Population genomics for wildlife conservation and management
Biodiversity is under threat worldwide. Over the past decade, the field of population genomics has developed across nonmodel organisms, and the results of this research have begun to be applied in conservation and management of wildlife species. Genomics tools can provide precise estimates of basic...
Gespeichert in:
| Veröffentlicht in: | Molecular ecology Jg. 30; H. 1; S. 62 - 82 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Blackwell Publishing Ltd
01.01.2021
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0962-1083, 1365-294X, 1365-294X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Biodiversity is under threat worldwide. Over the past decade, the field of population genomics has developed across nonmodel organisms, and the results of this research have begun to be applied in conservation and management of wildlife species. Genomics tools can provide precise estimates of basic features of wildlife populations, such as effective population size, inbreeding, demographic history and population structure, that are critical for conservation efforts. Moreover, population genomics studies can identify particular genetic loci and variants responsible for inbreeding depression or adaptation to changing environments, allowing for conservation efforts to estimate the capacity of populations to evolve and adapt in response to environmental change and to manage for adaptive variation. While connections from basic research to applied wildlife conservation have been slow to develop, these connections are increasingly strengthening. Here we review the primary areas in which population genomics approaches can be applied to wildlife conservation and management, highlight examples of how they have been used, and provide recommendations for building on the progress that has been made in this field. |
|---|---|
| AbstractList | Biodiversity is under threat worldwide. Over the past decade, the field of population genomics has developed across nonmodel organisms, and the results of this research have begun to be applied in conservation and management of wildlife species. Genomics tools can provide precise estimates of basic features of wildlife populations, such as effective population size, inbreeding, demographic history and population structure, that are critical for conservation efforts. Moreover, population genomics studies can identify particular genetic loci and variants responsible for inbreeding depression or adaptation to changing environments, allowing for conservation efforts to estimate the capacity of populations to evolve and adapt in response to environmental change and to manage for adaptive variation. While connections from basic research to applied wildlife conservation have been slow to develop, these connections are increasingly strengthening. Here we review the primary areas in which population genomics approaches can be applied to wildlife conservation and management, highlight examples of how they have been used, and provide recommendations for building on the progress that has been made in this field.Biodiversity is under threat worldwide. Over the past decade, the field of population genomics has developed across nonmodel organisms, and the results of this research have begun to be applied in conservation and management of wildlife species. Genomics tools can provide precise estimates of basic features of wildlife populations, such as effective population size, inbreeding, demographic history and population structure, that are critical for conservation efforts. Moreover, population genomics studies can identify particular genetic loci and variants responsible for inbreeding depression or adaptation to changing environments, allowing for conservation efforts to estimate the capacity of populations to evolve and adapt in response to environmental change and to manage for adaptive variation. While connections from basic research to applied wildlife conservation have been slow to develop, these connections are increasingly strengthening. Here we review the primary areas in which population genomics approaches can be applied to wildlife conservation and management, highlight examples of how they have been used, and provide recommendations for building on the progress that has been made in this field. Biodiversity is under threat worldwide. Over the past decade, the field of population genomics has developed across nonmodel organisms, and the results of this research have begun to be applied in conservation and management of wildlife species. Genomics tools can provide precise estimates of basic features of wildlife populations, such as effective population size, inbreeding, demographic history and population structure, that are critical for conservation efforts. Moreover, population genomics studies can identify particular genetic loci and variants responsible for inbreeding depression or adaptation to changing environments, allowing for conservation efforts to estimate the capacity of populations to evolve and adapt in response to environmental change and to manage for adaptive variation. While connections from basic research to applied wildlife conservation have been slow to develop, these connections are increasingly strengthening. Here we review the primary areas in which population genomics approaches can be applied to wildlife conservation and management, highlight examples of how they have been used, and provide recommendations for building on the progress that has been made in this field. |
| Author | Rajora, Om P. Hohenlohe, Paul A. Funk, W. Chris |
| AuthorAffiliation | 1 Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies University of Idaho Moscow Idaho USA 3 Faculty of Forestry and Environmental Management University of New Brunswick Fredericton New Brunswick Canada 2 Department of Biology Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA |
| AuthorAffiliation_xml | – name: 3 Faculty of Forestry and Environmental Management University of New Brunswick Fredericton New Brunswick Canada – name: 1 Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies University of Idaho Moscow Idaho USA – name: 2 Department of Biology Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA |
| Author_xml | – sequence: 1 givenname: Paul A. orcidid: 0000-0002-7616-0161 surname: Hohenlohe fullname: Hohenlohe, Paul A. email: hohenlohe@uidaho.edu organization: University of Idaho – sequence: 2 givenname: W. Chris orcidid: 0000-0002-6466-3618 surname: Funk fullname: Funk, W. Chris organization: Colorado State University – sequence: 3 givenname: Om P. surname: Rajora fullname: Rajora, Om P. organization: University of New Brunswick |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33145846$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1LHTEUhoNY9Kpd9A_IQDd1MZrPmQyIUC7aChZdtNBdyCQnt5GZ5JrcsfjvG70qVrDNJoE8ec_JeXbQZogBEPpA8CEp62gEc0hES_EGmhHWiJp2_OcmmuGuoTXBkm2jnZyvMSaMCrGFthkjXEjezNDxVVxOg175GKoFhDh6kysXU_XbD3bwDioTQ4Z0u0Z0sNWog17ACGG1h945PWR4_7jvoh9np9_nX-uLyy_n888XtRGc4rrpbanrnAVqsbOkByOtMBwY9Ky1fYepIaSTVFrnMLfCEdfKzjZGSlGObBedrHOXUz-CNaV00oNaJj_qdKei9urvm-B_qUW8VSWFCyJLwKfHgBRvJsgrNfpsYBh0gDhlRTt5Pw7OyP9RLtpGMiZ4QT--Qq_jlEKZRKFa2gnWEVao_ZfNP3f95KAAB2vApJhzAveMEKzu_ariVz34LezRK9b41YOa8m8__OtFEQp3b0erb6fz9Ys_6My2pw |
| CitedBy_id | crossref_primary_10_1111_mec_16328 crossref_primary_10_36899_japs_2025_3_0073 crossref_primary_10_1073_pnas_2201076120 crossref_primary_10_1038_s41597_023_02251_7 crossref_primary_10_1073_pnas_2303043120 crossref_primary_10_1111_1755_0998_13884 crossref_primary_10_1038_s44185_024_00061_7 crossref_primary_10_1111_csp2_13053 crossref_primary_10_1016_j_biocon_2023_110183 crossref_primary_10_1002_ece3_70460 crossref_primary_10_3389_ffgc_2024_1409667 crossref_primary_10_1111_nph_20073 crossref_primary_10_1016_j_biocon_2024_110467 crossref_primary_10_1007_s10592_022_01472_4 crossref_primary_10_1111_csp2_13054 crossref_primary_10_1139_cjfas_2024_0127 crossref_primary_10_1111_tpj_70175 crossref_primary_10_1002_ece3_11700 crossref_primary_10_1007_s10592_021_01379_6 crossref_primary_10_1111_mec_16438 crossref_primary_10_1007_s12686_022_01259_2 crossref_primary_10_1038_s41598_023_44534_4 crossref_primary_10_1016_j_scitotenv_2024_170244 crossref_primary_10_1111_1755_0998_13892 crossref_primary_10_1093_biosci_biad098 crossref_primary_10_1002_ece3_71673 crossref_primary_10_1002_jwmg_22631 crossref_primary_10_1111_ddi_13946 crossref_primary_10_1002_ece3_70355 crossref_primary_10_1371_journal_pone_0317768 crossref_primary_10_3390_d14040251 crossref_primary_10_3390_genes14030546 crossref_primary_10_1088_1755_1315_1271_1_012006 crossref_primary_10_1016_j_fishres_2024_107210 crossref_primary_10_24072_pcjournal_623 crossref_primary_10_1111_tpj_17064 crossref_primary_10_1111_eva_13377 crossref_primary_10_1007_s10592_025_01725_y crossref_primary_10_1186_s41936_023_00346_6 crossref_primary_10_1371_journal_pone_0267501 crossref_primary_10_1016_j_tree_2023_11_009 crossref_primary_10_1111_mec_17631 crossref_primary_10_1007_s10750_024_05729_6 crossref_primary_10_1038_s41598_022_21413_y crossref_primary_10_1007_s12686_024_01370_6 crossref_primary_10_7717_peerj_14365 crossref_primary_10_1093_jhered_esae073 crossref_primary_10_1038_s41598_022_08132_0 crossref_primary_10_1093_aob_mcaf081 crossref_primary_10_1111_csp2_13075 crossref_primary_10_1002_inc3_15 crossref_primary_10_1093_gigascience_giaf067 crossref_primary_10_1007_s11160_021_09652_0 crossref_primary_10_1111_jbi_14774 crossref_primary_10_1093_jhered_esaf049 crossref_primary_10_1002_aqc_3849 crossref_primary_10_1111_aje_13329 crossref_primary_10_1007_s10592_023_01561_y crossref_primary_10_1007_s10531_023_02577_z crossref_primary_10_1111_fwb_70033 crossref_primary_10_3389_frqst_2025_1657832 crossref_primary_10_1038_s41437_021_00438_5 crossref_primary_10_1007_s12686_023_01298_3 crossref_primary_10_3389_fmicb_2025_1477032 crossref_primary_10_1111_eva_13367 crossref_primary_10_1111_fme_12778 crossref_primary_10_1111_mec_16658 crossref_primary_10_3390_fishes8070373 crossref_primary_10_1111_mec_17508 crossref_primary_10_1016_j_biocon_2022_109819 crossref_primary_10_1038_s41598_025_85212_x crossref_primary_10_1016_j_ecoenv_2024_117117 crossref_primary_10_1016_j_pecon_2024_04_003 crossref_primary_10_12688_openreseurope_17365_1 crossref_primary_10_12688_openreseurope_17365_2 crossref_primary_10_1038_s41437_022_00515_3 crossref_primary_10_1111_mec_16653 crossref_primary_10_1111_mec_17742 crossref_primary_10_1186_s12864_022_08963_1 crossref_primary_10_1007_s11295_023_01601_1 crossref_primary_10_1111_eva_70058 crossref_primary_10_3390_genes14112040 crossref_primary_10_1111_eva_70055 crossref_primary_10_1016_j_avrs_2023_100156 crossref_primary_10_1111_ddi_13847 crossref_primary_10_1111_mec_16898 crossref_primary_10_1016_j_biocon_2021_109072 crossref_primary_10_1086_715637 crossref_primary_10_1038_s41598_024_76873_1 crossref_primary_10_1111_eva_70062 crossref_primary_10_1111_icad_12857 crossref_primary_10_1111_2041_210X_13902 crossref_primary_10_1007_s10344_025_01907_6 crossref_primary_10_1038_s41598_024_67764_6 crossref_primary_10_1186_s12864_022_08930_w crossref_primary_10_1093_gigascience_giac100 crossref_primary_10_3389_fevo_2022_1031483 crossref_primary_10_1016_j_ympev_2025_108441 crossref_primary_10_3389_fgene_2022_1010456 crossref_primary_10_1038_s41437_025_00765_x crossref_primary_10_3161_15081109ACC2022_24_2_002 crossref_primary_10_1186_s12862_024_02209_2 crossref_primary_10_3390_d16040209 crossref_primary_10_1007_s10592_025_01686_2 crossref_primary_10_1111_cobi_14254 crossref_primary_10_1111_eva_13597 crossref_primary_10_1093_jhered_esac029 crossref_primary_10_3390_plants14152333 crossref_primary_10_1016_j_flora_2024_152448 crossref_primary_10_1111_mec_17610 crossref_primary_10_1038_s41598_024_67270_9 crossref_primary_10_1111_eva_13473 crossref_primary_10_1007_s10592_024_01641_7 crossref_primary_10_1111_mec_17732 crossref_primary_10_3389_fgene_2022_960958 crossref_primary_10_1016_j_ecolind_2021_108519 crossref_primary_10_1007_s10530_023_03018_2 crossref_primary_10_1111_mec_17175 crossref_primary_10_1093_gigascience_giae115 crossref_primary_10_1016_j_jcz_2023_10_002 crossref_primary_10_1093_molbev_msad180 crossref_primary_10_1016_j_biocon_2024_110788 crossref_primary_10_3389_fgene_2025_1554590 crossref_primary_10_3390_plants12091860 crossref_primary_10_1007_s40823_023_00089_8 crossref_primary_10_1016_j_fishres_2023_106786 crossref_primary_10_3390_ani13050953 crossref_primary_10_1007_s10592_023_01522_5 crossref_primary_10_1007_s11802_025_6199_y crossref_primary_10_1038_s41437_024_00740_y crossref_primary_10_1038_s41597_024_03226_y crossref_primary_10_1111_mec_17729 crossref_primary_10_1080_23818107_2022_2125902 crossref_primary_10_1016_j_isci_2024_111097 crossref_primary_10_1016_j_jia_2023_10_009 crossref_primary_10_3389_fpls_2022_822217 crossref_primary_10_1111_2041_210X_13918 crossref_primary_10_1007_s12686_024_01367_1 crossref_primary_10_1111_mec_16877 crossref_primary_10_1111_mec_16998 crossref_primary_10_1016_j_marenvres_2025_107285 crossref_primary_10_1111_mec_16192 crossref_primary_10_1111_csp2_13084 crossref_primary_10_1007_s11427_024_2904_6 crossref_primary_10_1007_s10344_025_01982_9 crossref_primary_10_1111_2041_210X_14455 crossref_primary_10_1111_brv_12893 crossref_primary_10_3390_ani15131838 crossref_primary_10_3390_fishes9010015 crossref_primary_10_1111_cobi_14111 crossref_primary_10_1016_j_cub_2024_12_025 crossref_primary_10_1111_mec_17717 crossref_primary_10_1007_s12686_021_01224_5 crossref_primary_10_1371_journal_pone_0310812 crossref_primary_10_1146_annurev_genom_022024_125543 crossref_primary_10_1007_s10592_023_01534_1 crossref_primary_10_1002_ece3_9583 crossref_primary_10_1111_eva_13330 crossref_primary_10_1002_ece3_71465 crossref_primary_10_1186_s12864_025_11579_w crossref_primary_10_1007_s10592_024_01620_y crossref_primary_10_1111_1755_0998_13669 crossref_primary_10_1038_s41598_024_53003_5 crossref_primary_10_1016_j_tig_2023_01_005 crossref_primary_10_1111_csp2_70077 crossref_primary_10_3389_fmars_2021_744986 crossref_primary_10_1093_g3journal_jkaf034 crossref_primary_10_1111_eva_13444 crossref_primary_10_1111_mec_16856 crossref_primary_10_1590_0001_3765202320210503 crossref_primary_10_1002_ece3_8385 crossref_primary_10_1016_j_eiar_2025_108021 crossref_primary_10_1590_1984_70332025v25n2a06 crossref_primary_10_2989_00306525_2025_2509215 crossref_primary_10_3390_d15040543 crossref_primary_10_1111_1755_0998_13796 crossref_primary_10_1016_j_avrs_2023_100078 crossref_primary_10_3390_ani13223564 crossref_primary_10_1038_s41597_025_04839_7 crossref_primary_10_1177_03009858231176563 crossref_primary_10_3390_d16080507 crossref_primary_10_1007_s10592_022_01481_3 crossref_primary_10_3389_fevo_2023_1116814 crossref_primary_10_1016_j_cell_2025_03_040 crossref_primary_10_1038_s41437_021_00468_z crossref_primary_10_1111_eva_13675 crossref_primary_10_1111_mec_16848 crossref_primary_10_2478_bile_2024_0008 crossref_primary_10_1111_eva_13558 crossref_primary_10_3390_genes15081037 crossref_primary_10_1080_24701394_2024_2427841 crossref_primary_10_1111_mec_16289 crossref_primary_10_1093_biolinnean_blae063 crossref_primary_10_3389_frsus_2022_969329 crossref_primary_10_1002_ece3_10562 crossref_primary_10_1007_s10531_023_02627_6 crossref_primary_10_1038_s42003_024_06481_2 crossref_primary_10_1038_s41598_022_19025_7 crossref_primary_10_1155_jzs_3100655 crossref_primary_10_1111_mec_17251 crossref_primary_10_1007_s10592_023_01588_1 crossref_primary_10_1016_j_psj_2024_104508 crossref_primary_10_1111_eva_13429 crossref_primary_10_3389_fevo_2024_1335452 crossref_primary_10_1016_j_cub_2023_04_042 crossref_primary_10_3389_fgene_2021_705337 crossref_primary_10_1093_ornithology_ukaf011 crossref_primary_10_1093_biosci_biae106 crossref_primary_10_1111_eva_13547 crossref_primary_10_1093_molbev_msaf145 crossref_primary_10_3389_fgene_2022_774196 crossref_primary_10_1111_eva_13545 crossref_primary_10_1093_mollus_eyae029 crossref_primary_10_1111_eva_13302 crossref_primary_10_1111_eva_70117 crossref_primary_10_3389_fmars_2025_1562045 crossref_primary_10_1016_j_ppees_2025_125862 crossref_primary_10_1016_j_tree_2021_12_003 crossref_primary_10_1007_s10592_024_01654_2 crossref_primary_10_1016_j_isci_2023_107811 crossref_primary_10_1111_mec_17367 crossref_primary_10_1111_mec_17129 crossref_primary_10_1002_wsb_1511 crossref_primary_10_1007_s41208_023_00638_2 crossref_primary_10_1093_etojnl_vgaf031 crossref_primary_10_1146_annurev_animal_021022_054730 crossref_primary_10_1016_j_biocon_2023_110239 crossref_primary_10_1111_brv_12852 crossref_primary_10_1038_s44358_025_00065_6 crossref_primary_10_1111_eva_13652 crossref_primary_10_3390_ijms23158275 crossref_primary_10_1093_molbev_msaf057 crossref_primary_10_1038_s41598_023_27587_3 crossref_primary_10_1007_s11356_022_23242_y crossref_primary_10_1002_ece3_71263 crossref_primary_10_1016_j_jcz_2025_09_003 crossref_primary_10_1080_23308249_2021_1948502 crossref_primary_10_1111_mec_16147 crossref_primary_10_1007_s10641_022_01255_3 crossref_primary_10_1007_s10592_024_01622_w crossref_primary_10_1016_j_tree_2022_03_003 crossref_primary_10_1111_1365_2664_14540 crossref_primary_10_1007_s10592_024_01611_z crossref_primary_10_1016_j_aquaculture_2024_742059 crossref_primary_10_1111_mec_16141 crossref_primary_10_1016_j_biocon_2022_109883 crossref_primary_10_1016_j_jcz_2023_01_008 crossref_primary_10_1186_s12864_022_09000_x crossref_primary_10_1016_j_pld_2025_06_006 crossref_primary_10_1093_gbe_evaf152 crossref_primary_10_3390_genes16060694 crossref_primary_10_3389_fevo_2022_955246 crossref_primary_10_1111_2041_210X_70039 crossref_primary_10_1111_gcb_17528 crossref_primary_10_1186_s12864_022_08896_9 crossref_primary_10_3390_ani12141817 crossref_primary_10_3390_jzbg5020019 crossref_primary_10_1093_g3journal_jkaf109 crossref_primary_10_1111_eva_13765 crossref_primary_10_1038_s41437_025_00745_1 crossref_primary_10_1007_s10592_021_01399_2 crossref_primary_10_1038_s42003_023_05385_x crossref_primary_10_1073_pnas_2105076119 crossref_primary_10_1016_j_tree_2023_05_008 crossref_primary_10_1002_ece3_70734 crossref_primary_10_1002_ece3_11321 crossref_primary_10_1017_S0025315424000973 crossref_primary_10_1111_1755_0998_13598 crossref_primary_10_1186_s12915_025_02307_7 crossref_primary_10_1038_s41597_025_05872_2 crossref_primary_10_1016_j_pld_2024_04_001 crossref_primary_10_1007_s10592_024_01629_3 crossref_primary_10_1007_s10592_024_01668_w crossref_primary_10_1111_mec_16493 crossref_primary_10_1038_s41598_023_27988_4 crossref_primary_10_1099_mgen_0_001181 crossref_primary_10_1038_s41576_023_00671_0 crossref_primary_10_1073_pnas_2410937122 crossref_primary_10_1002_ajb2_70062 crossref_primary_10_1111_2041_210X_13740 crossref_primary_10_1186_s12915_022_01390_4 crossref_primary_10_1073_pnas_2414412122 crossref_primary_10_7717_peerj_19080 crossref_primary_10_1093_gbe_evaf162 crossref_primary_10_1007_s10592_021_01425_3 crossref_primary_10_1016_j_zool_2024_126209 crossref_primary_10_1093_jhered_esac046 crossref_primary_10_1007_s10531_023_02585_z crossref_primary_10_1016_j_marenvres_2024_106408 crossref_primary_10_1002_ece3_8993 crossref_primary_10_1016_j_cub_2025_04_007 crossref_primary_10_1111_eva_13754 crossref_primary_10_1007_s11427_023_2540_y crossref_primary_10_3390_genes15060651 crossref_primary_10_1111_acv_12971 crossref_primary_10_1016_j_ecss_2024_108974 crossref_primary_10_3389_fpls_2023_1224308 crossref_primary_10_3390_genes13112164 crossref_primary_10_1111_1755_0998_13844 crossref_primary_10_1093_hr_uhaf104 crossref_primary_10_1038_s41437_023_00661_2 crossref_primary_10_1111_icad_12721 crossref_primary_10_1371_journal_pone_0274189 crossref_primary_10_1038_s41598_022_20947_5 crossref_primary_10_1111_mec_16121 crossref_primary_10_4003_006_041_0104 crossref_primary_10_1080_1828051X_2024_2398777 crossref_primary_10_1111_ddi_13690 crossref_primary_10_3389_fgene_2021_708871 crossref_primary_10_3390_d17080584 crossref_primary_10_1038_s41597_022_01613_x crossref_primary_10_1007_s00027_024_01090_x crossref_primary_10_1186_s12983_022_00475_8 crossref_primary_10_1007_s10592_023_01567_6 crossref_primary_10_1016_j_gecco_2025_e03504 crossref_primary_10_1007_s10592_024_01671_1 crossref_primary_10_1186_s12870_024_05851_6 crossref_primary_10_1093_ornithapp_duad048 crossref_primary_10_1007_s12686_022_01253_8 crossref_primary_10_1002_ece3_10934 crossref_primary_10_1093_g3journal_jkac138 crossref_primary_10_1016_j_ecoenv_2024_116848 crossref_primary_10_3390_life15091420 crossref_primary_10_1007_s11295_024_01683_5 crossref_primary_10_1016_j_biocon_2025_111084 crossref_primary_10_1093_molbev_msad207 crossref_primary_10_1111_mec_17688 crossref_primary_10_1002_ece3_70798 crossref_primary_10_1111_1755_0998_13854 crossref_primary_10_1111_eva_70033 crossref_primary_10_1002_ece3_10252 crossref_primary_10_1038_s41598_022_17937_y crossref_primary_10_1111_1755_0998_13853 crossref_primary_10_1111_mec_17448 crossref_primary_10_1111_mec_70066 crossref_primary_10_1080_03014223_2024_2359685 crossref_primary_10_1002_zoo_21859 crossref_primary_10_1017_S0376892925000141 crossref_primary_10_1016_j_biocon_2021_109375 crossref_primary_10_1016_j_ympev_2023_107734 crossref_primary_10_1007_s10228_025_01029_8 crossref_primary_10_1038_s42003_024_06901_3 crossref_primary_10_1111_ddi_13461 crossref_primary_10_1111_ibi_13199 crossref_primary_10_1111_1755_0998_70017 crossref_primary_10_1038_s41437_023_00609_6 crossref_primary_10_1371_journal_pone_0283351 crossref_primary_10_1002_tqem_21961 crossref_primary_10_1002_ece3_70644 crossref_primary_10_1126_science_adn7954 crossref_primary_10_3390_genes14051038 crossref_primary_10_1016_j_anireprosci_2023_107230 crossref_primary_10_1111_1755_0998_13947 crossref_primary_10_1111_mec_17551 crossref_primary_10_1186_s13059_024_03399_0 crossref_primary_10_1007_s10592_021_01415_5 crossref_primary_10_1186_s40575_021_00111_4 crossref_primary_10_1016_j_ecolmodel_2025_111233 crossref_primary_10_3389_fpls_2022_772621 crossref_primary_10_1007_s12237_025_01547_8 crossref_primary_10_1146_annurev_animal_122221_075025 crossref_primary_10_1111_mec_17549 crossref_primary_10_3390_life11070653 crossref_primary_10_1002_aqc_3909 crossref_primary_10_3390_ijms241914816 crossref_primary_10_1111_1755_0998_70024 crossref_primary_10_3390_agriculture15171846 crossref_primary_10_1038_s41597_025_05303_2 crossref_primary_10_1038_s41597_025_05573_w crossref_primary_10_1016_j_gene_2023_147719 crossref_primary_10_1016_j_pld_2024_03_006 crossref_primary_10_1007_s10126_025_10416_1 crossref_primary_10_1111_csp2_13262 crossref_primary_10_1016_j_dib_2022_107857 |
| Cites_doi | 10.1111/2041-210X.13173 10.1016/j.tree.2014.10.009 10.1111/j.1365-294X.2005.02426.x 10.1016/j.cub.2016.02.062 10.1002/ece3.4985 10.1111/1755-0998.12498 10.1126/science.282.5394.1658 10.1371/journal.pgen.1008119 10.1038/nrg.2015.28 10.1111/eva.12490 10.1073/pnas.1820663116 10.1007/s10592-019-01157-5 10.1111/eva.12414 10.1146/annurev-animal-021419-083617 10.1111/1755-0998.12993 10.1073/pnas.1601063113 10.1007/s10592-019-01165-5 10.1038/hdy.2016.54 10.1016/S0169-5347(03)00008-9 10.1126/sciadv.aau0757 10.1111/eva.12600 10.1111/mec.13605 10.1016/j.tree.2015.01.005 10.1890/1051-0761(2000)010[0283:EAAUND]2.0.CO;2 10.1534/genetics.116.198861 10.1038/s41598-020-59797-4 10.1016/j.tree.2012.05.012 10.1016/j.tree.2015.10.009 10.1111/1755-0998.12283 10.1073/pnas.1811559115 10.1111/mec.15274 10.3390/genes10110846 10.1073/pnas.1720115115 10.1111/mec.14264 10.1002/jwmg.21820 10.1111/j.1749-6632.2009.04444.x 10.1371/journal.pgen.1007745 10.1111/jbi.13125 10.1002/ece3.2493 10.1186/2047-217X-3-26 10.1073/pnas.1518046113 10.1073/pnas.1707279114 10.1038/ncomms12684 10.1111/mec.13323 10.1093/gigascience/giz006 10.3389/fgene.2018.00068 10.1016/j.biocon.2019.04.011 10.1093/gbe/evz112 10.1098/rspb.2015.0156 10.1016/j.tree.2004.07.003 10.1146/annurev-animal-031412-103636 10.1007/s10592-018-1060-0 10.1111/j.1365-294X.2011.05427.x 10.1111/gcb.13681 10.1016/j.tree.2019.06.006 10.1111/1755-0998.12745 10.1038/hdy.2016.30 10.1111/mec.15202 10.1111/mec.14806 10.1111/1755-0998.12741 10.1038/s41437-018-0097-7 10.1071/9781486307197 10.1371/journal.pone.0118240 10.1111/1755-0998.12954 10.1111/eva.12128 10.1111/j.1365-294X.2006.02890.x 10.1002/evl3.165 10.1111/cobi.12522 10.1111/mec.13948 10.1098/rsbl.2009.0033 10.1111/conl.12412 10.1111/1755-0998.12924 10.1214/16-STS552 10.1016/j.cub.2019.02.013 10.1007/978-3-030-33334-8_5 10.1016/j.tree.2017.09.004 10.1111/cobi.13157 10.1126/sciadv.1603198 10.1016/j.tree.2017.12.002 10.1186/s13059-018-1520-3 10.1111/eva.12436 10.1086/688018 10.1111/mec.12182 10.1016/j.cub.2019.01.072 10.1016/j.biocon.2018.11.006 10.1016/j.ajhg.2015.07.012 10.1126/science.aar5273 10.1111/j.1365-294X.2010.04688.x 10.1111/ele.12977 10.1038/nrg2844 10.1016/j.cub.2019.11.062 10.1111/mec.13322 10.1073/pnas.1704949114 10.1111/1755-0998.12998 10.1007/978-3-030-04589-0 10.1016/j.cub.2018.08.066 10.1534/genetics.112.147611 10.1038/ng.3254 10.1111/mec.13988 10.1098/rspb.1996.0237 10.1111/mec.13146 10.1111/eva.12564 10.1016/j.tree.2018.08.011 10.3390/genes10110858 10.1038/hdy.2015.104 10.1038/s41467-020-14803-1 10.1093/jhered/esy020 10.2108/zs180172 10.1111/mec.14701 10.1111/eva.12661 10.1007/s10592-018-1096-1 10.1126/science.1200303 10.1016/j.biocon.2018.11.016 10.1086/710022 10.1038/s41467-019-10972-w 10.1111/mec.14853 10.1111/mec.13963 10.1016/j.tree.2014.11.009 10.1038/s41598-018-20427-9 10.1017/CBO9780511754821 10.1038/s41576-019-0152-0 10.1093/molbev/msz191 10.1126/science.aan4380 10.1086/682949 10.1038/s41437-017-0037-y 10.1038/s41467-019-12741-1 10.1111/mec.14816 10.1371/journal.pone.0020380 10.1111/mec.15256 10.1111/eva.12682 10.1111/mec.15392 10.1038/ng.3748 10.1038/nrg.2017.109 10.1016/S0169-5347(01)02290-X 10.1111/mec.13139 10.1111/1755-0998.13136 10.1111/mec.12516 10.1111/eva.12569 10.1016/j.tpb.2017.03.002 10.1038/nrg2526 10.1038/hdy.2015.17 10.1016/j.cub.2018.11.055 10.1111/1755-0998.13090 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. Molecular Ecology published by 2020 John Wiley & Sons Ltd 2020 The Authors. Molecular Ecology published by 2020 John Wiley & Sons Ltd. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. Molecular Ecology published by 2020 John Wiley & Sons Ltd – notice: 2020 The Authors. Molecular Ecology published by 2020 John Wiley & Sons Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
| DOI | 10.1111/mec.15720 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef AGRICOLA Entomology Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| DocumentTitleAlternate | HOHENLOHE et al |
| EISSN | 1365-294X |
| EndPage | 82 |
| ExternalDocumentID | PMC7894518 33145846 10_1111_mec_15720 MEC15720 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NSF Evolutionary Ecology funderid: DEB 1754821 – fundername: Natural Sciences and Engineering Research Council of Canada Discovery Grant funderid: RGPIN 2017‐04589 – fundername: National Science Foundation (NSF) Rules of Life grant funderid: DEB 1838282 – fundername: NSF Evolutionary Genetics funderid: DEB 1655809 – fundername: Natural Sciences and Engineering Research Council of Canada Discovery Grant grantid: RGPIN 2017‐04589 – fundername: NSF Evolutionary Ecology grantid: DEB 1754821 – fundername: NSF Evolutionary Genetics grantid: DEB 1655809 – fundername: National Science Foundation (NSF) Rules of Life grant grantid: DEB 1838282 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c5420-6bd325ffde2d0fd1bec8d5c4e3eb37db902c119828dff04d5f1f789d6c8851f73 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 418 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591493900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0962-1083 1365-294X |
| IngestDate | Tue Nov 04 02:01:38 EST 2025 Fri Sep 05 17:26:38 EDT 2025 Sun Nov 09 11:28:24 EST 2025 Wed Aug 13 09:56:49 EDT 2025 Thu Apr 03 06:55:35 EDT 2025 Sat Nov 29 05:23:48 EST 2025 Tue Nov 18 22:42:05 EST 2025 Wed Jan 22 16:32:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | effective population size adaptive capacity population connectivity inbreeding depression genetic rescue conservation units |
| Language | English |
| License | Attribution 2020 The Authors. Molecular Ecology published by 2020 John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5420-6bd325ffde2d0fd1bec8d5c4e3eb37db902c119828dff04d5f1f789d6c8851f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-7616-0161 0000-0002-6466-3618 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15720 |
| PMID | 33145846 |
| PQID | 2472953913 |
| PQPubID | 31465 |
| PageCount | 21 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7894518 proquest_miscellaneous_2985846431 proquest_miscellaneous_2457683354 proquest_journals_2472953913 pubmed_primary_33145846 crossref_primary_10_1111_mec_15720 crossref_citationtrail_10_1111_mec_15720 wiley_primary_10_1111_mec_15720_MEC15720 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
| PublicationTitle | Molecular ecology |
| PublicationTitleAlternate | Mol Ecol |
| PublicationYear | 2021 |
| Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
| References | 2010; 11 2013; 1 2020; 20 2010; 19 2019; 11 2019; 10 2019; 15 2016; 31 2019; 19 1996; 263 2020; 11 2020; 10 2018; 45 2009; 1162 2011; 475 2018; 9 2018; 8 2009; 10 2019; 20 2000; 10 2019; 28 2019; 29 2012; 27 2018; 33 2018; 32 2013; 193 2012; 21 1998; 282 2017; 205 2019; 8 2019; 9 2018; 28 2019; 5 2019; 34 2019; 36 2019; 229 2016; 17 2016; 16 2011; 6 2018; 21 2018; 27 2018; 19 2018; 18 2016; 6 2016; 7 2018; 359 2015; 115 2020; 30 2018; 115 2018; 11 2016; 26 2016; 25 2016; 9 2018; 14 2005; 14 2020; 29 2018; 120 2018; 122 2018; 121 2017; 1 2018; 360 2017; 3 2013; 22 2017; 49 2015; 30 2015; 186 2016; 188 2003; 18 2017; 114 2020; 8 2015; 47 2020; 4 2014; 3 2017; 32 2016; 113 2019; 116 2019; 235 2016; 117 2001; 16 2016; 116 2014; 7 2015; 15 2015; 282 2017; 26 2020; 84 2015; 97 2015; 10 2017; 23 2006; 15 2006 2011; 332 2015; 24 2015; 25 2018; 2018 2015; 29 2020; 196 2004; 19 2020 2017; 11 2017; 10 2019 2018 2009; 5 e_1_2_10_21_1 e_1_2_10_44_1 Goldberg C. S. (e_1_2_10_52_1) 2020 Robinson J. A. (e_1_2_10_129_1) 2016; 26 e_1_2_10_40_1 e_1_2_10_109_1 Toews D.P.L. (e_1_2_10_147_1) 2019 Waples R. S. (e_1_2_10_153_1) 2018; 2018 e_1_2_10_131_1 e_1_2_10_158_1 e_1_2_10_70_1 e_1_2_10_93_1 vonHoldt B. M. (e_1_2_10_150_1) 2017; 11 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 Robinson J. A. (e_1_2_10_128_1) 2018; 28 Li H. (e_1_2_10_96_1) 2011; 475 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_132_1 e_1_2_10_155_1 Fitzpatrick S. W. (e_1_2_10_38_1) 2019 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 Walters A. D. (e_1_2_10_151_1) 2020 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_113_1 e_1_2_10_98_1 e_1_2_10_56_1 Holliday J. A. (e_1_2_10_69_1) 2019 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Ravindran P. N. (e_1_2_10_124_1) 2019; 19 e_1_2_10_121_1 e_1_2_10_144_1 Sigsgaard E. E. (e_1_2_10_136_1) 2017; 1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 Hohenlohe P. A. (e_1_2_10_64_1) 2019 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_91_1 Andrews K. R. (e_1_2_10_5_1) 2018 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 Humble E. (e_1_2_10_72_1) 2020 e_1_2_10_145_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 Holderregger R. (e_1_2_10_66_1) 2019; 28 e_1_2_10_126_1 e_1_2_10_160_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_24_1 e_1_2_10_43_1 Luikart G. (e_1_2_10_99_1) 2019 e_1_2_10_20_1 e_1_2_10_108_1 IPBES (e_1_2_10_75_1) 2019 Rajora O. P. (e_1_2_10_122_1) 2019 e_1_2_10_130_1 e_1_2_10_157_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_54_1 e_1_2_10_17_1 Heppenheimer E. (e_1_2_10_59_1) 2019; 10 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_31_1 Janecka J. E. (e_1_2_10_76_1) 2020 e_1_2_10_50_1 e_1_2_10_146_1 Valk T. (e_1_2_10_148_1) 2019 e_1_2_10_81_1 Forester B. R. (e_1_2_10_41_1) 2018 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – volume: 9 start-page: 1205 year: 2016 end-page: 1218 article-title: Genomics advances the study of inbreeding depression in the wild publication-title: Evolutionary Applications – volume: 7 start-page: 355 year: 2014 end-page: 369 article-title: Genotyping by sequencing reveals shallow population structure to inform conservation of Chinook salmon ( ) publication-title: Evolutionary Applications – volume: 8 start-page: 1 year: 2018 end-page: 10 article-title: Methylation‐based enrichment facilitates low‐cost, noninvasive genomic scale sequencing of populations from feces publication-title: Scientific Reports – volume: 29 start-page: 1268 year: 2015 end-page: 1278 article-title: Assessing the components of adaptive capacity to improve conservation and management efforts under global change publication-title: Conservation Biology – volume: 116 start-page: 10418 year: 2019 end-page: 10423 article-title: Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 28 start-page: 1 year: 2018 end-page: 8 article-title: Purging of strongly deleterious mutations explains long‐term persistence and absence of inbreeding depression in island foxes publication-title: Current Biology – volume: 20 start-page: 81 year: 2019 end-page: 87 article-title: Conserving adaptive potential: Lessons from Tasmanian devils and their transmissible cancer publication-title: Conservation Genetics – volume: 6 year: 2011 article-title: Time to evolve? Potential evolutionary responses of Fraser River sockeye salmon to climate change and effects on persistence publication-title: PLoS One – volume: 21 start-page: 1085 year: 2018 end-page: 1096 article-title: Ecological genomics predicts climate vulnerability in an endangered southwestern songbird publication-title: Ecology Letters – volume: 26 start-page: 420 year: 2017 end-page: 430 article-title: Genetics and the conservation of natural populations: Allozymes to genomes publication-title: Molecular Ecology – volume: 113 start-page: 7978 year: 2016 end-page: 7985 article-title: Inferring responses to climate dynamics from historical demography in neotropical forest lizards publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 19 start-page: 865 year: 2018 end-page: 878 article-title: Cooperative research sheds light on population structure and listing status of threatened and endangered rockfish species publication-title: Conservation Genetics – volume: 17 start-page: 81 year: 2016 article-title: Harnessing the power of RADseq for ecological and evolutionary genomics publication-title: Nature Reviews Genetics – volume: 10 year: 2015 article-title: Mitochondrial genomes suggest rapid evolution of dwarf California Channel Islands foxes ( ) publication-title: PLoS One – volume: 10 start-page: 121 year: 2017 end-page: 139 article-title: Understanding and monitoring the consequences of human impacts on intraspecific variation publication-title: Evolutionary Applications – volume: 26 start-page: 1060 year: 2017 end-page: 1074 article-title: Genomic data detect corresponding signatures of population size change on an ecological time scale in two salamander species publication-title: Molecular Ecology – volume: 282 start-page: 1658 year: 1998 end-page: 1659 article-title: Population genetics ‐ No need to isolate genetics publication-title: Science – volume: 1 start-page: 261 year: 2013 end-page: 281 article-title: Conservation genomics of threatened animal species publication-title: Annual Reviews in Animal Biosciences – volume: 26 start-page: 706 year: 2017 end-page: 717 article-title: Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding publication-title: Molecular Ecology – volume: 34 start-page: 1070 year: 2019 end-page: 1079 article-title: The exciting potential and remaining uncertainties of genetic rescue publication-title: Trends in Ecology and Evolution – volume: 360 start-page: 1355 year: 2018 end-page: 1358 article-title: Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares publication-title: Science – volume: 18 start-page: 189 year: 2003 end-page: 197 article-title: Landscape genetics: Combining landscape ecology and population genetics publication-title: Trends in Ecology and Evolution – volume: 30 start-page: 517 year: 2020 end-page: 522 article-title: Genomic and fitness consequences of genetic rescue in wild populations publication-title: Current Biology – volume: 263 start-page: 1619 year: 1996 end-page: 1626 article-title: Evaluating loci for use in the genetic analysis of population structure publication-title: Proceedings of the Royal Society B‐Biological Sciences – year: 2019 – volume: 117 start-page: 316 year: 2016 end-page: 325 article-title: Genome‐wide SNP data suggest complex ancestry of sympatric North Pacific killer whale ecotypes publication-title: Heredity – volume: 84 start-page: 492 year: 2020 end-page: 504 article-title: Combining harvest and genetics to estimate reproduction in wolves publication-title: Journal of Wildlife Management – volume: 11 start-page: 2023 year: 2019 end-page: 2034 article-title: Conservation genomics in the sagebrush sea: Population divergence, demographic history, and local adaptation in sage‐grouse ( spp.) publication-title: Genome Biology and Evolution – volume: 24 start-page: 2610 year: 2015 end-page: 2618 article-title: Genetic rescue of small inbred populations: Meta‐analysis reveals large and consistent benefits of gene flow publication-title: Molecular Ecology – volume: 49 start-page: 303 year: 2017 end-page: 309 article-title: Robust and scalable inference of population history from hundreds of unphased whole genomes publication-title: Nature Genetics – volume: 47 start-page: 555 year: 2015 end-page: 559 article-title: Exploring population size changes using SNP frequency spectra publication-title: Nature Genetics – volume: 9 start-page: 68 year: 2018 article-title: Navigating the interface between landscape genetics and landscape genomics publication-title: Frontiers in Genetics – volume: 15 start-page: 1419 year: 2006 end-page: 1439 article-title: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity publication-title: Molecular Ecology – volume: 117 start-page: 207 year: 2016 end-page: 216 article-title: A method for detecting recent changes in contemporary effective population size from linkage disequilibrium at linked and unlinked loci publication-title: Heredity – volume: 19 start-page: 131 year: 2018 article-title: Conservation of biodiversity in the genomics era publication-title: Genome Biology – volume: 11 start-page: 1035 year: 2018 end-page: 1052 article-title: Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation publication-title: Evolutionary Applications – volume: 27 start-page: 489 year: 2012 end-page: 496 article-title: Harnessing genomics for delineating conservation units publication-title: Trends in Ecology and Evolution – volume: 1 start-page: 1 year: 2017 end-page: 5 article-title: Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA publication-title: Nature Ecology and Evolution – volume: 20 start-page: 662 year: 2020 end-page: 680 article-title: Applying genomic data in wildlife monitoring: Development guidelines for genotyping degraded samples with reduced single nucleotide polymorphism panels publication-title: Molecular Ecology Resources – volume: 2018 start-page: 585 year: 2018 end-page: 597 article-title: Is the red wolf a listable unit under the US Endangered Species Act? publication-title: Journal of Heredity – volume: 14 year: 2018 article-title: Population genomics of grey wolves and wolf‐like canids in North America publication-title: PLoS Genetics – volume: 36 start-page: 2906 year: 2019 end-page: 2921 article-title: Contemporary demographic reconstruction methods are robust to genome assembly quality: A case study in Tasmanian devils publication-title: Molecular Biology and Evolution – volume: 10 start-page: 606 year: 2019 article-title: Population genomic analysis of North American eastern wolves ( ) supports their conservation priority status publication-title: Genes – volume: 282 start-page: 20150156 year: 2015 article-title: Genome‐wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life‐history trait publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 24 start-page: 4348 year: 2015 end-page: 4370 article-title: A practical guide to environmental association analysis in landscape genomics publication-title: Molecular Ecology – volume: 31 start-page: 81 year: 2016 end-page: 83 article-title: Genomics in conservation: Case studies and bridging the gap between data and application publication-title: Trends in Ecology and Evolution – volume: 36 start-page: 198 year: 2019 end-page: 207 article-title: Environmental DNA collected from snow tracks is useful for identification of mammalian species publication-title: Zoological Science – volume: 10 start-page: 846 year: 2019 article-title: The value of reference genomes in the conservation of threatened species publication-title: Genes – volume: 10 start-page: 3023 year: 2020 article-title: Decimated little brown bats show potential for adaptive change publication-title: Science Reports – volume: 10 start-page: 2996 year: 2019 article-title: Genomic signatures and correlates of widespread population declines in salmon publication-title: Nature Communications – volume: 113 start-page: 3585 year: 2016 end-page: 3590 article-title: Inbreeding depression across the lifespan in a wild mammal population publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 start-page: 283 year: 2000 end-page: 294 article-title: Estimating animal abundance using noninvasive DNA sampling: Promise and pitfalls publication-title: Ecological Applications – volume: 1162 start-page: 357 year: 2009 end-page: 368 article-title: From conservation genetics to conservation genomics publication-title: Annals of the New York Academy of Sciences – volume: 25 start-page: 2176 year: 2016 end-page: 2194 article-title: Adaptive divergence despite strong genetic drift: Genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox ( ) publication-title: Molecular Ecology – volume: 27 start-page: 3466 year: 2018 end-page: 3483 article-title: Genomic consequences of a recent three‐way admixture in supplemented wild brown trout populations revealed by local ancestry tracts publication-title: Molecular Ecology – volume: 15 year: 2019 article-title: Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change publication-title: PLoS Genetics – volume: 20 start-page: 115 year: 2019 end-page: 134 article-title: Improving conservation policy with genomics: A guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists publication-title: Conservation Genetics – volume: 32 start-page: 897 year: 2017 end-page: 908 article-title: Genomic quantitative genetics to study evolution in the wild publication-title: Trends in Ecology and Evolution – volume: 16 start-page: 727 year: 2016 end-page: 741 article-title: Whole‐genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations publication-title: Molecular Ecology Resources – volume: 11 start-page: 1 year: 2017 end-page: 6 article-title: Redefining the role of admixture and genomics in species conservation publication-title: Conservation Letters – volume: 116 start-page: 362 year: 2016 end-page: 371 article-title: On the importance of being structured: Instantaneous coalescence rates and a re‐evaluation of human evolution publication-title: Heredity – volume: 19 start-page: 272 year: 2019 end-page: 282 article-title: RADProc: A computationally efficient de novo locus assembler for population studies using RADseq data publication-title: Molecular Ecology Resources – volume: 25 start-page: 121 year: 2015 end-page: 134 article-title: Bayesian inference of selection in a heterogeneous environment from genetic time series data publication-title: Molecular Ecology – volume: 11 start-page: 1 year: 2018 end-page: 6 article-title: Call for a paradigm shift in the genetic management of fragmented populations publication-title: Conservation Letters – volume: 14 start-page: 483 year: 2005 end-page: 496 article-title: Population structure of Columbia spotted frogs ( ) is strongly affected by the landscape publication-title: Molecular Ecology – volume: 11 start-page: 123 year: 2018 end-page: 139 article-title: Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations publication-title: Evolutionary Applications – volume: 16 start-page: 613 year: 2001 end-page: 622 article-title: The problems with hybrids: Setting conservation guidelines publication-title: Trends in Ecology and Evolution – volume: 28 start-page: 5068 year: 2019 end-page: 5085 article-title: Urbanisation reduces genetic connectivity in bobcat ( ) populations at regional and local spatial scales publication-title: Molecular Ecology – volume: 9 start-page: 3515 year: 2019 end-page: 3538 article-title: Invasion genetics from eDNA and thousands of larvae: A targeted metabarcoding assay that distinguishes species and population variation of zebra and quagga mussels publication-title: Ecology and Evolution – volume: 29 start-page: 1103 year: 2020 end-page: 1119 article-title: Mixed ancestry from wild and domestic lineages contributes to the rapid expansion of invasive feral swine publication-title: Molecular Ecology – volume: 30 start-page: 161 year: 2015 end-page: 168 article-title: Landscape community genomics: Understanding eco‐evolutionary processes in complex environments publication-title: Trends in Ecology and Evolution – volume: 116 start-page: 177 year: 2019 end-page: 186 article-title: Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: 117 year: 2020 end-page: 143 article-title: Conservation and management of salmon in the age of genomics publication-title: Annual Review of Animal Biosciences – start-page: 3 year: 2019 end-page: 79 – volume: 23 start-page: 4663 year: 2017 end-page: 4674 article-title: Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout publication-title: Global Change Biology – volume: 18 start-page: 1356 year: 2018 end-page: 1373 article-title: Targeted resequencing of coding DNA sequences for SNP discovery in nonmodel species publication-title: Molecular Ecology Resources – volume: 27 start-page: 2512 year: 2018 end-page: 2528 article-title: Adaptive population divergence and directional gene flow across steep elevational gradients in a climate‐sensitive mammal publication-title: Molecular Ecology – volume: 32 start-page: 1301 year: 2018 end-page: 1312 article-title: Genome sequencing and conservation genomics in the Scandinavian wolverine population publication-title: Conservation Biology – volume: 10 start-page: 4769 year: 2019 article-title: Puma genomes from North and South America provide insights into the genomic consequences of inbreeding publication-title: Nature Communications – volume: 122 start-page: 22 year: 2018 end-page: 29 article-title: A non‐zero variance of Tajima’s estimator for two sequences even for infinitely many unlinked loci publication-title: Theoretical Population Biology – volume: 21 start-page: 1583 year: 2012 end-page: 1596 article-title: Genomic consequences of genetic rescue in an insular population of bighorn sheep (Ovis canadensis) publication-title: Molecular Ecology – volume: 359 start-page: 83 year: 2018 end-page: 86 article-title: Genomic signals of selection predict climate‐driven population declines in a migratory bird publication-title: Science – volume: 3 start-page: 26 year: 2014 article-title: Comparative genomic data of the Avian Phylogenomics Project publication-title: GigaScience – volume: 205 start-page: 1319 year: 2017 end-page: 1334 article-title: Inferring individual inbreeding and demographic history from segments of identity by descent in flycatcher genome sequences publication-title: Genetics – year: 2018 – volume: 24 start-page: 1810 year: 2015 end-page: 1830 article-title: Heterogeneity of genetic architecture of body size traits in a free‐living population publication-title: Molecular Ecology – volume: 115 start-page: 4325 year: 2018 end-page: 4333 article-title: Earth BioGenome Project: Sequencing life for the future of life publication-title: Proceedings of the National Academy of Sciences USA – volume: 19 start-page: 489 year: 2004 end-page: 496 article-title: The alluring simplicity and complex reality of genetic rescue publication-title: Trends in Ecology and Evolution – volume: 20 start-page: 615 year: 2019 end-page: 628 article-title: The potential of genomics for restoring ecosystems and biodiversity publication-title: Nature Reviews Genetics – volume: 5 start-page: eaau0757 year: 2019 article-title: Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction publication-title: Science Advances – volume: 235 start-page: 93 year: 2019 end-page: 101 article-title: How to close the science‐practice gap in nature conservation? Information sources used by practitioners publication-title: Biological Conservation – volume: 10 start-page: 853 year: 2019 end-page: 859 article-title: Empowering conservation practice with efficient and economical genotyping from poor quality samples publication-title: Methods in Ecology and Evolution – volume: 10 start-page: 195 year: 2009 end-page: 205 article-title: Effective population size and patterns of molecular variation and evolution publication-title: Nature Reviews Genetics – volume: 121 start-page: 112 year: 2018 end-page: 125 article-title: Population genomic data reveal extreme geographic subdivision and novel conservation actions for the declining foothill yellow‐legged frog publication-title: Heredity – volume: 31 start-page: 259 year: 2016 end-page: 274 article-title: Close‐kin mark‐recapture publication-title: Statistical Science – volume: 20 start-page: 114 year: 2020 end-page: 124 article-title: Genotyping‐in‐Thousands by sequencing (GT‐seq) panel development and application to minimally invasive DNA samples to support studies in molecular ecology publication-title: Molecular Ecology Resources – start-page: 83 year: 2019 end-page: 126 – volume: 19 start-page: 220 year: 2018 end-page: 235 article-title: Runs of homozygosity: Windows into population history and trait architecture publication-title: Nature Reviews Genetics – volume: 33 start-page: 827 year: 2018 end-page: 839 article-title: The peril of gene‐targeted conservation publication-title: Trends in Ecology and Evolution – year: 2019 article-title: Estimates of genetic load in small populations suggest extensive purging of deleterious alleles publication-title: BioRxiv – volume: 4 start-page: 94 year: 2020 end-page: 108 article-title: Inference of natural selection from ancient DNA publication-title: Evolution Letters – volume: 19 start-page: 795 year: 2019 end-page: 803 article-title: The future is now: Amplicon sequencing and sequence capture usher in the conservation genomics era publication-title: Molecular Ecology Resources – volume: 18 start-page: 691 year: 2018 end-page: 699 article-title: DARTR: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing publication-title: Molecular Ecology Resources – start-page: 483 year: 2019 end-page: 510 – volume: 26 start-page: 1 year: 2016 end-page: 7 article-title: Genomic flatlining in the endangered island fox publication-title: Current Biology – volume: 10 start-page: 858 year: 2019 article-title: Genetic biomonitoring and biodiversity assessment using portable sequencing technologies: Current uses and future directions publication-title: Genes – volume: 8 start-page: 1 year: 2019 end-page: 6 article-title: Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale publication-title: GigaScience – year: 2020 article-title: Chromosome‐level genome assembly of the scimitar‐horned oryx: Insights into diversity and demography of a species extinct in the wild publication-title: BioRxiv – volume: 97 start-page: 404 year: 2015 end-page: 418 article-title: Accurate non‐parametric estimation of recent effective population size from segments of identity by descent publication-title: American Journal of Human Genetics – start-page: 83 year: 2020 end-page: 120 – volume: 11 start-page: 1001 year: 2020 article-title: Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex publication-title: Nature Communications – volume: 115 start-page: 63 year: 2015 end-page: 72 article-title: Measuring individual inbreeding in the age of genomics: Marker‐based measures are better than pedigrees publication-title: Heredity – volume: 26 start-page: 5369 year: 2017 end-page: 5406 article-title: Whole‐genome sequencing approaches for conservation biology: Advantages, limitations, and practical recommendations publication-title: Molecular Ecology – volume: 11 start-page: 697 year: 2010 end-page: 709 article-title: Genomics and the future of conservation genetics publication-title: Nature Reviews Genetics – volume: 22 start-page: 1383 year: 2013 end-page: 1399 article-title: Detecting selection along environmental gradients: Analysis of eight methods and their effectiveness for outbreeding and selfing populations publication-title: Molecular Ecology – volume: 193 start-page: 973 year: 2013 end-page: 984 article-title: Estimating selection coefficients in spatially structured populations from time series data of allele frequencies publication-title: Genetics – volume: 229 start-page: 50 year: 2019 end-page: 58 article-title: Using environmental DNA methods to improve winter surveys for rare carnivores: DNA from snow and improved noninvasive techniques publication-title: Biological Conservation – volume: 30 start-page: 42 year: 2015 end-page: 49 article-title: Genetic rescue to the rescue publication-title: Trends in Ecology and Evolution – volume: 29 start-page: R218 year: 2019 end-page: R220 article-title: Conservation: Bye‐Bye to the Hihi? publication-title: Current Biology – volume: 475 start-page: 493 year: 2011 end-page: 496 article-title: Inference of human population history from individual whole‐genome sequences publication-title: Nature Genetics – volume: 27 start-page: 4189 year: 2018 end-page: 4199 article-title: Large‐effect loci affect survival in Tasmanian devils ( ) infected with a transmissible cancer publication-title: Molecular Ecology – volume: 120 start-page: 196 year: 2018 end-page: 207 article-title: Estimation of contemporary effective population size and population declines using RAD sequence data publication-title: Heredity – volume: 11 start-page: 1094 year: 2018 end-page: 1119 article-title: Genetic and genomic monitoring with minimally invasive sampling methods publication-title: Evolutionary Applications – volume: 22 start-page: 6018 year: 2013 end-page: 6032 article-title: Unlocking the vault: Next‐generation museum population genomics publication-title: Molecular Ecology – volume: 196 start-page: 316 year: 2020 end-page: 332 article-title: The origin and spread of locally adaptive seasonal camouflage in snowshoe hares publication-title: American Naturalist – volume: 20 start-page: 671 year: 2019 end-page: 690 article-title: Population management using gene drive: Molecular design, models of spread dynamics and assessment of ecological risks publication-title: Conservation Genetics – volume: 11 start-page: 1029 year: 2018 end-page: 1034 article-title: Next‐generation conservation genetics and biodiversity monitoring publication-title: Evolutionary Applications – volume: 19 start-page: 609 year: 2019 end-page: 622 article-title: A roadmap for high‐throughput sequencing studies of wild animal populations using noninvasive samples and hybridization capture publication-title: Molecular Ecology Resources – volume: 5 start-page: 328 year: 2009 end-page: 331 article-title: Hybridization rapidly reduces fitness of a native trout in the wild publication-title: Biology Letters – volume: 29 start-page: 165 year: 2019 end-page: 170 article-title: Historic genomes reveal the genomic consequences of recent population deline in eastern gorillas publication-title: Current Biology – volume: 33 start-page: 176 year: 2018 end-page: 185 article-title: Quantifying temporal genomic erosion in endangered species publication-title: Trends in Ecology and Evolution – volume: 11 start-page: 1811 year: 2018 end-page: 1821 article-title: Population genomics through time provides insights into the consequences of decline and rapid demographic recovery through head‐starting in a Galapagos giant tortoise publication-title: Evolutionary Applications – volume: 6 start-page: 7706 year: 2016 end-page: 7716 article-title: Sequencing improves our ability to study threatened migratory species: Genetic population assignment in California’s Central Valley Chinook salmon publication-title: Ecology and Evolution – volume: 15 start-page: 187 year: 2015 end-page: 202 article-title: Use of genotyping by sequencing data to develop a high‐throughput and multifunctional SNP panel for conservation applications in Pacific lamprey publication-title: Molecular Ecology Resources – volume: 188 start-page: 379 year: 2016 end-page: 397 article-title: Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions publication-title: American Naturalist – volume: 186 start-page: S24 year: 2015 end-page: S36 article-title: Reliable detection of loci responsible for local adaptation: Inference of a null model through trimming the distribution of F‐ST publication-title: American Naturalist – volume: 114 start-page: E6089 year: 2017 end-page: E6096 article-title: Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 11 start-page: 1066 year: 2018 end-page: 1083 article-title: Next‐generation metrics for monitoring genetic erosion within populations of conservation concern publication-title: Evolutionary Applications – volume: 19 start-page: 3038 year: 2010 end-page: 3051 article-title: What can genetics tell us about population connectivity? publication-title: Molecular Ecology – volume: 3 year: 2017 article-title: The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation publication-title: Science Advances – volume: 114 start-page: E9589 year: 2017 end-page: E9597 article-title: Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 332 start-page: 53 year: 2011 end-page: 58 article-title: Beyond predictions: Biodiversity conservation in a changing climate publication-title: Science – volume: 28 start-page: 4755 year: 2019 end-page: 4769 article-title: The role of recombination on genome‐wide patterns of local ancestry exemplified by supplemented brook charr populations publication-title: Molecular Ecology – volume: 27 start-page: 3452 year: 2018 end-page: 3465 article-title: Integrative approaches to guide conservation decisions: Using genomics to define conservation units and functional corridors publication-title: Molecular Ecology – year: 2006 – year: 2020 – volume: 7 start-page: 12684 year: 2016 article-title: Rapid evolutionary response to a transmissible cancer in Tasmanian devils publication-title: Nature Communications – volume: 18 start-page: 676 year: 2018 end-page: 680 article-title: ReadTools: A universal toolkit for handling sequence data from different sequencing platforms publication-title: Molecular Ecology Resources – volume: 28 start-page: 3848 year: 2019 end-page: 3856 article-title: Conservation genetics: Linking science with practice publication-title: Molecular Ecology – volume: 29 start-page: 889 year: 2019 end-page: 894 article-title: Little adaptive potential in a threatened passerine bird publication-title: Current Biology – volume: 229 start-page: 85 year: 2019 end-page: 98 article-title: The microbiome in threatened species conservation publication-title: Biological Conservation – volume: 45 start-page: 304 year: 2018 end-page: 317 article-title: Demographic modelling reveals a history of divergence with gene flow for a glacially tied stonefly in a changing post‐Pleistocene landscape publication-title: Journal of Biogeography – volume: 30 start-page: 78 year: 2015 end-page: 87 article-title: Genomics and the challenging translation into conservation practice publication-title: Trends in Ecology and Evolution – ident: e_1_2_10_113_1 doi: 10.1111/2041-210X.13173 – ident: e_1_2_10_158_1 doi: 10.1016/j.tree.2014.10.009 – ident: e_1_2_10_46_1 doi: 10.1111/j.1365-294X.2005.02426.x – volume: 26 start-page: 1 year: 2016 ident: e_1_2_10_129_1 article-title: Genomic flatlining in the endangered island fox publication-title: Current Biology doi: 10.1016/j.cub.2016.02.062 – ident: e_1_2_10_102_1 doi: 10.1002/ece3.4985 – ident: e_1_2_10_80_1 doi: 10.1111/1755-0998.12498 – ident: e_1_2_10_139_1 doi: 10.1126/science.282.5394.1658 – ident: e_1_2_10_16_1 doi: 10.1371/journal.pgen.1008119 – ident: e_1_2_10_6_1 doi: 10.1038/nrg.2015.28 – ident: e_1_2_10_55_1 doi: 10.1111/eva.12490 – ident: e_1_2_10_125_1 doi: 10.1073/pnas.1820663116 – ident: e_1_2_10_65_1 doi: 10.1007/s10592-019-01157-5 – start-page: 483 volume-title: Population Genomics: Concepts, Approaches, and Applications year: 2019 ident: e_1_2_10_64_1 – ident: e_1_2_10_84_1 doi: 10.1111/eva.12414 – ident: e_1_2_10_154_1 doi: 10.1146/annurev-animal-021419-083617 – ident: e_1_2_10_157_1 doi: 10.1111/1755-0998.12993 – ident: e_1_2_10_119_1 doi: 10.1073/pnas.1601063113 – ident: e_1_2_10_131_1 doi: 10.1007/s10592-019-01165-5 – ident: e_1_2_10_40_1 doi: 10.1038/hdy.2016.54 – volume-title: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services year: 2019 ident: e_1_2_10_75_1 – ident: e_1_2_10_100_1 doi: 10.1016/S0169-5347(03)00008-9 – ident: e_1_2_10_130_1 doi: 10.1126/sciadv.aau0757 – ident: e_1_2_10_21_1 doi: 10.1111/eva.12600 – ident: e_1_2_10_48_1 doi: 10.1111/mec.13605 – ident: e_1_2_10_58_1 doi: 10.1016/j.tree.2015.01.005 – ident: e_1_2_10_109_1 doi: 10.1890/1051-0761(2000)010[0283:EAAUND]2.0.CO;2 – ident: e_1_2_10_82_1 doi: 10.1534/genetics.116.198861 – ident: e_1_2_10_8_1 doi: 10.1038/s41598-020-59797-4 – ident: e_1_2_10_49_1 doi: 10.1016/j.tree.2012.05.012 – ident: e_1_2_10_50_1 doi: 10.1016/j.tree.2015.10.009 – ident: e_1_2_10_60_1 doi: 10.1111/1755-0998.12283 – ident: e_1_2_10_146_1 doi: 10.1073/pnas.1811559115 – ident: e_1_2_10_87_1 doi: 10.1111/mec.15274 – ident: e_1_2_10_17_1 doi: 10.3390/genes10110846 – ident: e_1_2_10_95_1 doi: 10.1073/pnas.1720115115 – ident: e_1_2_10_45_1 doi: 10.1111/mec.14264 – ident: e_1_2_10_27_1 doi: 10.1002/jwmg.21820 – ident: e_1_2_10_120_1 doi: 10.1111/j.1749-6632.2009.04444.x – ident: e_1_2_10_137_1 doi: 10.1371/journal.pgen.1007745 – volume: 475 start-page: 493 year: 2011 ident: e_1_2_10_96_1 article-title: Inference of human population history from individual whole‐genome sequences publication-title: Nature Genetics – ident: e_1_2_10_70_1 doi: 10.1111/jbi.13125 – ident: e_1_2_10_106_1 doi: 10.1002/ece3.2493 – ident: e_1_2_10_160_1 doi: 10.1186/2047-217X-3-26 – ident: e_1_2_10_71_1 doi: 10.1073/pnas.1518046113 – ident: e_1_2_10_13_1 doi: 10.1073/pnas.1707279114 – ident: e_1_2_10_35_1 doi: 10.1038/ncomms12684 – ident: e_1_2_10_54_1 doi: 10.1111/mec.13323 – ident: e_1_2_10_88_1 doi: 10.1093/gigascience/giz006 – ident: e_1_2_10_141_1 doi: 10.3389/fgene.2018.00068 – ident: e_1_2_10_36_1 doi: 10.1016/j.biocon.2019.04.011 – ident: e_1_2_10_117_1 doi: 10.1093/gbe/evz112 – ident: e_1_2_10_74_1 doi: 10.1098/rspb.2015.0156 – ident: e_1_2_10_143_1 doi: 10.1016/j.tree.2004.07.003 – start-page: 3 volume-title: Population genomics: Concepts, approaches, and applications year: 2019 ident: e_1_2_10_99_1 – ident: e_1_2_10_140_1 doi: 10.1146/annurev-animal-031412-103636 – ident: e_1_2_10_7_1 doi: 10.1007/s10592-018-1060-0 – ident: e_1_2_10_108_1 doi: 10.1111/j.1365-294X.2011.05427.x – volume: 1 start-page: 1 year: 2017 ident: e_1_2_10_136_1 article-title: Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA publication-title: Nature Ecology and Evolution – ident: e_1_2_10_112_1 doi: 10.1111/gcb.13681 – ident: e_1_2_10_12_1 doi: 10.1016/j.tree.2019.06.006 – ident: e_1_2_10_57_1 doi: 10.1111/1755-0998.12745 – ident: e_1_2_10_67_1 doi: 10.1038/hdy.2016.30 – volume: 28 start-page: 3848 year: 2019 ident: e_1_2_10_66_1 article-title: Conservation genetics: Linking science with practice publication-title: Molecular Ecology doi: 10.1111/mec.15202 – ident: e_1_2_10_9_1 doi: 10.1111/mec.14806 – ident: e_1_2_10_53_1 doi: 10.1111/1755-0998.12741 – ident: e_1_2_10_105_1 doi: 10.1038/s41437-018-0097-7 – ident: e_1_2_10_63_1 doi: 10.1071/9781486307197 – ident: e_1_2_10_62_1 doi: 10.1371/journal.pone.0118240 – volume: 19 start-page: 272 year: 2019 ident: e_1_2_10_124_1 article-title: RADProc: A computationally efficient de novo locus assembler for population studies using RADseq data publication-title: Molecular Ecology Resources doi: 10.1111/1755-0998.12954 – volume-title: Population genomics: Wildlife year: 2018 ident: e_1_2_10_41_1 – ident: e_1_2_10_90_1 doi: 10.1111/eva.12128 – ident: e_1_2_10_152_1 doi: 10.1111/j.1365-294X.2006.02890.x – ident: e_1_2_10_32_1 doi: 10.1002/evl3.165 – ident: e_1_2_10_114_1 doi: 10.1111/cobi.12522 – ident: e_1_2_10_2_1 doi: 10.1111/mec.13948 – ident: e_1_2_10_111_1 doi: 10.1098/rsbl.2009.0033 – year: 2020 ident: e_1_2_10_72_1 article-title: Chromosome‐level genome assembly of the scimitar‐horned oryx: Insights into diversity and demography of a species extinct in the wild publication-title: BioRxiv – ident: e_1_2_10_123_1 doi: 10.1111/conl.12412 – ident: e_1_2_10_42_1 doi: 10.1111/1755-0998.12924 – ident: e_1_2_10_18_1 doi: 10.1214/16-STS552 – ident: e_1_2_10_25_1 doi: 10.1016/j.cub.2019.02.013 – start-page: 83 volume-title: Conservation Genetics In Mammals year: 2020 ident: e_1_2_10_76_1 doi: 10.1007/978-3-030-33334-8_5 – ident: e_1_2_10_51_1 doi: 10.1016/j.tree.2017.09.004 – ident: e_1_2_10_34_1 doi: 10.1111/cobi.13157 – ident: e_1_2_10_121_1 doi: 10.1126/sciadv.1603198 – ident: e_1_2_10_33_1 doi: 10.1016/j.tree.2017.12.002 – ident: e_1_2_10_142_1 doi: 10.1186/s13059-018-1520-3 – ident: e_1_2_10_110_1 doi: 10.1111/eva.12436 – ident: e_1_2_10_61_1 doi: 10.1086/688018 – volume-title: Population genomics: Wildlife year: 2019 ident: e_1_2_10_147_1 – ident: e_1_2_10_30_1 doi: 10.1111/mec.12182 – ident: e_1_2_10_31_1 doi: 10.1016/j.cub.2019.01.072 – ident: e_1_2_10_44_1 doi: 10.1016/j.biocon.2018.11.006 – ident: e_1_2_10_20_1 doi: 10.1016/j.ajhg.2015.07.012 – ident: e_1_2_10_78_1 doi: 10.1126/science.aar5273 – volume: 11 start-page: 1 year: 2017 ident: e_1_2_10_150_1 article-title: Redefining the role of admixture and genomics in species conservation publication-title: Conservation Letters – ident: e_1_2_10_98_1 doi: 10.1111/j.1365-294X.2010.04688.x – start-page: 83 volume-title: Population genomics: Concepts, approaches and applications year: 2019 ident: e_1_2_10_69_1 – ident: e_1_2_10_132_1 doi: 10.1111/ele.12977 – ident: e_1_2_10_3_1 doi: 10.1038/nrg2844 – ident: e_1_2_10_37_1 doi: 10.1016/j.cub.2019.11.062 – ident: e_1_2_10_127_1 doi: 10.1111/mec.13322 – ident: e_1_2_10_23_1 doi: 10.1073/pnas.1704949114 – ident: e_1_2_10_107_1 doi: 10.1111/1755-0998.12998 – volume-title: Population Genomics: Concepts, Approaches, and Applications year: 2019 ident: e_1_2_10_122_1 doi: 10.1007/978-3-030-04589-0 – volume: 28 start-page: 1 year: 2018 ident: e_1_2_10_128_1 article-title: Purging of strongly deleterious mutations explains long‐term persistence and absence of inbreeding depression in island foxes publication-title: Current Biology doi: 10.1016/j.cub.2018.08.066 – ident: e_1_2_10_103_1 doi: 10.1534/genetics.112.147611 – ident: e_1_2_10_97_1 doi: 10.1038/ng.3254 – ident: e_1_2_10_115_1 doi: 10.1111/mec.13988 – ident: e_1_2_10_11_1 doi: 10.1098/rspb.1996.0237 – ident: e_1_2_10_14_1 doi: 10.1111/mec.13146 – ident: e_1_2_10_94_1 doi: 10.1111/eva.12564 – ident: e_1_2_10_83_1 doi: 10.1016/j.tree.2018.08.011 – ident: e_1_2_10_89_1 doi: 10.3390/genes10110858 – ident: e_1_2_10_104_1 doi: 10.1038/hdy.2015.104 – ident: e_1_2_10_56_1 doi: 10.1038/s41467-020-14803-1 – volume: 2018 start-page: 585 year: 2018 ident: e_1_2_10_153_1 article-title: Is the red wolf a listable unit under the US Endangered Species Act? publication-title: Journal of Heredity doi: 10.1093/jhered/esy020 – ident: e_1_2_10_86_1 doi: 10.2108/zs180172 – ident: e_1_2_10_155_1 doi: 10.1111/mec.14701 – ident: e_1_2_10_73_1 doi: 10.1111/eva.12661 – ident: e_1_2_10_47_1 doi: 10.1007/s10592-018-1096-1 – year: 2019 ident: e_1_2_10_148_1 article-title: Estimates of genetic load in small populations suggest extensive purging of deleterious alleles publication-title: BioRxiv – ident: e_1_2_10_29_1 doi: 10.1126/science.1200303 – volume-title: Population genomics: Wildlife year: 2020 ident: e_1_2_10_52_1 – ident: e_1_2_10_156_1 doi: 10.1016/j.biocon.2018.11.016 – ident: e_1_2_10_79_1 doi: 10.1086/710022 – ident: e_1_2_10_91_1 doi: 10.1038/s41467-019-10972-w – ident: e_1_2_10_101_1 doi: 10.1111/mec.14853 – ident: e_1_2_10_68_1 doi: 10.1111/mec.13963 – ident: e_1_2_10_135_1 doi: 10.1016/j.tree.2014.11.009 – ident: e_1_2_10_26_1 doi: 10.1038/s41598-018-20427-9 – ident: e_1_2_10_28_1 doi: 10.1017/CBO9780511754821 – ident: e_1_2_10_19_1 doi: 10.1038/s41576-019-0152-0 – ident: e_1_2_10_118_1 doi: 10.1093/molbev/msz191 – ident: e_1_2_10_10_1 doi: 10.1126/science.aan4380 – ident: e_1_2_10_159_1 doi: 10.1086/682949 – ident: e_1_2_10_116_1 doi: 10.1038/s41437-017-0037-y – ident: e_1_2_10_133_1 doi: 10.1038/s41467-019-12741-1 – volume-title: Population Genomics: Wildlife year: 2018 ident: e_1_2_10_5_1 – ident: e_1_2_10_93_1 doi: 10.1111/mec.14816 – ident: e_1_2_10_126_1 doi: 10.1371/journal.pone.0020380 – ident: e_1_2_10_92_1 doi: 10.1111/mec.15256 – volume-title: Population genomics: Wildlife year: 2019 ident: e_1_2_10_38_1 – ident: e_1_2_10_77_1 doi: 10.1111/eva.12682 – ident: e_1_2_10_138_1 doi: 10.1111/mec.15392 – ident: e_1_2_10_144_1 doi: 10.1038/ng.3748 – ident: e_1_2_10_22_1 doi: 10.1038/nrg.2017.109 – ident: e_1_2_10_4_1 doi: 10.1016/S0169-5347(01)02290-X – ident: e_1_2_10_43_1 doi: 10.1111/mec.13139 – ident: e_1_2_10_145_1 doi: 10.1111/1755-0998.13136 – ident: e_1_2_10_15_1 doi: 10.1111/mec.12516 – ident: e_1_2_10_39_1 doi: 10.1111/eva.12569 – ident: e_1_2_10_85_1 doi: 10.1016/j.tpb.2017.03.002 – volume-title: Population genomics: Wildlife year: 2020 ident: e_1_2_10_151_1 – ident: e_1_2_10_24_1 doi: 10.1038/nrg2526 – ident: e_1_2_10_81_1 doi: 10.1038/hdy.2015.17 – ident: e_1_2_10_149_1 doi: 10.1016/j.cub.2018.11.055 – volume: 10 start-page: 606 year: 2019 ident: e_1_2_10_59_1 article-title: Population genomic analysis of North American eastern wolves (Canis lycaon) supports their conservation priority status publication-title: Genes – ident: e_1_2_10_134_1 doi: 10.1111/1755-0998.13090 |
| SSID | ssj0013255 |
| Score | 2.713977 |
| SecondaryResourceType | review_article |
| Snippet | Biodiversity is under threat worldwide. Over the past decade, the field of population genomics has developed across nonmodel organisms, and the results of this... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 62 |
| SubjectTerms | adaptive capacity Biodiversity Changing environments conservation units effective population size Environmental changes genetic rescue Genomics Inbreeding Inbreeding depression Invited Reviews and Syntheses metagenomics population connectivity Population number Population structure Population studies Populations wildlife Wildlife conservation Wildlife management |
| Title | Population genomics for wildlife conservation and management |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15720 https://www.ncbi.nlm.nih.gov/pubmed/33145846 https://www.proquest.com/docview/2472953913 https://www.proquest.com/docview/2457683354 https://www.proquest.com/docview/2985846431 https://pubmed.ncbi.nlm.nih.gov/PMC7894518 |
| Volume | 30 |
| WOSCitedRecordID | wos000591493900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 issn: 0962-1083 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEB7CpoVettvnus0Gt_TQi0sk2bFEeynZhB7aEEoDuRlbDzawcUoeC_n3OyM7JiHdUujFCDzG8mhGmk8azwfwAZE_z3Oho7hwLkJP7EUq1yZSNi8KZjSzSnuyiXQ8lrOZmrTg8_5fmKo-RLPhRp7h52ty8LxYHzj5wupPLEk54vU2Y0ISbwOPJwdHCJ7yFEN0jnONFHVZIUrjaR49XoxOIszTRMnDANavQKOn_9X3CzivA8_wa2Upz6Bly-fwuKKi3GFr6MtX717Al0nD6RVSBdfFXK9DDG1DfJW5nTsbasrArvdyw7w04aLJoXkJ09Hw1-BbVHMsRDqJCTkWBhXlnLHc9JxhOKTSJDq2AlF2agrV45oxhbjMONeLTeKYS6UyfS0xVnOpeAVn5bK0lxAKrSWOLBGXJbg0FipmJiVqa4uYzOQ8gI97ZWe6LkBOPBi32R6IoFoyr5YA3jeiv6uqG38S6uxHLKsdb53xGNFCIhQTAbxrbqPL0DlIXtrllmQIZAns5V9klKTQDMOrAF5XRtD0RAhGp8v9ANIj82gEqGT38Z1yfuNLd6Pq4oRJVIU3j4c_LvsxHPjGm38XfQtPOGXc-A2iDpxtVlt7BY_03Wa-XnW9d-A1nckutK9_jqbf7wEN8RVZ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7EB3rx_YhWjeLBS6SbTZoseBFtqViLiIK3kOwDCzaKVaH_3plNGlp8IHhb2AnZzM7sft_uZAbgCJm_n6ZcekFmjIeeWPdEKpUndJplTEmmhbTFJqJuN354EDdTcDr6F6bID1EduJFn2PWaHJwOpMe8vK_lCQsjHwn7TIBmhPY9c3Hbuu-M3SLYqqeI0n1cbmJeZhaiSJ7q4cn96AvI_BorOY5h7SbUWvrf8JdhsQSf7llhLSswpfNVmCvKUQ6x1bQprIdrcHpT1fVyKYtrvycHLsJbF9-lnnpGu5KisMvzXDfNlduv4mjW4b7VvDtve2WdBU-GAbHHTKGmjFHaV3WjGE5rrEIZaI5MO1KZqPuSMYHcTBlTD1RomIlioRoyRrxmIr4B0_lzrrfA5VLGOLtUvCzE7TETAVMRlbfWyMtU6jtwPNJ2Issk5FQL4ykZkRFUS2LV4sBhJfpSZN74Tqg2mrKkdL5B4gfIGEIuGHfgoOpGt6G7kDTXz-8kQ0SL4yh_kRExwTOEWA5sFlZQjYRzRjfMDQeiCfuoBCht92RP3nu06btRdUHIYlSFtY-fPy65bp7bxvbfRfdhvn133Uk6l92rHVjwKQLHHhjVYPrt9V3vwqz8eOsNXvdKZ_kEZf4YVw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kVfHi-xGfUTx4iXSzicmCF9EWRS1FFLyFZB9YaKNYFfrvndmkocUHgreFnZDN7MzufLuT-QAOEfn7acqlF2TGeOiJDU-kUnlCp1nGlGRaSEs2EbXb8eOj6EzB6ehfmKI-RHXgRp5h12tycP2izJiX97U8ZmHkI2CvB0QiU4P6xV3r4WbsFsGynmKU7uNyE_OyshBl8lQPT-5HX4LMr7mS4zGs3YRaC_8b_iLMl8Gne1ZYyxJM6XwZZgo6yiG2mraE9XAFTjsVr5dLVVz7XTlwMbx18V2q1zXalZSFXZ7nummu3H6VR7MKD63m_fmlV_IseDIMCD1mCjVljNK-ahjFcFpjFcpAc0TakcpEw5eMCcRmyphGoELDTBQLdSJjjNdMxNeglj_negNcLmWMs0vkZSFuj5kImIqI3lojLlOp78DRSNuJLIuQExdGLxmBEVRLYtXiwEEl-lJU3vhOaHs0ZUnpfIPEDxAxhFww7sB-1Y1uQ3chaa6f30mGgBbHUf4iI2IKzzDEcmC9sIJqJJwzumE-cSCasI9KgMp2T_bk3SdbvhtVF4QsRlVY-_j545Lb5rltbP5ddA9mOxet5Oaqfb0Fcz4l4Njzom2ovb2-6x2Ylh9v3cHrbukrn88qF9I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+genomics+for+wildlife+conservation+and+management&rft.jtitle=Molecular+ecology&rft.au=Hohenlohe%2C+Paul+A&rft.au=Funk%2C+W+Chris&rft.au=Rajora%2C+Om+P&rft.date=2021-01-01&rft.issn=1365-294X&rft.eissn=1365-294X&rft.volume=30&rft.issue=1&rft.spage=62&rft_id=info:doi/10.1111%2Fmec.15720&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |