Raspberry Pi–powered imaging for plant phenotyping

Premise of the Study Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost‐prohibitive. To make high‐throughput phenotyping methods more accessible, low‐cost microcomputers and ca...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applications in plant sciences Ročník 6; číslo 3; s. e1031 - n/a
Hlavní autori: Tovar, Jose C., Hoyer, J. Steen, Lin, Andy, Tielking, Allison, Callen, Steven T., Elizabeth Castillo, S., Miller, Michael, Tessman, Monica, Fahlgren, Noah, Carrington, James C., Nusinow, Dmitri A., Gehan, Malia A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States John Wiley & Sons, Inc 01.03.2018
John Wiley and Sons Inc
Predmet:
ISSN:2168-0450, 2168-0450
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Premise of the Study Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost‐prohibitive. To make high‐throughput phenotyping methods more accessible, low‐cost microcomputers and cameras can be used to acquire plant image data. Methods and Results We used low‐cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi–controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open‐source image processing software such as PlantCV. Conclusions This protocol describes three low‐cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open‐source image processing tools, these imaging platforms provide viable low‐cost solutions for incorporating high‐throughput phenomics into a wide range of research programs.
AbstractList Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data.PREMISE OF THE STUDYImage-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data.We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV.METHODS AND RESULTSWe used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV.This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.CONCLUSIONSThis protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.
Premise of the Study Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost‐prohibitive. To make high‐throughput phenotyping methods more accessible, low‐cost microcomputers and cameras can be used to acquire plant image data. Methods and Results We used low‐cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi–controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open‐source image processing software such as PlantCV. Conclusions This protocol describes three low‐cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open‐source image processing tools, these imaging platforms provide viable low‐cost solutions for incorporating high‐throughput phenomics into a wide range of research programs.
Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.
Premise of the StudyImage‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost‐prohibitive. To make high‐throughput phenotyping methods more accessible, low‐cost microcomputers and cameras can be used to acquire plant image data.Methods and ResultsWe used low‐cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi–controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open‐source image processing software such as PlantCV.ConclusionsThis protocol describes three low‐cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open‐source image processing tools, these imaging platforms provide viable low‐cost solutions for incorporating high‐throughput phenomics into a wide range of research programs.
PREMISE OF THE STUDY: Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost‐prohibitive. To make high‐throughput phenotyping methods more accessible, low‐cost microcomputers and cameras can be used to acquire plant image data. METHODS AND RESULTS: We used low‐cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi–controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open‐source image processing software such as PlantCV. CONCLUSIONS: This protocol describes three low‐cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open‐source image processing tools, these imaging platforms provide viable low‐cost solutions for incorporating high‐throughput phenomics into a wide range of research programs.
Author Tielking, Allison
Elizabeth Castillo, S.
Tovar, Jose C.
Hoyer, J. Steen
Lin, Andy
Carrington, James C.
Gehan, Malia A.
Fahlgren, Noah
Nusinow, Dmitri A.
Tessman, Monica
Miller, Michael
Callen, Steven T.
AuthorAffiliation 1 Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
2 Computational and Systems Biology Program Washington University in St. Louis One Brookings Drive St. Louis Missouri 63130 USA
AuthorAffiliation_xml – name: 2 Computational and Systems Biology Program Washington University in St. Louis One Brookings Drive St. Louis Missouri 63130 USA
– name: 1 Donald Danforth Plant Science Center 975 North Warson Road St. Louis Missouri 63132 USA
Author_xml – sequence: 1
  givenname: Jose C.
  surname: Tovar
  fullname: Tovar, Jose C.
  organization: Donald Danforth Plant Science Center
– sequence: 2
  givenname: J. Steen
  surname: Hoyer
  fullname: Hoyer, J. Steen
  organization: Washington University in St. Louis
– sequence: 3
  givenname: Andy
  surname: Lin
  fullname: Lin, Andy
  organization: Donald Danforth Plant Science Center
– sequence: 4
  givenname: Allison
  surname: Tielking
  fullname: Tielking, Allison
  organization: Donald Danforth Plant Science Center
– sequence: 5
  givenname: Steven T.
  surname: Callen
  fullname: Callen, Steven T.
  organization: Donald Danforth Plant Science Center
– sequence: 6
  givenname: S.
  surname: Elizabeth Castillo
  fullname: Elizabeth Castillo, S.
  organization: Donald Danforth Plant Science Center
– sequence: 7
  givenname: Michael
  surname: Miller
  fullname: Miller, Michael
  organization: Donald Danforth Plant Science Center
– sequence: 8
  givenname: Monica
  surname: Tessman
  fullname: Tessman, Monica
  organization: Donald Danforth Plant Science Center
– sequence: 9
  givenname: Noah
  surname: Fahlgren
  fullname: Fahlgren, Noah
  organization: Donald Danforth Plant Science Center
– sequence: 10
  givenname: James C.
  surname: Carrington
  fullname: Carrington, James C.
  organization: Donald Danforth Plant Science Center
– sequence: 11
  givenname: Dmitri A.
  surname: Nusinow
  fullname: Nusinow, Dmitri A.
  organization: Donald Danforth Plant Science Center
– sequence: 12
  givenname: Malia A.
  orcidid: 0000-0002-3238-2627
  surname: Gehan
  fullname: Gehan, Malia A.
  email: mgehan@danforthcenter.org
  organization: Donald Danforth Plant Science Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29732261$$D View this record in MEDLINE/PubMed
BookMark eNqFkclKBDEQhoOMOONy8AWkwYseRrN0Op2LIOIGguJyDul09Zihp9MmPcrcfAff0Ccx44YKai4pqr76-atqGfUa1wBC6wTvEIzprm4DixEjC2hASZYPccpx70vcR2shjHF8eUzJdAn1qRSM0owMUHqpQ1uA97Pkwj4_PrXuATyUiZ3okW1GSeV80ta66ZL2FhrXzdqYXUWLla4DrL3_K-jm6PD64GR4dn58erB_NjQ8pWSYYZ4BmIJJLhkmNDXCUKYLZmhaEFpUVJdMZAaEzlhZashplRNe5RIbzgCzFbT3pttOiwmUBprO61q1PrrzM-W0Vd8rjb1VI3eveC45kTQKbL0LeHc3hdCpiQ0G6jgQuGlQVJCccU6w-B_FjAvMJJUR3fyBjt3UN3ETKi6VC8FZlkVq46v5T9cfu4_A9htgvAvBQ_WJEKzmp1Xz06r5aSO7-4M1ttOddfO5bf1Xx4OtYfa7tNq_uGKvHS8xGrP1
CitedBy_id crossref_primary_10_1093_pcp_pcaa064
crossref_primary_10_1111_nph_18876
crossref_primary_10_12688_f1000research_140649_1
crossref_primary_10_1002_aps3_11280
crossref_primary_10_1186_s13007_024_01268_2
crossref_primary_10_1016_j_compag_2024_109299
crossref_primary_10_1186_s13007_023_00981_8
crossref_primary_10_1098_rsob_210353
crossref_primary_10_1002_aps3_11485
crossref_primary_10_1002_adsr_202400163
crossref_primary_10_1111_tpj_14189
crossref_primary_10_1016_j_procs_2020_02_041
crossref_primary_10_1002_ppj2_20014
crossref_primary_10_1093_jxb_erac243
crossref_primary_10_1016_j_tig_2024_09_008
crossref_primary_10_1002_tpg2_70100
crossref_primary_10_1038_s41587_019_0152_9
crossref_primary_10_1016_j_cosrev_2024_100636
crossref_primary_10_1186_s13007_020_00647_9
crossref_primary_10_3390_bios12010016
crossref_primary_10_1111_2041_210X_13688
crossref_primary_10_1111_2041_210X_13645
crossref_primary_10_1186_s13007_019_0546_1
crossref_primary_10_3390_inventions6020042
crossref_primary_10_1002_aps3_1039
crossref_primary_10_3389_fpls_2019_00227
crossref_primary_10_3390_s24175515
crossref_primary_10_1002_asjc_2220
crossref_primary_10_1002_aps3_11507
crossref_primary_10_1111_tpj_16587
crossref_primary_10_3390_agriculture15030227
crossref_primary_10_1093_jxb_erac470
crossref_primary_10_1093_icb_icac043
crossref_primary_10_1093_plphys_kiab155
crossref_primary_10_3390_s18082647
crossref_primary_10_1111_2041_210X_13652
crossref_primary_10_1002_aps3_11502
crossref_primary_10_34133_plantphenomics_0153
crossref_primary_10_1093_plphys_kiae097
crossref_primary_10_3390_s21103552
crossref_primary_10_7717_peerj_5727
crossref_primary_10_3389_fpls_2023_1252166
crossref_primary_10_1002_ppj2_70034
crossref_primary_10_1270_jsbbs_21070
crossref_primary_10_3390_asi6010001
crossref_primary_10_1016_j_scienta_2021_110433
crossref_primary_10_3389_feduc_2020_00048
crossref_primary_10_1002_pld3_102
crossref_primary_10_1111_tpj_14699
crossref_primary_10_1002_ppj2_20023
crossref_primary_10_1016_j_compag_2024_108896
crossref_primary_10_4018_IJCVIP_353913
crossref_primary_10_34133_plantphenomics_0265
crossref_primary_10_1016_j_atech_2022_100093
crossref_primary_10_3389_fpls_2023_1271539
Cites_doi 10.1038/ncomms13342
10.1016/S0981-9428(00)80097-2
10.1016/j.cois.2015.03.002
10.1016/j.tplants.2013.09.008
10.1111/tpj.13472
10.1371/journal.pgen.1006841
10.1104/pp.16.01516
10.1371/journal.pone.0097047
10.1105/tpc.114.129601
10.1038/ncomms6087
10.1534/g3.115.023515
10.1104/pp.16.01122
10.7554/eLife.13292
10.1111/nph.14243
10.1111/j.1469-8137.2005.01609.x
10.1104/pp.109.150748
10.3390/s17010214
10.1016/j.molp.2015.06.005
ContentType Journal Article
Copyright is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOI 10.1002/aps3.1031
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2168-0450
EndPage n/a
ExternalDocumentID PMC5895192
29732261
10_1002_aps3_1031
APS31031
Genre article
Journal Article
GeographicLocations New York
United States--US
GeographicLocations_xml – name: New York
– name: United States--US
GrantInformation_xml – fundername: Donald Danforth Plant Science Center and the National Science Foundation
  funderid: IOS‐1456796; IOS‐1202682; EPSCoR IIA‐1355406; IIA‐1430427; IIA‐1430428; MCB‐1330562; DBI‐1156581
– fundername: Donald Danforth Plant Science Center and the National Science Foundation
  grantid: IOS‐1456796; IOS‐1202682; EPSCoR IIA‐1355406; IIA‐1430427; IIA‐1430428; MCB‐1330562; DBI‐1156581
GroupedDBID 0R~
1OC
24P
5VS
8FE
8FH
AAEFD
AAHBH
AAMMB
AAPSS
ABDBF
ACCMX
ACGFO
ACGFS
ACUHS
ACXQS
ADBBV
ADEHT
ADHSS
ADKYN
ADRAZ
ADRYA
ADZMN
AEFGJ
AEGXH
AENEX
AEPYG
AFKRA
AFNWH
AGXDD
AIAGR
AIDQK
AIDYY
AKPMI
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
EBS
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IGS
IPNFZ
ITC
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PQ0
PQGLB
PROAC
PUEGO
RBO
RIG
RNS
ROL
RPM
RZN
TBO
WIN
AAYXX
AFFHD
CITATION
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5421-6056eecb395930124c7c23ab3c24b12bf2ad376ce7a63ddae82f815f890c53e03
IEDL.DBID 24P
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429700000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-0450
IngestDate Tue Nov 04 01:58:29 EST 2025
Fri Sep 05 17:27:04 EDT 2025
Fri Sep 05 12:35:17 EDT 2025
Wed Aug 13 10:00:48 EDT 2025
Sat Oct 25 11:10:37 EDT 2025
Tue Nov 18 22:12:46 EST 2025
Sat Nov 29 07:17:44 EST 2025
Sun Sep 21 06:27:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords low‐cost phenotyping
Raspberry Pi
morphology
imaging
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5421-6056eecb395930124c7c23ab3c24b12bf2ad376ce7a63ddae82f815f890c53e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
ORCID 0000-0002-3238-2627
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faps3.1031
PMID 29732261
PQID 2265775366
PQPubID 4368373
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5895192
proquest_miscellaneous_2718355107
proquest_miscellaneous_2035703929
proquest_journals_2265775366
pubmed_primary_29732261
crossref_primary_10_1002_aps3_1031
crossref_citationtrail_10_1002_aps3_1031
wiley_primary_10_1002_aps3_1031_APS31031
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Applications in plant sciences
PublicationTitleAlternate Appl Plant Sci
PublicationYear 2018
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2016; 5
2016; 6
2016; 7
2014; 5
2017; 90
2017; 17
2017; 13
1999; 37
2016; 212
2014; 26
2010; 152
2017
2016
2017; 173
2014; 19
2013; 110
2014
2014; 9
2015; 9
2015; 8
2017; 126
2006; 169
2016; 172
Bodner G. (e_1_2_5_4_1) 2017; 126
Huang H. (e_1_2_5_12_1) 2016; 5
Leister D. (e_1_2_5_16_1) 1999; 37
Upton E. (e_1_2_5_24_1) 2014
Al‐Tamimi N. (e_1_2_5_2_1) 2016; 7
Feldman M. J. (e_1_2_5_7_1) 2017; 13
Figuière H. (e_1_2_5_8_1) 2017
Topp C. N. (e_1_2_5_23_1) 2013; 110
Mutka A. M. (e_1_2_5_19_1) 2016; 172
Honsdorf N. (e_1_2_5_11_1) 2014; 9
Yang W. (e_1_2_5_25_1) 2014; 5
Zhang X. (e_1_2_5_26_1) 2017; 173
Minervini M. (e_1_2_5_17_1) 2017; 90
Fahlgren N. (e_1_2_5_6_1) 2015; 8
Monk S. (e_1_2_5_18_1) 2016
Pauli D. (e_1_2_5_20_1) 2016; 6
e_1_2_5_15_1
Granier C. (e_1_2_5_10_1) 2006; 169
Chen D. (e_1_2_5_5_1) 2014; 26
Poorter H. (e_1_2_5_21_1) 2016; 212
Shafiekhani A. (e_1_2_5_22_1) 2017; 17
Goggin F. L. (e_1_2_5_9_1) 2015; 9
Iyer‐Pascuzzi A. S. (e_1_2_5_13_1) 2010; 152
Araus J. L. (e_1_2_5_3_1) 2014; 19
Jahnke S. (e_1_2_5_14_1) 2016; 172
41132917 - Appl Plant Sci. 2025 Sep 26;13(5):e70022. doi: 10.1002/aps3.70022.
References_xml – volume: 8
  start-page: 1520
  year: 2015
  end-page: 1535
  article-title: A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in
  publication-title: Molecular Plant
– volume: 13
  start-page: e1006841
  year: 2017
  article-title: Time dependent genetic analysis links field and controlled environment phenotypes in the model C grass
  publication-title: PLoS Genetics
– volume: 173
  start-page: 1554
  year: 2017
  end-page: 1564
  article-title: High‐throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth
  publication-title: Plant Physiology
– volume: 172
  start-page: 1358
  year: 2016
  end-page: 1370
  article-title: phenoSeeder–A robot system for automated handling and phenotyping of individual seeds
  publication-title: Plant Physiology
– volume: 17
  start-page: 214
  year: 2017
  article-title: Vinobot and Vinoculer: Two robotic platforms for high‐throughput field phenotyping
  publication-title: Sensors
– volume: 9
  start-page: 69
  year: 2015
  end-page: 76
  article-title: Applying high‐throughput phenotyping to plant–insect interactions: Picturing more resistant crops
  publication-title: Current Opinion in Insect Science
– volume: 9
  start-page: e97047
  year: 2014
  article-title: High‐throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines
  publication-title: PLoS ONE
– volume: 37
  start-page: 671
  year: 1999
  end-page: 678
  article-title: Large‐scale evaluation of plant growth in by non‐invasive image analysis
  publication-title: Plant Physiology and Biochemistry
– volume: 152
  start-page: 1148
  year: 2010
  end-page: 1157
  article-title: Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems
  publication-title: Plant Physiology
– volume: 169
  start-page: 623
  year: 2006
  end-page: 635
  article-title: PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in permitted the identification of an accession with low sensitivity to soil water deficit
  publication-title: New Phytologist
– volume: 5
  start-page: 5087
  year: 2014
  article-title: Combining high‐throughput phenotyping and genome‐wide association studies to reveal natural genetic variation in rice
  publication-title: Nature Communications
– volume: 19
  start-page: 52
  year: 2014
  end-page: 61
  article-title: Field high‐throughput phenotyping: The new crop breeding frontier
  publication-title: Trends in Plant Science
– volume: 26
  start-page: 4636
  year: 2014
  end-page: 4655
  article-title: Dissecting the phenotypic components of crop plant growth and drought responses based on high‐throughput image analysis
  publication-title: Plant Cell
– volume: 212
  start-page: 838
  year: 2016
  end-page: 855
  article-title: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field
  publication-title: New Phytologist
– year: 2017
– volume: 5
  start-page: e13292
  year: 2016
  article-title: PCH1 integrates circadian and light‐signaling pathways to control photoperiod‐responsive growth in
  publication-title: eLife
– year: 2016
– volume: 126
  start-page: e56251
  year: 2017
  article-title: RGB and spectral root imaging for plant phenotyping and physiological research: Experimental setup and imaging protocols
  publication-title: Journal of Visualized Experiments: JoVE
– volume: 172
  start-page: 650
  year: 2016
  end-page: 660
  article-title: Quantitative, image‐based phenotyping methods provide insight into spatial and temporal dimensions of plant disease
  publication-title: Plant Physiology
– volume: 6
  start-page: 865
  year: 2016
  end-page: 879
  article-title: Field‐based high‐throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress‐responsive traits in cotton
  publication-title: G3: Genes, Genomes, Genetics
– volume: 110
  start-page: E1695
  year: 2013
  end-page: E1704
  article-title: 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture
  publication-title: Proceedings of the National Academy of Science USA
– year: 2014
– volume: 7
  start-page: 13342
  year: 2016
  article-title: Salinity tolerance loci revealed in rice using high‐throughput non‐invasive phenotyping
  publication-title: Nature Communications
– volume: 90
  start-page: 204
  year: 2017
  end-page: 216
  article-title: Phenotiki: An open software and hardware platform for affordable and easy image‐based phenotyping of rosette‐shaped plants
  publication-title: Plant Journal
– volume: 7
  start-page: 13342
  year: 2016
  ident: e_1_2_5_2_1
  article-title: Salinity tolerance loci revealed in rice using high‐throughput non‐invasive phenotyping
  publication-title: Nature Communications
  doi: 10.1038/ncomms13342
– ident: e_1_2_5_15_1
– volume: 37
  start-page: 671
  year: 1999
  ident: e_1_2_5_16_1
  article-title: Large‐scale evaluation of plant growth in Arabidopsis thaliana by non‐invasive image analysis
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/S0981-9428(00)80097-2
– volume: 9
  start-page: 69
  year: 2015
  ident: e_1_2_5_9_1
  article-title: Applying high‐throughput phenotyping to plant–insect interactions: Picturing more resistant crops
  publication-title: Current Opinion in Insect Science
  doi: 10.1016/j.cois.2015.03.002
– volume: 19
  start-page: 52
  year: 2014
  ident: e_1_2_5_3_1
  article-title: Field high‐throughput phenotyping: The new crop breeding frontier
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2013.09.008
– volume-title: Version 2.5.14 (2017‐06‐05). gPhoto–opensource digital camera access and remote control
  year: 2017
  ident: e_1_2_5_8_1
– volume: 110
  start-page: E1695
  year: 2013
  ident: e_1_2_5_23_1
  article-title: 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture
  publication-title: Proceedings of the National Academy of Science USA
– volume: 90
  start-page: 204
  year: 2017
  ident: e_1_2_5_17_1
  article-title: Phenotiki: An open software and hardware platform for affordable and easy image‐based phenotyping of rosette‐shaped plants
  publication-title: Plant Journal
  doi: 10.1111/tpj.13472
– volume: 13
  start-page: e1006841
  year: 2017
  ident: e_1_2_5_7_1
  article-title: Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1006841
– volume: 126
  start-page: e56251
  year: 2017
  ident: e_1_2_5_4_1
  article-title: RGB and spectral root imaging for plant phenotyping and physiological research: Experimental setup and imaging protocols
  publication-title: Journal of Visualized Experiments: JoVE
– volume: 173
  start-page: 1554
  year: 2017
  ident: e_1_2_5_26_1
  article-title: High‐throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth
  publication-title: Plant Physiology
  doi: 10.1104/pp.16.01516
– volume-title: Raspberry Pi cookbook: Software and hardware problems and solutions
  year: 2016
  ident: e_1_2_5_18_1
– volume: 9
  start-page: e97047
  year: 2014
  ident: e_1_2_5_11_1
  article-title: High‐throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0097047
– volume: 26
  start-page: 4636
  year: 2014
  ident: e_1_2_5_5_1
  article-title: Dissecting the phenotypic components of crop plant growth and drought responses based on high‐throughput image analysis
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.129601
– volume: 5
  start-page: 5087
  year: 2014
  ident: e_1_2_5_25_1
  article-title: Combining high‐throughput phenotyping and genome‐wide association studies to reveal natural genetic variation in rice
  publication-title: Nature Communications
  doi: 10.1038/ncomms6087
– volume: 172
  start-page: 650
  year: 2016
  ident: e_1_2_5_19_1
  article-title: Quantitative, image‐based phenotyping methods provide insight into spatial and temporal dimensions of plant disease
  publication-title: Plant Physiology
– volume: 6
  start-page: 865
  year: 2016
  ident: e_1_2_5_20_1
  article-title: Field‐based high‐throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress‐responsive traits in cotton
  publication-title: G3: Genes, Genomes, Genetics
  doi: 10.1534/g3.115.023515
– volume-title: Raspberry Pi user guide
  year: 2014
  ident: e_1_2_5_24_1
– volume: 172
  start-page: 1358
  year: 2016
  ident: e_1_2_5_14_1
  article-title: phenoSeeder–A robot system for automated handling and phenotyping of individual seeds
  publication-title: Plant Physiology
  doi: 10.1104/pp.16.01122
– volume: 5
  start-page: e13292
  year: 2016
  ident: e_1_2_5_12_1
  article-title: PCH1 integrates circadian and light‐signaling pathways to control photoperiod‐responsive growth in Arabidopsis
  publication-title: eLife
  doi: 10.7554/eLife.13292
– volume: 212
  start-page: 838
  year: 2016
  ident: e_1_2_5_21_1
  article-title: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field
  publication-title: New Phytologist
  doi: 10.1111/nph.14243
– volume: 169
  start-page: 623
  year: 2006
  ident: e_1_2_5_10_1
  article-title: PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2005.01609.x
– volume: 152
  start-page: 1148
  year: 2010
  ident: e_1_2_5_13_1
  article-title: Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems
  publication-title: Plant Physiology
  doi: 10.1104/pp.109.150748
– volume: 17
  start-page: 214
  year: 2017
  ident: e_1_2_5_22_1
  article-title: Vinobot and Vinoculer: Two robotic platforms for high‐throughput field phenotyping
  publication-title: Sensors
  doi: 10.3390/s17010214
– volume: 8
  start-page: 1520
  year: 2015
  ident: e_1_2_5_6_1
  article-title: A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria
  publication-title: Molecular Plant
  doi: 10.1016/j.molp.2015.06.005
– reference: 41132917 - Appl Plant Sci. 2025 Sep 26;13(5):e70022. doi: 10.1002/aps3.70022.
SSID ssj0000816894
Score 2.3649335
Snippet Premise of the Study Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent...
Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy...
Premise of the StudyImage‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent...
PREMISE OF THE STUDY: Image‐based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1031
SubjectTerms Cameras
color
computer software
Computers
Data analysis
Documentation
Image processing
imaging
low‐cost phenotyping
Metadata
morphology
phenomics
phenotype
Phenotyping
Plant extracts
Plant sciences
Protocol
Protocol Note
Protocol Notes
raspberries
Raspberry Pi
Research programs
Shutdowns
Software
species diversity
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VbQ9cgPJcKFWoOHCJ1rGdxDmhgqjogSqiIJVT5FfESiUJmy3S3vgP_EN-CTNJNu2q0BNnjxI_xuPP9vj7AF6mOM2skGWomSlDaVQWGuZcGMsEY2HJ0Wd0JzaRnpyos7MsH55Ht0Na5TomdoG6Z3umvG0MwjNXWzoxnyFoiFNE2knyuvkekoYU3bUOghq3YJuIt9gEtvPjD_mX8cylE5nI5JpgiPGZblpB786jzWXpGta8njJ5Fcp2a9HR3f_bintwZ8CkwWHvRLuw5av7sPOmRty4egDyo24b4xeLVZDPf__81ZCumnfB_FsncBQg6g2acxyggNLF6uWKXmA9hM9H7z69fR8OWguhjSWPQtzVJN5bI4ioGBctaVPLhTbCcmkibkquHcYi61OdCOe0V7xUUVyqjNlYeCYewaSqK_8EAhGX0hFNoZIC4RlaGnrioAwz-C3HpvBq3dWFHYjISQ_jvOgplHlBo1LQqEzhYDRtevaNvxntrfu6GCZgW1x27RRejMU4deg-RFe-vkAbJoh_DAHiDTa4diMkw03yFB73LjDWhGS_8D9YgXTDOUYDou7eLKnmXzsK71ghss04dkXnRv9uXHGYn5IUXPT05lY-g9sI5VSfHbcHk-Xiwj-HHftjOW8X-8NE-ANlnRn3
  priority: 102
  providerName: ProQuest
Title Raspberry Pi–powered imaging for plant phenotyping
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faps3.1031
https://www.ncbi.nlm.nih.gov/pubmed/29732261
https://www.proquest.com/docview/2265775366
https://www.proquest.com/docview/2035703929
https://www.proquest.com/docview/2718355107
https://pubmed.ncbi.nlm.nih.gov/PMC5895192
Volume 6
WOSCitedRecordID wos000429700000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2168-0450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816894
  issn: 2168-0450
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2168-0450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816894
  issn: 2168-0450
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2168-0450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816894
  issn: 2168-0450
  databaseCode: M7P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2168-0450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816894
  issn: 2168-0450
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2168-0450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816894
  issn: 2168-0450
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2168-0450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816894
  issn: 2168-0450
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2168-0450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816894
  issn: 2168-0450
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6a1h24sI2fHaMKiAOXaI7tJK44bWgTO1BFA0Q5RbbjaJVGGjXdpN72P_Af7i_hPafNVm0gJC5RIr8kjv2e_dmxvw_gXYphZoUsQ81MGUqjhqFhRRHGMsG2sOToM9qLTaSjkRqPh9kGfFjthWn5IboJN4oM315TgGvTHNyShuq6EbRlHIc-vSgSKbk0l1k3weIVJbwQIseTEKELWzELMX7Q3b3eH90DmffXSt7FsL4TOtn-r-zvwOMl9gwOW2fZhQ1XPYGtoyniw8VTkGe6qY2bzRZBNrm5_lWTfporgslPL2QUILoN6gusiICWhU3nC9pp9Qy-nRx__fgpXGoqhDaWPApx9JI4Z40gQmLsnKRNLRfaCMulibgpuS6wzbEu1YkoCu0UL1UUl2rIbCwcE89hs5pW7iUEIi5lQXSESgqEYWhpaCuDMszgswrWh_erks3tknCcdC8u8pYqmedUBjmVQR_edqZ1y7LxkNH-qnryZaA1OaLHOMUhV5L04U2XjCFC_z105aaXaMME8YwhEPyLDfbRCL1wMNyHF22NdzkheS98D2YgXfOFzoAoutdTqsm5p-qOFSLYIcei8L7w54_LD7MvJPkW7f276St4hPBNtSvi9mFzPrt0r2HLXs0nzWzgowGP6VgNoHd0PMrOBn7GYUDrWzGll51-zn7g1ffT0W-r6BMQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0q00qwobw7tEBAILGJ6tjOa4FQeVQdtR1FUKR2FWLHUUcqSZhMQbPrP_Q_-Ci-hHvzglGhuy5Y-ypxfB8-8eMcgOc-ppkWMrMTpjJbqiC0FUtT25Ue1sKMY8wktdiEPx4Hh4dhtAQ_urswdKyyq4l1oU4LTWvkmwgTXB-xtee9Lr_apBpFu6udhEYTFrtm_h1_2apXo3fo3xecb78_eLtjt6oCtnYld2zE754xWgmi5MXyLLWvuUiU0Fwqh6uMJylmnTZ-4ok0TUzAs8BxsyBk2hWGCXzuNViWGOxsAMvRaD866ld1ahmLUHYURoxvJmUl6Ga7szjxXUCzFw9l_gmW69lue_V_G6dbcLPF1dZWkwi3Ycnkd2DlTYHYd34X5IekKpWZTudWNPl5dl6SNpxJrcmXWqTJQuRulScYZBYdeStmc7pFdg8-XUmP78MgL3KzBpZwM5kS1WIgBUJMtFR0TSNQTOGzUjaEl50zY92SqZOmx0nc0EDzmPwek9-H8Kw3LRsGkb8ZbXTejNsiUsW_XTmEp30zpj_t6SS5KU7RhgniUEOQe4kN4g-ElfijP4QHTZD1PSHpMnwPdsBfCL_egOjHF1vyyXFNQ-4GiM5DjkNRB-q_Py7eij6SnJ3z8PKvfALXdw729-K90Xh3HW4gNA2a034bMJhNT80jWNHfZpNq-rhNOws-X3UE_wJ-Cmq2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0q0wqx4Q2dtkBAILGJJrGd1wKhlnZEVTSKCkjdpbbjiJHaJEymRbPjH_o3fA5fwr15wajQXResfZU48fH1SXx9DsDLAKeZ5iKzpaMyW6gwspWTprYnfMyFGUPMyNpsIphMwqOjKF6BH91ZGCqr7HJinajTQtM_8hHSBC9Abu37o6wti4h3x2_LrzY5SNFOa2en0UDkwCy-4edb9WZ_F8f6FWPjvU_v3tutw4CtPcFcG7m8b4xWnOR5MVULHWjGpeKaCeUylTGZ4gzUJpA-T1NpQpaFrpeFkaM9bhyO170BqwHHj54BrO7sTeLD_g9PbWkRiU7OyGEjWVacTrm7y4vgJWZ7uUDzT-Jcr3zjO__zO7sLt1u-bW03E-QerJj8PqztFMiJFw9AHMqqVGY2W1jx9Of3i5I840xqTU9r8yYLGb1VniD4LCqFK-YLOl32ED5fS48fwSAvcrMOFvcykZIEYyg4Uk-MVHR8I1SOwmulzhBedwOb6FZknbw-TpJGHpolhIGEMDCEF31o2SiL_C1oqxvZpE0uVfJ7WIfwvG_GtEB7PTI3xRnGOJy01ZD8XhGDvATppusEQ3jcAK7vCVma4X2wA8ESFPsAkiVfbsmnX2p5ci9E1h4xfBU1aP_9cMl2_JFs7tyNq5_yGdxE2CYf9icHm3ALGWvYFAFuwWA-OzNPYE2fz6fV7Gk7Ay04vm4A_wK5WXNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raspberry+Pi%E2%80%93powered+imaging+for+plant+phenotyping&rft.jtitle=Applications+in+plant+sciences&rft.au=Tovar%2C+Jose+C.&rft.au=Hoyer%2C+J.+Steen&rft.au=Lin%2C+Andy&rft.au=Tielking%2C+Allison&rft.date=2018-03-01&rft.issn=2168-0450&rft.eissn=2168-0450&rft.volume=6&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faps3.1031&rft.externalDBID=10.1002%252Faps3.1031&rft.externalDocID=APS31031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0450&client=summon