Non-Contact Breathing Monitoring Using Sleep Breathing Detection Algorithm (SBDA) Based on UWB Radar Sensors

Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors Jg. 22; H. 14; S. 5249
Hauptverfasser: Husaini, Muhammad, Kamarudin, Latifah Munirah, Zakaria, Ammar, Kamarudin, Intan Kartika, Ibrahim, Muhammad Amin, Nishizaki, Hiromitsu, Toyoura, Masahiro, Mao, Xiaoyang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 13.07.2022
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset.
AbstractList Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset.
Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset.Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset.
Author Xiaoyang Mao
Muhammad Husaini
Intan Kartika Kamarudin
Latifah Munirah Kamarudin
Masahiro Toyoura
Hiromitsu Nishizaki
Muhammad Amin Ibrahim
Ammar Zakaria
AuthorAffiliation 4 Department of Otorhinolaryngology Head and Neck Surgery, Universiti Teknologi MARA, Shah Alam 47000, Selangor, Malaysia; kartika@uitm.edu.my
2 Advanced Sensor Technology, Centre of Exellence (CEASTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
5 Department of Internal Medicine, Faculty of Medicine, Universiti Teknologi MARA, Shah Alam 47000, Selangor, Malaysia; m_amin88@uitm.edu.my
6 Faculty of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; hnishi@yamanashi.ac.jp
1 Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia; husaininadri@studentmail.unimap.edu.my (M.H.); ammarzakaria@unimap.edu.my (A.Z.)
3 Centre of Advanced Sensor and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
7 Department of Computer Science and Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; mtoyoura@yamanashi.ac.jp (M.T.); mao@yamanashi.ac.jp (X.M.)
AuthorAffiliation_xml – name: 3 Centre of Advanced Sensor and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
– name: 4 Department of Otorhinolaryngology Head and Neck Surgery, Universiti Teknologi MARA, Shah Alam 47000, Selangor, Malaysia; kartika@uitm.edu.my
– name: 6 Faculty of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; hnishi@yamanashi.ac.jp
– name: 2 Advanced Sensor Technology, Centre of Exellence (CEASTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
– name: 5 Department of Internal Medicine, Faculty of Medicine, Universiti Teknologi MARA, Shah Alam 47000, Selangor, Malaysia; m_amin88@uitm.edu.my
– name: 1 Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia; husaininadri@studentmail.unimap.edu.my (M.H.); ammarzakaria@unimap.edu.my (A.Z.)
– name: 7 Department of Computer Science and Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; mtoyoura@yamanashi.ac.jp (M.T.); mao@yamanashi.ac.jp (X.M.)
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0001-7319-4916
  surname: Husaini
  fullname: Husaini, Muhammad
– sequence: 2
  givenname: Latifah Munirah
  orcidid: 0000-0002-2547-3934
  surname: Kamarudin
  fullname: Kamarudin, Latifah Munirah
– sequence: 3
  givenname: Ammar
  orcidid: 0000-0002-7108-215X
  surname: Zakaria
  fullname: Zakaria, Ammar
– sequence: 4
  givenname: Intan Kartika
  orcidid: 0000-0002-6208-6001
  surname: Kamarudin
  fullname: Kamarudin, Intan Kartika
– sequence: 5
  givenname: Muhammad Amin
  orcidid: 0000-0001-8336-8510
  surname: Ibrahim
  fullname: Ibrahim, Muhammad Amin
– sequence: 6
  givenname: Hiromitsu
  surname: Nishizaki
  fullname: Nishizaki, Hiromitsu
– sequence: 7
  givenname: Masahiro
  orcidid: 0000-0002-5897-7573
  surname: Toyoura
  fullname: Toyoura, Masahiro
– sequence: 8
  givenname: Xiaoyang
  surname: Mao
  fullname: Mao, Xiaoyang
BackLink https://cir.nii.ac.jp/crid/1870865117942748800$$DView record in CiNii
BookMark eNptkktv1DAQgCNUREvpgX8QCQ7tIXT8iu0L0u6WR6UCEsuKY-Q4k11XWXuxvUj8exK2qtqKy3jk-ebTyJ6XxZEPHoviNYF3jGm4TJQSLijXz4oTwimvFKVw9CA_Ls5Sci1wwShjCl4Ux0woDZqqk2L4Gny1CD4bm8t5RJM3zq_LL8G7HOKUrtIUlwPi7gFwhRltdsGXs2E9gnmzLc-X86vZRTk3CbtyrKx-zsvvpjOxXKJPIaZXxfPeDAnP7s7TYvXxw4_F5-rm26frxeymsoKTXPUSeWdFq3tW09YKUJ3VwtZSUtkBAkgKPQUlOw6q5aiUagWXSghjQQvCTovrg7cL5rbZRbc18U8TjGv-XYS4bkzMzg7YgJXYqbpWHQNusG-hYxpbrAnvVW_60fX-4Nrt2y12Fn2OZngkfVzxbtOsw-9GM0oEkaPg_E4Qw689ptxsXbI4DMZj2KeG1lpQTTiZ5n7zBL0N--jHp5ooDjUToEfq4kDZGFKK2N8PQ6CZVqK5X4mRvXzCWpfN9G_jrG74b8fbQ4d3boSnSJQEVQtCpOZUcqUA2F9DJMEA
CitedBy_id crossref_primary_10_1109_JSEN_2023_3336679
crossref_primary_10_1007_s11042_023_15952_3
crossref_primary_10_3390_diagnostics15162111
crossref_primary_10_1109_TIM_2023_3274171
crossref_primary_10_1109_JSEN_2024_3395285
crossref_primary_10_3390_s23135779
crossref_primary_10_1115_1_4068970
crossref_primary_10_3390_s24031003
crossref_primary_10_1109_TIM_2024_3476545
crossref_primary_10_3390_s22218167
crossref_primary_10_1016_j_measurement_2025_117707
crossref_primary_10_3390_healthcare12010031
Cites_doi 10.1371/journal.pone.0223155
10.1364/OE.16.021434
10.1109/EITCE47263.2019.9094801
10.3390/s17010171
10.1109/JSEN.2017.2723766
10.3390/s21165503
10.1378/chest.118.2.492
10.1016/B978-0-12-815071-9.00012-9
10.1109/JSEN.2019.2941198
10.1109/ACCESS.2019.2914410
10.1109/JSEN.2017.2654538
10.1109/34.192463
10.1016/S0140-6736(10)62226-X
10.1109/JBHI.2015.2480838
10.1155/2018/3675974
10.1145/2702123.2702200
10.1213/ANE.0000000000000836
10.1109/LSP.2003.821662
10.1109/EBBT.2019.8741668
10.1109/JSEN.2021.3110367
10.1098/rspa.1998.0193
10.1016/j.ajem.2007.05.001
10.3390/s17020290
10.3390/s20092479
10.1378/chest.15-0903
10.1016/j.jneumeth.2015.10.009
10.3390/s16050707
10.1111/j.1365-2044.2005.04186.x
10.3390/s17061240
10.1145/3277883.3277884
10.3390/s140202595
10.1016/j.smrv.2016.10.004
10.1109/ISCAS.2010.5537916
10.2528/PIER09120302
10.3390/s18082700
10.1109/METROI4.2019.8792905
10.1109/18.57199
10.1142/S1793536909000047
10.3390/s20226695
10.1164/rccm.200412-1631SO
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID RYH
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22145249
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0c7ed8668d304aefb0d39ebe614f8faf
PMC9321517
10_3390_s22145249
GrantInformation_xml – fundername: Ministry of Higher Education Malaysia
  grantid: FRGS/1/2018/SKK06/UNIMAP/02/1
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
RYH
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c541t-f7e4dc5b9f362bc508dc95c67727d0e00720f2087d408b4e888b547855ac09513
IEDL.DBID PIMPY
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832532800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:34:46 EST 2025
Tue Nov 04 01:59:07 EST 2025
Sun Nov 09 13:26:39 EST 2025
Tue Oct 07 07:14:43 EDT 2025
Sat Nov 29 07:17:29 EST 2025
Tue Nov 18 22:44:28 EST 2025
Mon Nov 10 09:20:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-f7e4dc5b9f362bc508dc95c67727d0e00720f2087d408b4e888b547855ac09513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8336-8510
0000-0002-6208-6001
0000-0002-5897-7573
0000-0002-7108-215x
0000-0002-2547-3934
0000-0001-7319-4916
0000-0002-7108-215X
OpenAccessLink https://www.proquest.com/publiccontent/docview/2694063509?pq-origsite=%requestingapplication%
PMID 35890928
PQID 2694063509
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0c7ed8668d304aefb0d39ebe614f8faf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9321517
proquest_miscellaneous_2695291411
proquest_journals_2694063509
crossref_primary_10_3390_s22145249
crossref_citationtrail_10_3390_s22145249
nii_cinii_1870865117942748800
PublicationCentury 2000
PublicationDate 20220713
PublicationDateYYYYMMDD 2022-07-13
PublicationDate_xml – month: 7
  year: 2022
  text: 20220713
  day: 13
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Saeed (ref_36) 2021; 21
Mallat (ref_38) 1989; 11
ref_13
Verkruysse (ref_10) 2008; 16
Choi (ref_17) 2017; 17
Pittella (ref_46) 2017; 17
ref_33
Chiu (ref_35) 2017; 36
ref_32
ref_30
Mukkamala (ref_7) 2008; 26
Lazaro (ref_31) 2014; 14
Lin (ref_41) 2016; 258
ref_18
ref_16
Daubechies (ref_39) 1990; 36
ref_15
ref_37
Fleming (ref_4) 2011; 377
Chung (ref_34) 2016; 149
Flandrin (ref_43) 2004; 11
Yuan (ref_3) 2013; 10
Shen (ref_45) 2018; 65
Wu (ref_40) 2009; 1
Wang (ref_21) 2020; 20
ref_25
Ge (ref_12) 2018; 2018
ref_23
ref_22
Goldhill (ref_2) 2005; 60
ref_42
White (ref_5) 2005; 172
Lazaro (ref_28) 2010; 100
Huang (ref_44) 1998; 454
Baboli (ref_14) 2020; 20
Sachdev (ref_24) 2006; 23
Ghaffar (ref_19) 2019; 7
ref_29
Rosenberg (ref_1) 2000; 118
ref_27
ref_26
ref_9
Nam (ref_11) 2016; 20
Kang (ref_20) 2020; 10
Sun (ref_8) 2015; 121
ref_6
References_xml – ident: ref_6
  doi: 10.1371/journal.pone.0223155
– volume: 16
  start-page: 21434
  year: 2008
  ident: ref_10
  article-title: Remote plethysmographic imaging using ambient light
  publication-title: Opt. Express
  doi: 10.1364/OE.16.021434
– ident: ref_29
  doi: 10.1109/EITCE47263.2019.9094801
– ident: ref_13
  doi: 10.3390/s17010171
– volume: 10
  start-page: 23
  year: 2013
  ident: ref_3
  article-title: Respiratory Rate and Breathing Pattern
  publication-title: McMaster Univ. Med. J.
– volume: 17
  start-page: 5717
  year: 2017
  ident: ref_17
  article-title: People Counting Based on an IR-UWB Radar Sensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2723766
– ident: ref_33
  doi: 10.3390/s21165503
– volume: 118
  start-page: 492
  year: 2000
  ident: ref_1
  article-title: Patients readmitted to ICUs: A systematic review of risk factors and outcomes
  publication-title: Chest
  doi: 10.1378/chest.118.2.492
– ident: ref_37
  doi: 10.1016/B978-0-12-815071-9.00012-9
– volume: 20
  start-page: 538
  year: 2020
  ident: ref_14
  article-title: Wireless Sleep Apnea Detection Using Continuous Wave Quadrature Doppler Radar
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2941198
– volume: 7
  start-page: 58148
  year: 2019
  ident: ref_19
  article-title: Hand Pointing Gestures Based Digital Menu Board Implementation Using IR-UWB Transceivers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914410
– ident: ref_42
– volume: 17
  start-page: 1772
  year: 2017
  ident: ref_46
  article-title: Measurement of Breath Frequency by Body-Worn UWB Radars: A Comparison among Different Signal Processing Techniques
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2654538
– volume: 11
  start-page: 674
  year: 1989
  ident: ref_38
  article-title: A theory for multiresolution signal decomposition: The wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192463
– ident: ref_23
– volume: 65
  start-page: 1470
  year: 2018
  ident: ref_45
  article-title: Respiration and Heartbeat Rates Measurement Based on Autocorrelation Using IR-UWB Radar
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 377
  start-page: 1011
  year: 2011
  ident: ref_4
  article-title: Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)62226-X
– volume: 20
  start-page: 1493
  year: 2016
  ident: ref_11
  article-title: Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2480838
– volume: 2018
  start-page: 3675974
  year: 2018
  ident: ref_12
  article-title: Single-Frequency Ultrasound-Based Respiration Rate Estimation with Smartphones
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2018/3675974
– volume: 10
  start-page: 6
  year: 2020
  ident: ref_20
  article-title: Non-contact diagnosis of obstructive sleep apnea using impulse-radio ultra-wideband radar
  publication-title: Sci. Rep.
– ident: ref_32
  doi: 10.1145/2702123.2702200
– volume: 121
  start-page: 709
  year: 2015
  ident: ref_8
  article-title: Postoperative Hypoxemia Is Common and Persistent: A Prospective Blinded Observational Study
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000000836
– volume: 11
  start-page: 112
  year: 2004
  ident: ref_43
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2003.821662
– ident: ref_27
  doi: 10.1109/EBBT.2019.8741668
– volume: 21
  start-page: 23518
  year: 2021
  ident: ref_36
  article-title: Portable UWB RADAR Sensing System for Transforming Subtle Chest Movement into Actionable Micro-Doppler Signatures to Extract Respiratory Rate Exploiting ResNet Algorithm
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3110367
– volume: 454
  start-page: 903
  year: 1998
  ident: ref_44
  article-title: The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 26
  start-page: 237
  year: 2008
  ident: ref_7
  article-title: R = 20: Bias in the reporting of respiratory rates
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2007.05.001
– ident: ref_30
  doi: 10.3390/s17020290
– ident: ref_25
  doi: 10.3390/s20092479
– volume: 149
  start-page: 631
  year: 2016
  ident: ref_34
  article-title: STOP-bang questionnaire a practical approach to screen for obstructive sleep apnea
  publication-title: Chest
  doi: 10.1378/chest.15-0903
– volume: 258
  start-page: 56
  year: 2016
  ident: ref_41
  article-title: Sensitivity enhancement of task-evoked fMRI using ensemble empirical mode decomposition
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.10.009
– ident: ref_22
  doi: 10.3390/s16050707
– volume: 60
  start-page: 547
  year: 2005
  ident: ref_2
  article-title: A physiologically-based early warning score for ward patients: The association between score and outcome
  publication-title: Anaesthesia
  doi: 10.1111/j.1365-2044.2005.04186.x
– ident: ref_18
  doi: 10.3390/s17061240
– ident: ref_26
  doi: 10.1145/3277883.3277884
– volume: 14
  start-page: 2595
  year: 2014
  ident: ref_31
  article-title: Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars
  publication-title: Sensors
  doi: 10.3390/s140202595
– volume: 36
  start-page: 57
  year: 2017
  ident: ref_35
  article-title: Diagnostic accuracy of the Berlin questionnaire, STOP-BANG, STOP, and Epworth sleepiness scale in detecting obstructive sleep apnea: A bivariate meta-analysis
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2016.10.004
– ident: ref_16
  doi: 10.1109/ISCAS.2010.5537916
– volume: 100
  start-page: 265
  year: 2010
  ident: ref_28
  article-title: Analysis of vital signs monitoring using an IR-UWB radar
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER09120302
– ident: ref_9
  doi: 10.3390/s18082700
– ident: ref_15
  doi: 10.1109/METROI4.2019.8792905
– volume: 36
  start-page: 961
  year: 1990
  ident: ref_39
  article-title: The Wavelet Transform, Time-Frequency Localization and Signal Analysis
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.57199
– volume: 1
  start-page: 1
  year: 2009
  ident: ref_40
  article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 20
  start-page: 6695
  year: 2020
  ident: ref_21
  article-title: Experimental comparison of ir-uwb radar and fmcw radar for vital signs
  publication-title: Sensors
  doi: 10.3390/s20226695
– volume: 172
  start-page: 1363
  year: 2005
  ident: ref_5
  article-title: Pathogenesis of obstructive and central sleep apnea
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200412-1631SO
– volume: 23
  start-page: 41
  year: 2006
  ident: ref_24
  article-title: Neuropsychiatric dimensions of movement disorders in sleep
  publication-title: Psychiatr. Times
SSID ssib045323380
ssj0023338
ssib045318463
ssib045318440
ssib045317690
ssib045318460
ssib045320967
ssib045318445
ssib045318456
ssib045323835
ssib045315351
ssib045318454
ssib045316199
ssib045314840
ssib045319069
ssib045315347
ssib045315201
ssib045316148
ssib045318468
ssib045315722
ssib045314936
ssib045314816
ssib045315718
Score 2.4792573
Snippet Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This...
SourceID doaj
pubmedcentral
proquest
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5249
SubjectTerms Acoustics
Airway management
Algorithms
breathing rate (BR)
breathing rate (BR); sleeping monitoring; contactless sensing; polysomnography (PSG); ultra-wideband (UWB) radar
Chemical technology
contactless sensing
Heart Rate
Humans
Intensive care
Medical research
Patients
Polysomnography
polysomnography (PSG)
Radar
Radio equipment
Respiration
Sensors
Signal processing
Signal Processing, Computer-Assisted
Sleep
sleeping monitoring
TP1-1185
ultra-wideband (UWB) radar
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4htAc4IGBBhMfKrDjAIcJ5O8dmAXFA1WrL6xY5ftBKJUVt4Pczk6RVIiHthUsO8Uhxxh7P9yXjzwBnVFtMUMDlCuEbnW3rIm4Wro4x8lQqZbO_4vEuGQ7F83P6t3PUF9WENfLAjeMuuUqMFnEsNBJvaWzBdZDikzGtWGGlpdWXJ-mSTLVUK0Dm1egIBUjqLxc-CXL7JJjZyT61SD_mlHIy6eHLfnVkJ93cbMNWixPZoOnfDqyZchc2O-qBP2E6nJUuqUtJVbGMwB99TWJNlJIJq-sB2GhqzFvH4MpUdf1VyQbTFzSsxq_sfJRdDS5YhjlNM2x5eMrYP6nlnI2Q587miz14uLm-_3PrtocnuCoKvcq1iQm1iorUYooqFOIwrdJIxYimE80NKYZz63OR6JCLIjTIhAvS9ooiqQh2BfuwXs5KcwDMhIoHOg5MKCyiLymkxRG0gUboEXlKOnC-dGquWmVxOuBimiPDIP_nK_878Htl-tbIaXxllNHIrAxIAbu-gfMib-dF_r954cAJjiv2h64erkoijmo5PKThuGZxB46XI563YbvIaVsvYjYEUQ6crpox4OgviizN7L22ifzUCz3PgaQ3U3od7reUk3Et3Y1oGSFWcvgdb3gEGz7txSCVz-AY1qv5uzmBH-qjmizmv-p4-AQojg5T
  priority: 102
  providerName: Directory of Open Access Journals
Title Non-Contact Breathing Monitoring Using Sleep Breathing Detection Algorithm (SBDA) Based on UWB Radar Sensors
URI https://cir.nii.ac.jp/crid/1870865117942748800
https://www.proquest.com/docview/2694063509
https://www.proquest.com/docview/2695291411
https://pubmed.ncbi.nlm.nih.gov/PMC9321517
https://doaj.org/article/0c7ed8668d304aefb0d39ebe614f8faf
Volume 22
WOSCitedRecordID wos000832532800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7RhAMcyrPCpY0WxKEcrKzj1_qEYpoKJBpFDYVwsta76zZSsEPscuS3M2M7JpEQJy578I7klWZ25pvd2W8A3lBtMUEBmyuEb9Tb1kbcLGwd4M5TkZTN-4ovn8LpVCwW0ax9Hl22ZZVbn1g76obtmeq20QkPdaHoxHxI7y8xuGK0e7f-YVMPKbprbRtqHECfiLd4D_qzj5ezb10C5mI-1rALuZjqD8sR0XSPiEZzJybV1P0YafLlcg917tdM7gShi0f_d_mP4bAFo2zcWM8TuGfyp_Bwh6LwGaymRW4ThZVUFYsJYdKRFWtcAYmwuuiAzVfGrHcEzk1VF3nlbLy6QcHq9js7m8fn47csxsCpGc5cf43ZldRyw-aYTBeb8jlcX0w-v_9gtx0abOV7TmVnofG08tMowziYKgR7WkW-ChCyh5oboiXn2YiLUHtcpJ7BdDslAjHfl4qwnXsEvbzIzQtgxlPc1YFrPJEhxJNCZmgmmasR3_iOkhacbXWUqJa-nLporBJMY0idSadOC153ouuGs-NvQjEpuhMgmu36Q7G5Sdpdm3AVGi2CQGiXe9JkKdduhGaPmCYTmcwsOEUzwfXQ6KDrE4Ffc-5hro-OkVtwsrWGpPUNZfJH-Ra86qZxV9NVjcxNcVfL-KPI8RzHgnDP8PYWvD-TL29rfnCE5IjjwuN___wlPBjRUw4iCXVPoFdt7swp3Fc_q2W5GcBBuAjrUQygH0-ms6tBfV6B4-WvyaDdWr8BXi0tPA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4I1qaGFBIJWD1fXbPiAUE6pGTaOItKWczGZ33UYKdohdEH-K38iM7ZhEQtx64OKDd-TntzPf2LPfALyi2mKiAiaXSN-ot62JvDk0lY8zT0ZC1OsrzgbBcBien0ejDfi1XAtDZZVLn1g5apVL-ka-TysuMZxifHs3_2ZS1yj6u7psoVHD4kj__IEpW_G238P3-9q2Dz6cvD80m64CpvRcqzTTQLtKepMoRd89kUhQlIw86SPNDBTXJKXNU5uHgXJ5OHE1pogTEr3yPCGJjzh43Buw6SLYeQc2R_3j0ec2xXMw46v1ixwn4vuFTULgNgl1rkS9qjkAxrJsOl3jtetVmSth7uDu__aA7sGdhlCzbj0D7sOGzh7A7RWZxYcwG-aZSTJcQpYsJpZMn91Y7c7IhFWFE2w803q-YtDTZVWolrHu7AINy8uvbG8c97pvWIzBXzEcOf0Us49CiQUb66zIF8UjOL2W230MnSzP9DYw7UruKN_RbpgiTRWhSBHqqaOQo3mWFAbsLVGQyEaCnTqBzBJMxQgwSQsYA162pvNad-RvRjFBqTUgqfBqR764SBrPk3AZaBX6fqgc7gqdTrhyIpy6yMvSMBWpAbsIRLwe2lrovkPfq3QD7YCcOzdgZ4m3pPFvRfIHbAa8aIfRM9HvJpHp_Kqy8ezIci3LgGAN2msXvD6STS8rjXNMK5CLBk_-ffLncOvw5HiQDPrDo6ewZdPSFBI9dXagUy6u9C7clN_LabF41kxUBl-uG_q_AYAEdss
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE48I1qaGFBIJWDlbXXnweEYtKIqlUUNRR6M5vddRsptUPsgvhr_DpmbCckEuLWA5ccvCPHTt7MvLFn3wC8pt5iogI2V0jfaLatjbw5snWAnqdiKZv9FZ-Pw-EwOjuLR1vwa7kXhtoqlzGxDtS6UPSMvEs7LjGdYn7rZm1bxKg_eD__ZtMEKXrTuhyn0UDkyPz8geVb-e6wj__1G9cdHHz68NFuJwzYyvecys5C42nlT-IM4_hEIVnRKvZVgJQz1NyQrDbPXB6F2uPRxDNYLk5IAMv3pSJuIvC8N2A7FFj0dGA7ORiOTlblnsDqr9EyEiLm3dIlUXCXRDvXMmA9KADzWj6dbnDczQ7NtZQ3uPc__1j34W5LtFmv8YwHsGXyh3BnTX7xEcyGRW6TPJdUFUuIPdPjONaEOTJhdUMFG8-Mma8Z9E1VN7DlrDc7R8Pq4pLtj5N-7y1LkBRohiunXxJ2IrVcsLHJy2JRPobTa7ndJ9DJi9zsADOe4kIHwnhRhvRVRjJDF8iERu7mO0pasL9ERKpaaXaaEDJLsUQj8KQr8FjwamU6b_RI_maUEKxWBiQhXh8oFudpG5FSrkKjoyCItOCeNNmEaxGjSyNfy6JMZhbsISjxeujTwbAeBX6tJ-iGFPS5BbtL7KVt3CvTP8Cz4OVqGSMWvYaSuSmuahvfjR3PcSwIN2C-ccGbK_n0otY-x3IDOWr49N9f_gJuId7T48Ph0TO47dKOFdJCFbvQqRZXZg9uqu_VtFw8b32WwdfrRv5vT_Z_ZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Contact+Breathing+Monitoring+Using+Sleep+Breathing+Detection+Algorithm+%28SBDA%29+Based+on+UWB+Radar+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Husaini%2C+Muhammad&rft.au=Kamarudin%2C+Latifah+Munirah&rft.au=Zakaria%2C+Ammar&rft.au=Kamarudin%2C+Intan+Kartika&rft.date=2022-07-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=14&rft.spage=5249&rft_id=info:doi/10.3390%2Fs22145249&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon