An innovative approach for QoS-aware web service composition using whale optimization algorithm
With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has be...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 14; číslo 1; s. 22622 - 14 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
30.09.2024
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user’s requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing. |
|---|---|
| AbstractList | With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user’s requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing. Abstract With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user’s requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing. With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user's requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing.With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user's requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing. |
| ArticleNumber | 22622 |
| Author | Dahan, Fadl |
| Author_xml | – sequence: 1 givenname: Fadl surname: Dahan fullname: Dahan, Fadl email: f.naji@psau.edu.sa organization: Department of Management Information Systems, College of Business Administration - Hawtat Bani Tamim, Prince Sattam bin Abdulaziz University, Taiz University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39349932$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1TAQhSNUREvpH2CBIrFhE_ArfqxQVfGoVAkhYG1NHCfXV4kd7ORelV-Pe9NC20W9seU559PRzLwsjnzwtiheY_QeIyo_JIZrJStEWCUow6ySz4oTglhdEUrI0b33cXGW0hblUxPFsHpRHFNFmVKUnBT63JfO-7CD2e1sCdMUA5hN2YVYfg8_KthDtOXeNmWyceeMLU0Yp5Dc7IIvl-R8X-43MNgyTLMb3R84FGDoQ3TzZnxVPO9gSPbs9j4tfn3-9PPia3X17cvlxflVZWqG58q2sqGSqwZUKzrLG8mBAYdOUdF0nGFkuKw55hhhRrkxEjVYEIKAk6bhNT0tLlduG2Crp-hGiNc6gNOHjxB7DXF2ZrBadA3HtDay4yY3UQAXhAlR1wpjQK3KrI8ra1qa0bbG-jnC8AD6sOLdRvdhpzFmjCjFM-HdLSGG34tNsx5dMnYYwNuwJE0xxpwKIWmWvn0k3YYl-tyrg4pyKtGN6s39SP-y3A0yC-QqMDGkFG2njZsPs8gJ3aAx0jdro9e10Xlt9GFttMxW8sh6R3_SRFdTymLf2_g_9hOuv_6o1Co |
| CitedBy_id | crossref_primary_10_1007_s11227_025_06937_0 crossref_primary_10_1016_j_future_2025_108007 crossref_primary_10_1038_s41598_025_93458_8 |
| Cites_doi | 10.1063/1.5130599 10.1093/comjnl/bxab187 10.1002/spe.3211 10.1007/s00170-018-3028-0 10.1007/s00607-019-00725-4 10.1016/j.asoc.2021.108053 10.3390/axioms11120725 10.32604/csse.2023.031142 10.1504/IJBIC.2019.100139 10.1007/s12652-018-0773-8 10.1016/j.websem.2014.11.006 10.1007/978-3-319-48012-1 10.1002/cpe.5282 10.1016/j.future.2018.11.022 10.1145/3389147 10.1109/ACCESS.2019.2904081 10.32604/csse.2022.020352 10.1016/j.asoc.2019.106003 10.1007/s00170-018-03215-7 10.1016/j.advengsoft.2016.01.008 10.1166/jctn.2019.8057 10.32604/iasc.2023.030484 10.1016/j.jnca.2018.12.001 10.1109/4235.585893 10.1109/ACCESS.2021.3052907 10.1109/ICWS.2013.60 10.1109/ICWS.2014.102 10.1109/ISCC47284.2019.8969690 10.1145/1242572.1242795 10.1007/s00500-019-04266-y 10.1007/978-3-030-77584-1_17 10.1109/ICACRS55517.2022.10029245 10.1109/ICWS.2006.69 10.1007/978-3-030-89698-0_13 10.1007/978-981-15-9509-7_38 10.1155/2022/5231262 10.1007/s12652-020-01723-7 10.1109/ICFN.2010.27 10.1155/2022/9741278 10.1109/ICDS50568.2020.9268756 10.1109/ICEIEC54567.2022.9835060 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-73414-8 |
| DatabaseName | Open Access资源_Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_7fb6135c8f6c4157a67247755911a0d9 PMC11442996 39349932 10_1038_s41598_024_73414_8 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Deanship of Scientific Research, Prince Sattam bin Abdulaziz University grantid: PSAU/ 2024/01/29209 funderid: http://dx.doi.org/10.13039/100019725 – fundername: Deanship of Scientific Research, Prince Sattam bin Abdulaziz University grantid: PSAU/ 2024/01/29209 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-ed8b3869ba9d7fe6b86a4a6af937bf6410c685616101436cc80b17220a62bb653 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001326080400057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:30:42 EDT 2025 Tue Nov 04 02:05:21 EST 2025 Fri Sep 05 12:42:54 EDT 2025 Tue Oct 28 13:16:19 EDT 2025 Wed Feb 19 02:10:39 EST 2025 Sat Nov 29 05:24:17 EST 2025 Tue Nov 18 22:20:41 EST 2025 Fri Feb 21 02:38:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Multi-agent whale optimization algorithm Web service composition Whale optimization algorithm Service-oriented computing |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-ed8b3869ba9d7fe6b86a4a6af937bf6410c685616101436cc80b17220a62bb653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/7fb6135c8f6c4157a67247755911a0d9 |
| PMID | 39349932 |
| PQID | 3111363803 |
| PQPubID | 2041939 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7fb6135c8f6c4157a67247755911a0d9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11442996 proquest_miscellaneous_3111637783 proquest_journals_3111363803 pubmed_primary_39349932 crossref_citationtrail_10_1038_s41598_024_73414_8 crossref_primary_10_1038_s41598_024_73414_8 springer_journals_10_1038_s41598_024_73414_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-30 |
| PublicationDateYYYYMMDD | 2024-09-30 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Ait Wakrime, Rekik, Jabbour (CR39) 2020; 32 Ahmed, Majid (CR31) 2019; 130 Wang (CR23) 2022 CR18 CR17 Naseri, Navimipour (CR30) 2019; 10 CR38 Mallick (CR42) 2020; 10 CR15 CR37 CR14 CR13 Asghari, Navimipour (CR25) 2019; 13 Mirjalili, Lewis (CR41) 2016; 95 Yang, Yang, Wang, Liu, Wang, Shu (CR20) 2019; 102 Chattopadhyay, Banerjee (CR36) 2020; 14 Riadi (CR8) 2014 Udhaya Shree, Amuthan, Suresh Joseph (CR19) 2019; 16 Bouzary, Chen (CR33) 2019; 101 Wolpert, Macready (CR40) 1997; 1 Kumar, Samriya, Dubey, Gill (CR11) 2024 Yang, Yang, Wang, Jin, Li (CR34) 2020; 87 Dahan (CR21) 2021; 9 Li, Ren, Li, Chen (CR46) 2022; 104 CR2 Dahan (CR12) 2022; 11 CR4 CR3 Ju, Ding, Hu (CR9) 2023; 66 CR5 CR7 CR29 Ma, Xu, Zheng, Rehman (CR28) 2023 Gao, Ma, Liu, Ma (CR16) 2015; 12 CR24 CR45 CR22 CR44 Jatoth, Gangadharan, Buyya (CR35) 2019; 94 Rajeswari, Jayashree (CR27) 2022 Dahan (CR26) 2023; 45 Li, Cao, Hu, Xu, Buyya (CR32) 2019; 7 Boussalia, Chaoui, Hurault, Ouederni, Queinnec (CR6) 2016; 15 Jin, Lv, Yang, Liu (CR10) 2022; 114 Kaveh (CR43) 2017 Roman, Kopecký, Vitvar, Domingue, Fensel (CR1) 2015; 31 P Rajeswari (73414_CR27) 2022 S Chattopadhyay (73414_CR36) 2020; 14 A Ait Wakrime (73414_CR39) 2020; 32 D Roman (73414_CR1) 2015; 31 S Udhaya Shree (73414_CR19) 2019; 16 A Naseri (73414_CR30) 2019; 10 Y Yang (73414_CR20) 2019; 102 SP Mallick (73414_CR42) 2020; 10 ICJ Riadi (73414_CR8) 2014 H Bouzary (73414_CR33) 2019; 101 H Jin (73414_CR10) 2022; 114 M Kumar (73414_CR11) 2024 C Jatoth (73414_CR35) 2019; 94 A Kaveh (73414_CR43) 2017 Z Wang (73414_CR23) 2022 Y Yang (73414_CR34) 2020; 87 C Gao (73414_CR16) 2015; 12 73414_CR18 73414_CR38 73414_CR17 F Dahan (73414_CR26) 2023; 45 J Li (73414_CR46) 2022; 104 73414_CR5 73414_CR14 73414_CR15 73414_CR37 73414_CR3 F Dahan (73414_CR21) 2021; 9 73414_CR4 73414_CR13 S Mirjalili (73414_CR41) 2016; 95 FD Ahmed (73414_CR31) 2019; 130 73414_CR7 SR Boussalia (73414_CR6) 2016; 15 73414_CR2 W Li (73414_CR32) 2019; 7 F Dahan (73414_CR12) 2022; 11 C Ju (73414_CR9) 2023; 66 DH Wolpert (73414_CR40) 1997; 1 73414_CR29 W Ma (73414_CR28) 2023 73414_CR45 73414_CR24 73414_CR22 73414_CR44 S Asghari (73414_CR25) 2019; 13 |
| References_xml | – volume: 10 start-page: 25013 issue: 2 year: 2020 ident: CR42 article-title: Metaheuristic optimization approach and computational study on advanced mathematical modeling of solar cell publication-title: AIP Adv. doi: 10.1063/1.5130599 – ident: CR45 – ident: CR22 – volume: 66 start-page: 662 issue: 3 year: 2023 end-page: 677 ident: CR9 article-title: A hybrid strategy improved whale optimization algorithm for web service composition publication-title: Comput. J. doi: 10.1093/comjnl/bxab187 – ident: CR18 – year: 2024 ident: CR11 article-title: QoS-aware resource scheduling using whale optimization algorithm for microservice applications publication-title: Softw. Pract. Exp. doi: 10.1002/spe.3211 – start-page: 183 year: 2022 end-page: 198 ident: CR23 article-title: Optimization of resource service composition in cloud manufacture based on improved genetic and ant colony algorithm publication-title: Smart Innovation – volume: 101 start-page: 2771 issue: 9–12 year: 2019 end-page: 2784 ident: CR33 article-title: A hybrid grey wolf optimizer algorithm with evolutionary operators for optimal QoS-aware service composition and optimal selection in cloud manufacturing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-3028-0 – ident: CR4 – ident: CR14 – volume: 104 start-page: 1 issue: 1 year: 2022 end-page: 21 ident: CR46 article-title: A novel and efficient salp swarm algorithm for large-scale QoS-aware service composition selection publication-title: Computing doi: 10.1007/s00607-019-00725-4 – ident: CR2 – ident: CR37 – volume: 114 year: 2022 ident: CR10 article-title: Eagle strategy using uniform mutation and modified whale optimization algorithm for QoS-aware cloud service composition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108053 – volume: 11 start-page: 725 issue: 12 year: 2022 ident: CR12 article-title: An improved whale optimization algorithm for web service composition publication-title: Axioms doi: 10.3390/axioms11120725 – volume: 45 start-page: 1343 issue: 2 year: 2023 end-page: 1356 ident: CR26 article-title: Neighborhood search based improved bat algorithm for web service composition publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.031142 – ident: CR29 – volume: 13 start-page: 257 issue: 4 year: 2019 end-page: 268 ident: CR25 article-title: Cloud service composition using an inverted ant colony optimisation algorithm publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2019.100139 – volume: 10 start-page: 1851 issue: 5 year: 2019 end-page: 1864 ident: CR30 article-title: A new agent-based method for QoS-aware cloud service composition using particle swarm optimization algorithm publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-0773-8 – volume: 15 start-page: 95 issue: 2 year: 2016 end-page: 126 ident: CR6 article-title: Multi-objective quantum inspired Cuckoo search algorithm and multi-objective bat inspired algorithm for the web service composition problem publication-title: Int. J. Intell. Syst. Technol. Appl. – volume: 31 start-page: 39 year: 2015 end-page: 58 ident: CR1 article-title: WSMO-Lite and hRESTS: Lightweight semantic annotations for Web services and RESTful APIs publication-title: J. Web Semant. doi: 10.1016/j.websem.2014.11.006 – year: 2017 ident: CR43 publication-title: Applications of Metaheuristic Optimization Algorithms in Civil Engineering doi: 10.1007/978-3-319-48012-1 – volume: 32 start-page: e5282 issue: 15 year: 2020 ident: CR39 article-title: Cloud service composition using minimal unsatisfiability and genetic algorithm publication-title: Concurr Comput doi: 10.1002/cpe.5282 – volume: 94 start-page: 185 year: 2019 end-page: 198 ident: CR35 article-title: Optimal fitness aware cloud service composition using an adaptive genotypes evolution based genetic algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.11.022 – volume: 14 start-page: 1 issue: 3 year: 2020 end-page: 38 ident: CR36 article-title: QoS-aware automatic web service composition with multiple objectives publication-title: ACM Trans. Web (TWEB) doi: 10.1145/3389147 – ident: CR44 – volume: 12 start-page: 1 year: 2015 end-page: 14 ident: CR16 article-title: An approach to quality assessment for web service selection based on the analytic hierarchy process for cases of incomplete information publication-title: Sci. China Inf. Sci. – volume: 7 start-page: 34207 year: 2019 end-page: 34226 ident: CR32 article-title: A trust-based agent learning model for service composition in mobile cloud computing environments publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904081 – year: 2022 ident: CR27 article-title: Hybrid metaheuristics web service composition model for QoS aware services publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2022.020352 – ident: CR3 – ident: CR15 – ident: CR38 – volume: 87 year: 2020 ident: CR34 article-title: An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.106003 – ident: CR17 – volume: 102 start-page: 355 year: 2019 end-page: 368 ident: CR20 article-title: A dynamic ant-colony genetic algorithm for cloud service composition optimization publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-03215-7 – ident: CR13 – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR41 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: CR5 – volume: 16 start-page: 1444 issue: 4 year: 2019 end-page: 1453 ident: CR19 article-title: Integrated ant colony and artificial bee colony optimization meta heuristic mechanism for quality of service based web service composition publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2019.8057 – ident: CR7 – year: 2014 ident: CR8 publication-title: Cognitive Ant Colony Optimization: A New Framework in Swarm Intelligence – year: 2023 ident: CR28 article-title: QoS-aware cloud service optimization algorithm in cloud manufacturing environment publication-title: Intell. Autom. Soft Comput. doi: 10.32604/iasc.2023.030484 – volume: 130 start-page: 14 year: 2019 end-page: 38 ident: CR31 article-title: Towards agent-based petri net decision making modelling for cloud service composition: A literature survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.12.001 – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 ident: CR40 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.585893 – ident: CR24 – volume: 9 start-page: 17196 year: 2021 end-page: 17207 ident: CR21 article-title: An effective multi-agent ant colony optimization algorithm for QoS-aware cloud service composition publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052907 – volume: 9 start-page: 17196 year: 2021 ident: 73414_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052907 – volume-title: Cognitive Ant Colony Optimization: A New Framework in Swarm Intelligence year: 2014 ident: 73414_CR8 – volume: 16 start-page: 1444 issue: 4 year: 2019 ident: 73414_CR19 publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2019.8057 – year: 2024 ident: 73414_CR11 publication-title: Softw. Pract. Exp. doi: 10.1002/spe.3211 – volume: 10 start-page: 25013 issue: 2 year: 2020 ident: 73414_CR42 publication-title: AIP Adv. doi: 10.1063/1.5130599 – ident: 73414_CR45 doi: 10.1109/ICWS.2013.60 – ident: 73414_CR17 doi: 10.1109/ICWS.2014.102 – ident: 73414_CR2 doi: 10.1109/ISCC47284.2019.8969690 – volume: 114 year: 2022 ident: 73414_CR10 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108053 – ident: 73414_CR44 doi: 10.1145/1242572.1242795 – volume: 10 start-page: 1851 issue: 5 year: 2019 ident: 73414_CR30 publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-0773-8 – volume: 66 start-page: 662 issue: 3 year: 2023 ident: 73414_CR9 publication-title: Comput. J. doi: 10.1093/comjnl/bxab187 – volume: 13 start-page: 257 issue: 4 year: 2019 ident: 73414_CR25 publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2019.100139 – ident: 73414_CR37 doi: 10.1007/s00500-019-04266-y – volume: 14 start-page: 1 issue: 3 year: 2020 ident: 73414_CR36 publication-title: ACM Trans. Web (TWEB) doi: 10.1145/3389147 – volume: 7 start-page: 34207 year: 2019 ident: 73414_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904081 – volume: 94 start-page: 185 year: 2019 ident: 73414_CR35 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.11.022 – ident: 73414_CR7 doi: 10.1007/978-3-030-77584-1_17 – ident: 73414_CR4 – start-page: 183 volume-title: Smart Innovation year: 2022 ident: 73414_CR23 – volume: 104 start-page: 1 issue: 1 year: 2022 ident: 73414_CR46 publication-title: Computing doi: 10.1007/s00607-019-00725-4 – volume: 95 start-page: 51 year: 2016 ident: 73414_CR41 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – year: 2023 ident: 73414_CR28 publication-title: Intell. Autom. Soft Comput. doi: 10.32604/iasc.2023.030484 – volume: 101 start-page: 2771 issue: 9–12 year: 2019 ident: 73414_CR33 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-3028-0 – year: 2022 ident: 73414_CR27 publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2022.020352 – volume: 130 start-page: 14 year: 2019 ident: 73414_CR31 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.12.001 – volume: 102 start-page: 355 year: 2019 ident: 73414_CR20 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-03215-7 – volume: 12 start-page: 1 year: 2015 ident: 73414_CR16 publication-title: Sci. China Inf. Sci. – ident: 73414_CR13 doi: 10.1109/ICACRS55517.2022.10029245 – volume: 87 year: 2020 ident: 73414_CR34 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.106003 – ident: 73414_CR5 doi: 10.1109/ICWS.2006.69 – ident: 73414_CR22 doi: 10.1007/978-3-030-89698-0_13 – ident: 73414_CR29 doi: 10.1007/978-981-15-9509-7_38 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 73414_CR40 publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.585893 – ident: 73414_CR18 doi: 10.1155/2022/5231262 – volume: 11 start-page: 725 issue: 12 year: 2022 ident: 73414_CR12 publication-title: Axioms doi: 10.3390/axioms11120725 – ident: 73414_CR38 doi: 10.1007/s12652-020-01723-7 – volume: 45 start-page: 1343 issue: 2 year: 2023 ident: 73414_CR26 publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.031142 – volume: 15 start-page: 95 issue: 2 year: 2016 ident: 73414_CR6 publication-title: Int. J. Intell. Syst. Technol. Appl. – ident: 73414_CR3 doi: 10.1109/ICFN.2010.27 – ident: 73414_CR15 doi: 10.1155/2022/9741278 – volume-title: Applications of Metaheuristic Optimization Algorithms in Civil Engineering year: 2017 ident: 73414_CR43 doi: 10.1007/978-3-319-48012-1 – volume: 32 start-page: e5282 issue: 15 year: 2020 ident: 73414_CR39 publication-title: Concurr Comput doi: 10.1002/cpe.5282 – ident: 73414_CR24 doi: 10.1109/ICDS50568.2020.9268756 – volume: 31 start-page: 39 year: 2015 ident: 73414_CR1 publication-title: J. Web Semant. doi: 10.1016/j.websem.2014.11.006 – ident: 73414_CR14 doi: 10.1109/ICEIEC54567.2022.9835060 |
| SSID | ssj0000529419 |
| Score | 2.459056 |
| Snippet | With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality... Abstract With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22622 |
| SubjectTerms | 639/705/117 639/705/258 Algorithms Environmental factors Humanities and Social Sciences Internet service providers Multi-agent whale optimization algorithm multidisciplinary Optimization algorithms Quality of service Science Science (multidisciplinary) Service-oriented computing Web service composition Whale optimization algorithm |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSlPAtpCzISN7CaxIkfp6pUVJyqIkDqzXLsZHelNimbbSv-PTOOk2qh9MIhl8SJ7MzbM56PkPeZEB7Rq5jyjYQAxWmmVd4wYRs0d74umgFsQh4fq9NTfRI33PpYVjnqxKCofedwj3yPIyY6MEvK9y9-MkSNwuxqhNC4Tx5glwQeSvdOpj0WzGIVmY5nZVKu9nqwV3imLC-YBP1dMLVmj0Lb_tt8zb9LJv_ImwZzdPTkfxfylGxGR5QeDJzzjNyr2-fk0QBN-esFMQctXUTE1Kuajq3HKfi49Gv3jdlru6wp6GDaD9qGYnF6rACjWE0_o9dzsD60A6V0Hk97Uns2g7ms5ucvyY-jz98Pv7AIxsBcWWQrVntVcSV0ZbWXTS0qJWxhgaTg31SNKLLUCQXOmEDwXy6cU2kFzlGeWpFXlSj5Ftlou7Z-TWjmtcfsaZk3GtjBKV_BhSlPRD0reUKykSTGxU7lCJhxZkLGnCszkNEAGU0go1EJ-TC9czH06bhz9Cek9DQSe2yHG91yZqLIGtlU4OuUTjXCwRekFTIvpIQQLMts6nVCdkcCmyj4vbmhbkLeTY9BZDEPY9u6uxzGCC6lgjGvBraaZsI1hxiU5wlRawy3NtX1J-1iHtqCQ2SLzoVIyMeRN2_m9e9_sX33MnbI4xzFJZTI7JKN1fKyfkMeuqvVol--DfL2GxkNMHg priority: 102 providerName: ProQuest |
| Title | An innovative approach for QoS-aware web service composition using whale optimization algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-024-73414-8 https://www.ncbi.nlm.nih.gov/pubmed/39349932 https://www.proquest.com/docview/3111363803 https://www.proquest.com/docview/3111637783 https://pubmed.ncbi.nlm.nih.gov/PMC11442996 https://doaj.org/article/7fb6135c8f6c4157a67247755911a0d9 |
| Volume | 14 |
| WOSCitedRecordID | wos001326080400057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxKXimdJKSsjcYOosZ34cWxRKzh0FV7ScrIcJ-mu1CZod9uKf8_Yzi5dnhcOmUPsSI5n7PmsGc8H8JIKUXv2qlTVrcQDitOpVqxNhW29u6ubvI1kE3I8VpOJLm9QffmcsFgeOE7cgWwr9DiFU61w6GykFZLlUiIQptRmdbi6h6jnxmEqVvVmOqd6uCWTcXWwwI_9bTKWpxJ37jxVG54oFOz_Hcr8NVnyp4hpcEQn92FnQJDkMI78AdxquodwN3JKfnsE5rAjs4Hq9Kohq5rhBMEped9_TO21nTcEN0-yiNsE8VnlQ-oW8WnwZ-R6im6D9LibXAzXNIk9P-vns-X04jF8Pjn-9OZtOrAopK7I6TJtalVxJXRldS3bRlRK2NyiLhCYVK3IaeaEQhQlPGsvF86prEJUwzIrWFWJgj-Bra7vmqdAaK1rH_YsWKtRj07VFT4-VunpygqeAF3NqHFDiXHPdHFuQqibKxO1YFALJmjBqARerb_5Ggts_LX3kVfUuqcvjh1eoMmYwWTMv0wmgf2Vms2wYheGU89uw1WGf_Fi3YxrzQdQbNf0l7GP4FIq7LMbrWI9Eq45Hh45S0Bt2MvGUDdbutk01PPGI6lHBSKB1yvT-jGuP8_F3v-Yi2dwj_k1ETJg9mFrOb9snsMdd7WcLeYjuC0nMkg1gu2j43H5YRQWGspTVnopUW6X707LL98BUMwoNg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qCggu7IuhwCDBCUa1Z5yZ8QGhslStWqIiitTbMB7bSaTWLknaqH-K38h73qqw9NYDh1ziSTRjf2_zWz6Al5FSGbFXcZMVGgMUn_DEiIIrV5C5y_K4aMgm9HBoDg6SvRX42fXCUFllpxNrRZ1Vnt6Rr0viREewhPLd8Q9OrFGUXe0oNBpY7ORnCwzZZm-3P-LzfSXE5qf9D1u8ZRXgfhBHc55nJpVGJalLMl3kKjXKxQ73hoY6LVQchV4Z9CoUsdhK5b0JU7TyInRKpKkilghU-VfQjRCmLhXc69_pUNYsjpK2NyeUZn2G9pF62ETMNdqLmJsl-1fTBPzNt_2zRPO3PG1t_jZv_W837jbcbB1tttFIxh1Yycu7cK2h3jy7B3ajZJOWEfY0Z91odYY-PPtSfeVu4aY5QxvDZo02ZVR831a4MeoWGLHFGK0rq1DpHrXdrMwdjvDs8_HRffh2Kad7AKtlVeaPgEVZklF2eCCKBOHuTZbih1K6xOo2kAFEHQSsbyexEyHIoa0rAqSxDWwswsbWsLEmgNf9b46bOSQXrn5PyOpX0gzx-otqOrKtSrK6SNGXG3hTKI__oJ3SItYaQ8wocmGWBLDWAcq2im1mz9EUwIv-MqokyjO5Mq9OmjVKam1wzcMGxv1OZCIxxpYiALME8KWtLl8pJ-N67DlG7uQ8qQDedLJwvq9_34vHFx_jOVzf2v-8a3e3hztP4IYgUa3LgdZgdT49yZ_CVX86n8ymz2pZZ_D9smXkF511i-8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qyiIu7IuhwCDBCUaxPc7M-IBQoURURVEQIPU2HY_tJFJrlzht1L_Gr-M9b1VYeuuBQy7xJJqxv7f5LR_Ay0DKlNiruE5zhQGKi3msw5xLm5O5S7Mob8gm1His9_fjyQb87HphqKyy04m1ok5LR-_IB4I40REsvhjkbVnEZGf07vgHJwYpyrR2dBoNRPaysxWGb9Xb3R181q_CcPTx24dPvGUY4G4YBUuepToRWsaJjVOVZzLR0kYW94lGO8llFPhOavQwJDHaCumc9hO0-KFvZZgkkhgjUP1fUTS0vC4bnPTvdyiDFgVx26fjCz2o0FZSP1sYcYW2I-J6zRbWlAF_83P_LNf8LWdbm8LRrf_5Jt6Gm60DzrYbibkDG1lxF641lJxn98BsF2zeMsWeZqwbuc7Qt2dfyq_cruwiY2h7WNVoWUZF-W3lG6MugilbzdDqshKV8VHb5crs4RTPvpwd3Yfvl3K6B7BZlEX2CFiQxilljYdhHqMYOJ0m-KFUL7G9DYUHQQcH49oJ7UQUcmjqSgGhTQMhgxAyNYSM9uB1_5vjZj7JhavfE8r6lTRbvP6iXExNq6qMyhP08YZO59LhPygrVRgphaFnEFg_jT3Y6sBlWoVXmXNkefCiv4yqivJPtsjKk2aNFEppXPOwgXS_ExELjL1F6IFeA_vaVtevFPNZPQ4dI3pyqqQHbzq5ON_Xv-_F44uP8Ryuo2iYz7vjvSdwIySprauEtmBzuTjJnsJVd7qcV4tntdgzOLhsEfkF2B6UrA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+innovative+approach+for+QoS-aware+web+service+composition+using+whale+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Fadl+Dahan&rft.date=2024-09-30&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-024-73414-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7fb6135c8f6c4157a67247755911a0d9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |