Non-Contact Breathing Monitoring Using Sleep Breathing Detection Algorithm (SBDA) Based on UWB Radar Sensors
Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore...
Gespeichert in:
| Veröffentlicht in: | Sensors Jg. 22; H. 14; S. 5249 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
13.07.2022
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset. |
|---|---|
| AbstractList | Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset. Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset.Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset. |
| Author | Xiaoyang Mao Muhammad Husaini Intan Kartika Kamarudin Latifah Munirah Kamarudin Masahiro Toyoura Hiromitsu Nishizaki Muhammad Amin Ibrahim Ammar Zakaria |
| AuthorAffiliation | 4 Department of Otorhinolaryngology Head and Neck Surgery, Universiti Teknologi MARA, Shah Alam 47000, Selangor, Malaysia; kartika@uitm.edu.my 2 Advanced Sensor Technology, Centre of Exellence (CEASTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia 5 Department of Internal Medicine, Faculty of Medicine, Universiti Teknologi MARA, Shah Alam 47000, Selangor, Malaysia; m_amin88@uitm.edu.my 6 Faculty of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; hnishi@yamanashi.ac.jp 1 Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia; husaininadri@studentmail.unimap.edu.my (M.H.); ammarzakaria@unimap.edu.my (A.Z.) 3 Centre of Advanced Sensor and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia 7 Department of Computer Science and Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; mtoyoura@yamanashi.ac.jp (M.T.); mao@yamanashi.ac.jp (X.M.) |
| AuthorAffiliation_xml | – name: 3 Centre of Advanced Sensor and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia – name: 4 Department of Otorhinolaryngology Head and Neck Surgery, Universiti Teknologi MARA, Shah Alam 47000, Selangor, Malaysia; kartika@uitm.edu.my – name: 6 Faculty of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; hnishi@yamanashi.ac.jp – name: 2 Advanced Sensor Technology, Centre of Exellence (CEASTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia – name: 5 Department of Internal Medicine, Faculty of Medicine, Universiti Teknologi MARA, Shah Alam 47000, Selangor, Malaysia; m_amin88@uitm.edu.my – name: 1 Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia; husaininadri@studentmail.unimap.edu.my (M.H.); ammarzakaria@unimap.edu.my (A.Z.) – name: 7 Department of Computer Science and Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; mtoyoura@yamanashi.ac.jp (M.T.); mao@yamanashi.ac.jp (X.M.) |
| Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0001-7319-4916 surname: Husaini fullname: Husaini, Muhammad – sequence: 2 givenname: Latifah Munirah orcidid: 0000-0002-2547-3934 surname: Kamarudin fullname: Kamarudin, Latifah Munirah – sequence: 3 givenname: Ammar orcidid: 0000-0002-7108-215X surname: Zakaria fullname: Zakaria, Ammar – sequence: 4 givenname: Intan Kartika orcidid: 0000-0002-6208-6001 surname: Kamarudin fullname: Kamarudin, Intan Kartika – sequence: 5 givenname: Muhammad Amin orcidid: 0000-0001-8336-8510 surname: Ibrahim fullname: Ibrahim, Muhammad Amin – sequence: 6 givenname: Hiromitsu surname: Nishizaki fullname: Nishizaki, Hiromitsu – sequence: 7 givenname: Masahiro orcidid: 0000-0002-5897-7573 surname: Toyoura fullname: Toyoura, Masahiro – sequence: 8 givenname: Xiaoyang surname: Mao fullname: Mao, Xiaoyang |
| BackLink | https://cir.nii.ac.jp/crid/1870865117942748800$$DView record in CiNii |
| BookMark | eNptkktv1DAQgCNUREvpgX8QCQ7tIXT8iu0L0u6WR6UCEsuKY-Q4k11XWXuxvUj8exK2qtqKy3jk-ebTyJ6XxZEPHoviNYF3jGm4TJQSLijXz4oTwimvFKVw9CA_Ls5Sci1wwShjCl4Ux0woDZqqk2L4Gny1CD4bm8t5RJM3zq_LL8G7HOKUrtIUlwPi7gFwhRltdsGXs2E9gnmzLc-X86vZRTk3CbtyrKx-zsvvpjOxXKJPIaZXxfPeDAnP7s7TYvXxw4_F5-rm26frxeymsoKTXPUSeWdFq3tW09YKUJ3VwtZSUtkBAkgKPQUlOw6q5aiUagWXSghjQQvCTovrg7cL5rbZRbc18U8TjGv-XYS4bkzMzg7YgJXYqbpWHQNusG-hYxpbrAnvVW_60fX-4Nrt2y12Fn2OZngkfVzxbtOsw-9GM0oEkaPg_E4Qw689ptxsXbI4DMZj2KeG1lpQTTiZ5n7zBL0N--jHp5ooDjUToEfq4kDZGFKK2N8PQ6CZVqK5X4mRvXzCWpfN9G_jrG74b8fbQ4d3boSnSJQEVQtCpOZUcqUA2F9DJMEA |
| CitedBy_id | crossref_primary_10_1109_JSEN_2023_3336679 crossref_primary_10_1007_s11042_023_15952_3 crossref_primary_10_3390_diagnostics15162111 crossref_primary_10_1109_TIM_2023_3274171 crossref_primary_10_1109_JSEN_2024_3395285 crossref_primary_10_3390_s23135779 crossref_primary_10_1115_1_4068970 crossref_primary_10_3390_s24031003 crossref_primary_10_1109_TIM_2024_3476545 crossref_primary_10_3390_s22218167 crossref_primary_10_1016_j_measurement_2025_117707 crossref_primary_10_3390_healthcare12010031 |
| Cites_doi | 10.1371/journal.pone.0223155 10.1364/OE.16.021434 10.1109/EITCE47263.2019.9094801 10.3390/s17010171 10.1109/JSEN.2017.2723766 10.3390/s21165503 10.1378/chest.118.2.492 10.1016/B978-0-12-815071-9.00012-9 10.1109/JSEN.2019.2941198 10.1109/ACCESS.2019.2914410 10.1109/JSEN.2017.2654538 10.1109/34.192463 10.1016/S0140-6736(10)62226-X 10.1109/JBHI.2015.2480838 10.1155/2018/3675974 10.1145/2702123.2702200 10.1213/ANE.0000000000000836 10.1109/LSP.2003.821662 10.1109/EBBT.2019.8741668 10.1109/JSEN.2021.3110367 10.1098/rspa.1998.0193 10.1016/j.ajem.2007.05.001 10.3390/s17020290 10.3390/s20092479 10.1378/chest.15-0903 10.1016/j.jneumeth.2015.10.009 10.3390/s16050707 10.1111/j.1365-2044.2005.04186.x 10.3390/s17061240 10.1145/3277883.3277884 10.3390/s140202595 10.1016/j.smrv.2016.10.004 10.1109/ISCAS.2010.5537916 10.2528/PIER09120302 10.3390/s18082700 10.1109/METROI4.2019.8792905 10.1109/18.57199 10.1142/S1793536909000047 10.3390/s20226695 10.1164/rccm.200412-1631SO |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | RYH AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22145249 |
| DatabaseName | CiNii Complete CrossRef ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_0c7ed8668d304aefb0d39ebe614f8faf PMC9321517 10_3390_s22145249 |
| GrantInformation_xml | – fundername: Ministry of Higher Education Malaysia grantid: FRGS/1/2018/SKK06/UNIMAP/02/1 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM RYH TUS UKHRP XSB ~8M AAYXX CITATION 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c541t-f7e4dc5b9f362bc508dc95c67727d0e00720f2087d408b4e888b547855ac09513 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832532800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:34:46 EST 2025 Tue Nov 04 01:59:07 EST 2025 Sun Nov 09 13:26:39 EST 2025 Tue Oct 07 07:14:43 EDT 2025 Sat Nov 29 07:17:29 EST 2025 Tue Nov 18 22:44:28 EST 2025 Mon Nov 10 09:20:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-f7e4dc5b9f362bc508dc95c67727d0e00720f2087d408b4e888b547855ac09513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8336-8510 0000-0002-6208-6001 0000-0002-5897-7573 0000-0002-7108-215x 0000-0002-2547-3934 0000-0001-7319-4916 0000-0002-7108-215X |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2694063509?pq-origsite=%requestingapplication% |
| PMID | 35890928 |
| PQID | 2694063509 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0c7ed8668d304aefb0d39ebe614f8faf pubmedcentral_primary_oai_pubmedcentral_nih_gov_9321517 proquest_miscellaneous_2695291411 proquest_journals_2694063509 crossref_primary_10_3390_s22145249 crossref_citationtrail_10_3390_s22145249 nii_cinii_1870865117942748800 |
| PublicationCentury | 2000 |
| PublicationDate | 20220713 |
| PublicationDateYYYYMMDD | 2022-07-13 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220713 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Saeed (ref_36) 2021; 21 Mallat (ref_38) 1989; 11 ref_13 Verkruysse (ref_10) 2008; 16 Choi (ref_17) 2017; 17 Pittella (ref_46) 2017; 17 ref_33 Chiu (ref_35) 2017; 36 ref_32 ref_30 Mukkamala (ref_7) 2008; 26 Lazaro (ref_31) 2014; 14 Lin (ref_41) 2016; 258 ref_18 ref_16 Daubechies (ref_39) 1990; 36 ref_15 ref_37 Fleming (ref_4) 2011; 377 Chung (ref_34) 2016; 149 Flandrin (ref_43) 2004; 11 Yuan (ref_3) 2013; 10 Shen (ref_45) 2018; 65 Wu (ref_40) 2009; 1 Wang (ref_21) 2020; 20 ref_25 Ge (ref_12) 2018; 2018 ref_23 ref_22 Goldhill (ref_2) 2005; 60 ref_42 White (ref_5) 2005; 172 Lazaro (ref_28) 2010; 100 Huang (ref_44) 1998; 454 Baboli (ref_14) 2020; 20 Sachdev (ref_24) 2006; 23 Ghaffar (ref_19) 2019; 7 ref_29 Rosenberg (ref_1) 2000; 118 ref_27 ref_26 ref_9 Nam (ref_11) 2016; 20 Kang (ref_20) 2020; 10 Sun (ref_8) 2015; 121 ref_6 |
| References_xml | – ident: ref_6 doi: 10.1371/journal.pone.0223155 – volume: 16 start-page: 21434 year: 2008 ident: ref_10 article-title: Remote plethysmographic imaging using ambient light publication-title: Opt. Express doi: 10.1364/OE.16.021434 – ident: ref_29 doi: 10.1109/EITCE47263.2019.9094801 – ident: ref_13 doi: 10.3390/s17010171 – volume: 10 start-page: 23 year: 2013 ident: ref_3 article-title: Respiratory Rate and Breathing Pattern publication-title: McMaster Univ. Med. J. – volume: 17 start-page: 5717 year: 2017 ident: ref_17 article-title: People Counting Based on an IR-UWB Radar Sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2723766 – ident: ref_33 doi: 10.3390/s21165503 – volume: 118 start-page: 492 year: 2000 ident: ref_1 article-title: Patients readmitted to ICUs: A systematic review of risk factors and outcomes publication-title: Chest doi: 10.1378/chest.118.2.492 – ident: ref_37 doi: 10.1016/B978-0-12-815071-9.00012-9 – volume: 20 start-page: 538 year: 2020 ident: ref_14 article-title: Wireless Sleep Apnea Detection Using Continuous Wave Quadrature Doppler Radar publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2941198 – volume: 7 start-page: 58148 year: 2019 ident: ref_19 article-title: Hand Pointing Gestures Based Digital Menu Board Implementation Using IR-UWB Transceivers publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914410 – ident: ref_42 – volume: 17 start-page: 1772 year: 2017 ident: ref_46 article-title: Measurement of Breath Frequency by Body-Worn UWB Radars: A Comparison among Different Signal Processing Techniques publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2654538 – volume: 11 start-page: 674 year: 1989 ident: ref_38 article-title: A theory for multiresolution signal decomposition: The wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192463 – ident: ref_23 – volume: 65 start-page: 1470 year: 2018 ident: ref_45 article-title: Respiration and Heartbeat Rates Measurement Based on Autocorrelation Using IR-UWB Radar publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 377 start-page: 1011 year: 2011 ident: ref_4 article-title: Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies publication-title: Lancet doi: 10.1016/S0140-6736(10)62226-X – volume: 20 start-page: 1493 year: 2016 ident: ref_11 article-title: Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2480838 – volume: 2018 start-page: 3675974 year: 2018 ident: ref_12 article-title: Single-Frequency Ultrasound-Based Respiration Rate Estimation with Smartphones publication-title: Comput. Math. Methods Med. doi: 10.1155/2018/3675974 – volume: 10 start-page: 6 year: 2020 ident: ref_20 article-title: Non-contact diagnosis of obstructive sleep apnea using impulse-radio ultra-wideband radar publication-title: Sci. Rep. – ident: ref_32 doi: 10.1145/2702123.2702200 – volume: 121 start-page: 709 year: 2015 ident: ref_8 article-title: Postoperative Hypoxemia Is Common and Persistent: A Prospective Blinded Observational Study publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000000836 – volume: 11 start-page: 112 year: 2004 ident: ref_43 article-title: Empirical mode decomposition as a filter bank publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2003.821662 – ident: ref_27 doi: 10.1109/EBBT.2019.8741668 – volume: 21 start-page: 23518 year: 2021 ident: ref_36 article-title: Portable UWB RADAR Sensing System for Transforming Subtle Chest Movement into Actionable Micro-Doppler Signatures to Extract Respiratory Rate Exploiting ResNet Algorithm publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3110367 – volume: 454 start-page: 903 year: 1998 ident: ref_44 article-title: The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 26 start-page: 237 year: 2008 ident: ref_7 article-title: R = 20: Bias in the reporting of respiratory rates publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2007.05.001 – ident: ref_30 doi: 10.3390/s17020290 – ident: ref_25 doi: 10.3390/s20092479 – volume: 149 start-page: 631 year: 2016 ident: ref_34 article-title: STOP-bang questionnaire a practical approach to screen for obstructive sleep apnea publication-title: Chest doi: 10.1378/chest.15-0903 – volume: 258 start-page: 56 year: 2016 ident: ref_41 article-title: Sensitivity enhancement of task-evoked fMRI using ensemble empirical mode decomposition publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.10.009 – ident: ref_22 doi: 10.3390/s16050707 – volume: 60 start-page: 547 year: 2005 ident: ref_2 article-title: A physiologically-based early warning score for ward patients: The association between score and outcome publication-title: Anaesthesia doi: 10.1111/j.1365-2044.2005.04186.x – ident: ref_18 doi: 10.3390/s17061240 – ident: ref_26 doi: 10.1145/3277883.3277884 – volume: 14 start-page: 2595 year: 2014 ident: ref_31 article-title: Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars publication-title: Sensors doi: 10.3390/s140202595 – volume: 36 start-page: 57 year: 2017 ident: ref_35 article-title: Diagnostic accuracy of the Berlin questionnaire, STOP-BANG, STOP, and Epworth sleepiness scale in detecting obstructive sleep apnea: A bivariate meta-analysis publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2016.10.004 – ident: ref_16 doi: 10.1109/ISCAS.2010.5537916 – volume: 100 start-page: 265 year: 2010 ident: ref_28 article-title: Analysis of vital signs monitoring using an IR-UWB radar publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER09120302 – ident: ref_9 doi: 10.3390/s18082700 – ident: ref_15 doi: 10.1109/METROI4.2019.8792905 – volume: 36 start-page: 961 year: 1990 ident: ref_39 article-title: The Wavelet Transform, Time-Frequency Localization and Signal Analysis publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.57199 – volume: 1 start-page: 1 year: 2009 ident: ref_40 article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 20 start-page: 6695 year: 2020 ident: ref_21 article-title: Experimental comparison of ir-uwb radar and fmcw radar for vital signs publication-title: Sensors doi: 10.3390/s20226695 – volume: 172 start-page: 1363 year: 2005 ident: ref_5 article-title: Pathogenesis of obstructive and central sleep apnea publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.200412-1631SO – volume: 23 start-page: 41 year: 2006 ident: ref_24 article-title: Neuropsychiatric dimensions of movement disorders in sleep publication-title: Psychiatr. Times |
| SSID | ssib045323380 ssj0023338 ssib045318463 ssib045318440 ssib045317690 ssib045318460 ssib045320967 ssib045318445 ssib045318456 ssib045323835 ssib045315351 ssib045318454 ssib045316199 ssib045314840 ssib045319069 ssib045315347 ssib045315201 ssib045316148 ssib045318468 ssib045315722 ssib045314936 ssib045314816 ssib045315718 |
| Score | 2.4792573 |
| Snippet | Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This... |
| SourceID | doaj pubmedcentral proquest crossref nii |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5249 |
| SubjectTerms | Acoustics Airway management Algorithms breathing rate (BR) breathing rate (BR); sleeping monitoring; contactless sensing; polysomnography (PSG); ultra-wideband (UWB) radar Chemical technology contactless sensing Heart Rate Humans Intensive care Medical research Patients Polysomnography polysomnography (PSG) Radar Radio equipment Respiration Sensors Signal processing Signal Processing, Computer-Assisted Sleep sleeping monitoring TP1-1185 ultra-wideband (UWB) radar |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4htAc4IGBBhMfKrDjAIcJ5O8dmAXFA1WrL6xY5ftBKJUVt4Pczk6RVIiHthUsO8Uhxxh7P9yXjzwBnVFtMUMDlCuEbnW3rIm4Wro4x8lQqZbO_4vEuGQ7F83P6t3PUF9WENfLAjeMuuUqMFnEsNBJvaWzBdZDikzGtWGGlpdWXJ-mSTLVUK0Dm1egIBUjqLxc-CXL7JJjZyT61SD_mlHIy6eHLfnVkJ93cbMNWixPZoOnfDqyZchc2O-qBP2E6nJUuqUtJVbGMwB99TWJNlJIJq-sB2GhqzFvH4MpUdf1VyQbTFzSsxq_sfJRdDS5YhjlNM2x5eMrYP6nlnI2Q587miz14uLm-_3PrtocnuCoKvcq1iQm1iorUYooqFOIwrdJIxYimE80NKYZz63OR6JCLIjTIhAvS9ooiqQh2BfuwXs5KcwDMhIoHOg5MKCyiLymkxRG0gUboEXlKOnC-dGquWmVxOuBimiPDIP_nK_878Htl-tbIaXxllNHIrAxIAbu-gfMib-dF_r954cAJjiv2h64erkoijmo5PKThuGZxB46XI563YbvIaVsvYjYEUQ6crpox4OgviizN7L22ifzUCz3PgaQ3U3od7reUk3Et3Y1oGSFWcvgdb3gEGz7txSCVz-AY1qv5uzmBH-qjmizmv-p4-AQojg5T priority: 102 providerName: Directory of Open Access Journals |
| Title | Non-Contact Breathing Monitoring Using Sleep Breathing Detection Algorithm (SBDA) Based on UWB Radar Sensors |
| URI | https://cir.nii.ac.jp/crid/1870865117942748800 https://www.proquest.com/docview/2694063509 https://www.proquest.com/docview/2695291411 https://pubmed.ncbi.nlm.nih.gov/PMC9321517 https://doaj.org/article/0c7ed8668d304aefb0d39ebe614f8faf |
| Volume | 22 |
| WOSCitedRecordID | wos000832532800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7RhAMcyrPCpY0WxKEcrKzj1_qEYpoKJBpFDYVwsta76zZSsEPscuS3M2M7JpEQJy578I7klWZ25pvd2W8A3lBtMUEBmyuEb9Tb1kbcLGwd4M5TkZTN-4ovn8LpVCwW0ax9Hl22ZZVbn1g76obtmeq20QkPdaHoxHxI7y8xuGK0e7f-YVMPKbprbRtqHECfiLd4D_qzj5ezb10C5mI-1rALuZjqD8sR0XSPiEZzJybV1P0YafLlcg917tdM7gShi0f_d_mP4bAFo2zcWM8TuGfyp_Bwh6LwGaymRW4ThZVUFYsJYdKRFWtcAYmwuuiAzVfGrHcEzk1VF3nlbLy6QcHq9js7m8fn47csxsCpGc5cf43ZldRyw-aYTBeb8jlcX0w-v_9gtx0abOV7TmVnofG08tMowziYKgR7WkW-ChCyh5oboiXn2YiLUHtcpJ7BdDslAjHfl4qwnXsEvbzIzQtgxlPc1YFrPJEhxJNCZmgmmasR3_iOkhacbXWUqJa-nLporBJMY0idSadOC153ouuGs-NvQjEpuhMgmu36Q7G5Sdpdm3AVGi2CQGiXe9JkKdduhGaPmCYTmcwsOEUzwfXQ6KDrE4Ffc-5hro-OkVtwsrWGpPUNZfJH-Ra86qZxV9NVjcxNcVfL-KPI8RzHgnDP8PYWvD-TL29rfnCE5IjjwuN___wlPBjRUw4iCXVPoFdt7swp3Fc_q2W5GcBBuAjrUQygH0-ms6tBfV6B4-WvyaDdWr8BXi0tPA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4I1qaGFBIJWD1fXbPiAUE6pGTaOItKWczGZ33UYKdohdEH-K38iM7ZhEQtx64OKDd-TntzPf2LPfALyi2mKiAiaXSN-ot62JvDk0lY8zT0ZC1OsrzgbBcBien0ejDfi1XAtDZZVLn1g5apVL-ka-TysuMZxifHs3_2ZS1yj6u7psoVHD4kj__IEpW_G238P3-9q2Dz6cvD80m64CpvRcqzTTQLtKepMoRd89kUhQlIw86SPNDBTXJKXNU5uHgXJ5OHE1pogTEr3yPCGJjzh43Buw6SLYeQc2R_3j0ec2xXMw46v1ixwn4vuFTULgNgl1rkS9qjkAxrJsOl3jtetVmSth7uDu__aA7sGdhlCzbj0D7sOGzh7A7RWZxYcwG-aZSTJcQpYsJpZMn91Y7c7IhFWFE2w803q-YtDTZVWolrHu7AINy8uvbG8c97pvWIzBXzEcOf0Us49CiQUb66zIF8UjOL2W230MnSzP9DYw7UruKN_RbpgiTRWhSBHqqaOQo3mWFAbsLVGQyEaCnTqBzBJMxQgwSQsYA162pvNad-RvRjFBqTUgqfBqR764SBrPk3AZaBX6fqgc7gqdTrhyIpy6yMvSMBWpAbsIRLwe2lrovkPfq3QD7YCcOzdgZ4m3pPFvRfIHbAa8aIfRM9HvJpHp_Kqy8ezIci3LgGAN2msXvD6STS8rjXNMK5CLBk_-ffLncOvw5HiQDPrDo6ewZdPSFBI9dXagUy6u9C7clN_LabF41kxUBl-uG_q_AYAEdss |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE48I1qaGFBIJWDlbXXnweEYtKIqlUUNRR6M5vddRsptUPsgvhr_DpmbCckEuLWA5ccvCPHTt7MvLFn3wC8pt5iogI2V0jfaLatjbw5snWAnqdiKZv9FZ-Pw-EwOjuLR1vwa7kXhtoqlzGxDtS6UPSMvEs7LjGdYn7rZm1bxKg_eD__ZtMEKXrTuhyn0UDkyPz8geVb-e6wj__1G9cdHHz68NFuJwzYyvecys5C42nlT-IM4_hEIVnRKvZVgJQz1NyQrDbPXB6F2uPRxDNYLk5IAMv3pSJuIvC8N2A7FFj0dGA7ORiOTlblnsDqr9EyEiLm3dIlUXCXRDvXMmA9KADzWj6dbnDczQ7NtZQ3uPc__1j34W5LtFmv8YwHsGXyh3BnTX7xEcyGRW6TPJdUFUuIPdPjONaEOTJhdUMFG8-Mma8Z9E1VN7DlrDc7R8Pq4pLtj5N-7y1LkBRohiunXxJ2IrVcsLHJy2JRPobTa7ndJ9DJi9zsADOe4kIHwnhRhvRVRjJDF8iERu7mO0pasL9ERKpaaXaaEDJLsUQj8KQr8FjwamU6b_RI_maUEKxWBiQhXh8oFudpG5FSrkKjoyCItOCeNNmEaxGjSyNfy6JMZhbsISjxeujTwbAeBX6tJ-iGFPS5BbtL7KVt3CvTP8Cz4OVqGSMWvYaSuSmuahvfjR3PcSwIN2C-ccGbK_n0otY-x3IDOWr49N9f_gJuId7T48Ph0TO47dKOFdJCFbvQqRZXZg9uqu_VtFw8b32WwdfrRv5vT_Z_ZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Contact+Breathing+Monitoring+Using+Sleep+Breathing+Detection+Algorithm+%28SBDA%29+Based+on+UWB+Radar+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Husaini%2C+Muhammad&rft.au=Kamarudin%2C+Latifah+Munirah&rft.au=Zakaria%2C+Ammar&rft.au=Kamarudin%2C+Intan+Kartika&rft.date=2022-07-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=14&rft.spage=5249&rft_id=info:doi/10.3390%2Fs22145249&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |