYqUIwnKVdMpJSlhiUZzkClg8TnWZZoyYyknpHYPI9rwvG7N2A14LjpGcDqzt4kOuxPeGpJi1B06YwIGyVlxe0rd7q8CF5itpcDNP8kzvXKN77zP_fZXbjd8m1nu5kg92BF5_dhbadATrx4AOIwqcpUz2YLJ5r-_H5RWs04nTnT01q8yUFG75QnCD7HhsIV84V9XfYQPl9LjR_BIC9yvQ6OzPyM0ESmytOCZyYUhijGNGFacqH4EF53AxurNsm61fo4iZv00Cy2GIgtBobwojctm8wifzPa6kY2bp1LFf8e1iE874vRLdi7niTXxRnaEG5zqyH5vcIGeQnSTUqCITxuANfXxEqa4X-wAsESFHsDm5Z8uSSffqnTk3sSWXvIsCtq0P67cfF29NHK3NGNq1v5DG4ibOMP-5ODTbiFjFU2QYBbMJjPzvQTWFPn82k1e9rOQAeOrxvAvwCsQnOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raspberry+Pi%E2%80%93powered+imaging+for+plant+phenotyping&rft.jtitle=Applications+in+plant+sciences&rft.au=Tovar%2C+Jose+C.&rft.au=Hoyer%2C+J.+Steen&rft.au=Lin%2C+Andy&rft.au=Tielking%2C+Allison&rft.date=2018-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2168-0450&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1002%2Faps3.1031&rft_id=info%3Apmid%2F29732261&rft.externalDocID=PMC5895192 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0450&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0450&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0450&client=summon |