An innovative approach for QoS-aware web service composition using whale optimization algorithm

With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 22622 - 14
Hlavní autor: Dahan, Fadl
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 30.09.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user’s requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing.
AbstractList With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user’s requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing.
Abstract With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user’s requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing.
With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user's requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing.With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user's requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing.
ArticleNumber 22622
Author Dahan, Fadl
Author_xml – sequence: 1
  givenname: Fadl
  surname: Dahan
  fullname: Dahan, Fadl
  email: f.naji@psau.edu.sa
  organization: Department of Management Information Systems, College of Business Administration - Hawtat Bani Tamim, Prince Sattam bin Abdulaziz University, Taiz University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39349932$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhSNUREvpH2CBIrFhE_ArfqxQVfGoVAkhYG1NHCfXV4kd7ORelV-Pe9NC20W9seU559PRzLwsjnzwtiheY_QeIyo_JIZrJStEWCUow6ySz4oTglhdEUrI0b33cXGW0hblUxPFsHpRHFNFmVKUnBT63JfO-7CD2e1sCdMUA5hN2YVYfg8_KthDtOXeNmWyceeMLU0Yp5Dc7IIvl-R8X-43MNgyTLMb3R84FGDoQ3TzZnxVPO9gSPbs9j4tfn3-9PPia3X17cvlxflVZWqG58q2sqGSqwZUKzrLG8mBAYdOUdF0nGFkuKw55hhhRrkxEjVYEIKAk6bhNT0tLlduG2Crp-hGiNc6gNOHjxB7DXF2ZrBadA3HtDay4yY3UQAXhAlR1wpjQK3KrI8ra1qa0bbG-jnC8AD6sOLdRvdhpzFmjCjFM-HdLSGG34tNsx5dMnYYwNuwJE0xxpwKIWmWvn0k3YYl-tyrg4pyKtGN6s39SP-y3A0yC-QqMDGkFG2njZsPs8gJ3aAx0jdro9e10Xlt9GFttMxW8sh6R3_SRFdTymLf2_g_9hOuv_6o1Co
CitedBy_id crossref_primary_10_1007_s11227_025_06937_0
crossref_primary_10_1016_j_future_2025_108007
crossref_primary_10_1038_s41598_025_93458_8
Cites_doi 10.1063/1.5130599
10.1093/comjnl/bxab187
10.1002/spe.3211
10.1007/s00170-018-3028-0
10.1007/s00607-019-00725-4
10.1016/j.asoc.2021.108053
10.3390/axioms11120725
10.32604/csse.2023.031142
10.1504/IJBIC.2019.100139
10.1007/s12652-018-0773-8
10.1016/j.websem.2014.11.006
10.1007/978-3-319-48012-1
10.1002/cpe.5282
10.1016/j.future.2018.11.022
10.1145/3389147
10.1109/ACCESS.2019.2904081
10.32604/csse.2022.020352
10.1016/j.asoc.2019.106003
10.1007/s00170-018-03215-7
10.1016/j.advengsoft.2016.01.008
10.1166/jctn.2019.8057
10.32604/iasc.2023.030484
10.1016/j.jnca.2018.12.001
10.1109/4235.585893
10.1109/ACCESS.2021.3052907
10.1109/ICWS.2013.60
10.1109/ICWS.2014.102
10.1109/ISCC47284.2019.8969690
10.1145/1242572.1242795
10.1007/s00500-019-04266-y
10.1007/978-3-030-77584-1_17
10.1109/ICACRS55517.2022.10029245
10.1109/ICWS.2006.69
10.1007/978-3-030-89698-0_13
10.1007/978-981-15-9509-7_38
10.1155/2022/5231262
10.1007/s12652-020-01723-7
10.1109/ICFN.2010.27
10.1155/2022/9741278
10.1109/ICDS50568.2020.9268756
10.1109/ICEIEC54567.2022.9835060
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-73414-8
DatabaseName Open Access资源_Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_7fb6135c8f6c4157a67247755911a0d9
PMC11442996
39349932
10_1038_s41598_024_73414_8
Genre Journal Article
GrantInformation_xml – fundername: Deanship of Scientific Research, Prince Sattam bin Abdulaziz University
  grantid: PSAU/ 2024/01/29209
  funderid: http://dx.doi.org/10.13039/100019725
– fundername: Deanship of Scientific Research, Prince Sattam bin Abdulaziz University
  grantid: PSAU/ 2024/01/29209
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-ed8b3869ba9d7fe6b86a4a6af937bf6410c685616101436cc80b17220a62bb653
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001326080400057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:30:42 EDT 2025
Tue Nov 04 02:05:21 EST 2025
Fri Sep 05 12:42:54 EDT 2025
Tue Oct 28 13:16:19 EDT 2025
Wed Feb 19 02:10:39 EST 2025
Sat Nov 29 05:24:17 EST 2025
Tue Nov 18 22:20:41 EST 2025
Fri Feb 21 02:38:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-agent whale optimization algorithm
Web service composition
Whale optimization algorithm
Service-oriented computing
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-ed8b3869ba9d7fe6b86a4a6af937bf6410c685616101436cc80b17220a62bb653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/7fb6135c8f6c4157a67247755911a0d9
PMID 39349932
PQID 3111363803
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_7fb6135c8f6c4157a67247755911a0d9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11442996
proquest_miscellaneous_3111637783
proquest_journals_3111363803
pubmed_primary_39349932
crossref_citationtrail_10_1038_s41598_024_73414_8
crossref_primary_10_1038_s41598_024_73414_8
springer_journals_10_1038_s41598_024_73414_8
PublicationCentury 2000
PublicationDate 2024-09-30
PublicationDateYYYYMMDD 2024-09-30
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ait Wakrime, Rekik, Jabbour (CR39) 2020; 32
Ahmed, Majid (CR31) 2019; 130
Wang (CR23) 2022
CR18
CR17
Naseri, Navimipour (CR30) 2019; 10
CR38
Mallick (CR42) 2020; 10
CR15
CR37
CR14
CR13
Asghari, Navimipour (CR25) 2019; 13
Mirjalili, Lewis (CR41) 2016; 95
Yang, Yang, Wang, Liu, Wang, Shu (CR20) 2019; 102
Chattopadhyay, Banerjee (CR36) 2020; 14
Riadi (CR8) 2014
Udhaya Shree, Amuthan, Suresh Joseph (CR19) 2019; 16
Bouzary, Chen (CR33) 2019; 101
Wolpert, Macready (CR40) 1997; 1
Kumar, Samriya, Dubey, Gill (CR11) 2024
Yang, Yang, Wang, Jin, Li (CR34) 2020; 87
Dahan (CR21) 2021; 9
Li, Ren, Li, Chen (CR46) 2022; 104
CR2
Dahan (CR12) 2022; 11
CR4
CR3
Ju, Ding, Hu (CR9) 2023; 66
CR5
CR7
CR29
Ma, Xu, Zheng, Rehman (CR28) 2023
Gao, Ma, Liu, Ma (CR16) 2015; 12
CR24
CR45
CR22
CR44
Jatoth, Gangadharan, Buyya (CR35) 2019; 94
Rajeswari, Jayashree (CR27) 2022
Dahan (CR26) 2023; 45
Li, Cao, Hu, Xu, Buyya (CR32) 2019; 7
Boussalia, Chaoui, Hurault, Ouederni, Queinnec (CR6) 2016; 15
Jin, Lv, Yang, Liu (CR10) 2022; 114
Kaveh (CR43) 2017
Roman, Kopecký, Vitvar, Domingue, Fensel (CR1) 2015; 31
P Rajeswari (73414_CR27) 2022
S Chattopadhyay (73414_CR36) 2020; 14
A Ait Wakrime (73414_CR39) 2020; 32
D Roman (73414_CR1) 2015; 31
S Udhaya Shree (73414_CR19) 2019; 16
A Naseri (73414_CR30) 2019; 10
Y Yang (73414_CR20) 2019; 102
SP Mallick (73414_CR42) 2020; 10
ICJ Riadi (73414_CR8) 2014
H Bouzary (73414_CR33) 2019; 101
H Jin (73414_CR10) 2022; 114
M Kumar (73414_CR11) 2024
C Jatoth (73414_CR35) 2019; 94
A Kaveh (73414_CR43) 2017
Z Wang (73414_CR23) 2022
Y Yang (73414_CR34) 2020; 87
C Gao (73414_CR16) 2015; 12
73414_CR18
73414_CR38
73414_CR17
F Dahan (73414_CR26) 2023; 45
J Li (73414_CR46) 2022; 104
73414_CR5
73414_CR14
73414_CR15
73414_CR37
73414_CR3
F Dahan (73414_CR21) 2021; 9
73414_CR4
73414_CR13
S Mirjalili (73414_CR41) 2016; 95
FD Ahmed (73414_CR31) 2019; 130
73414_CR7
SR Boussalia (73414_CR6) 2016; 15
73414_CR2
W Li (73414_CR32) 2019; 7
F Dahan (73414_CR12) 2022; 11
C Ju (73414_CR9) 2023; 66
DH Wolpert (73414_CR40) 1997; 1
73414_CR29
W Ma (73414_CR28) 2023
73414_CR45
73414_CR24
73414_CR22
73414_CR44
S Asghari (73414_CR25) 2019; 13
References_xml – volume: 10
  start-page: 25013
  issue: 2
  year: 2020
  ident: CR42
  article-title: Metaheuristic optimization approach and computational study on advanced mathematical modeling of solar cell
  publication-title: AIP Adv.
  doi: 10.1063/1.5130599
– ident: CR45
– ident: CR22
– volume: 66
  start-page: 662
  issue: 3
  year: 2023
  end-page: 677
  ident: CR9
  article-title: A hybrid strategy improved whale optimization algorithm for web service composition
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxab187
– ident: CR18
– year: 2024
  ident: CR11
  article-title: QoS-aware resource scheduling using whale optimization algorithm for microservice applications
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/spe.3211
– start-page: 183
  year: 2022
  end-page: 198
  ident: CR23
  article-title: Optimization of resource service composition in cloud manufacture based on improved genetic and ant colony algorithm
  publication-title: Smart Innovation
– volume: 101
  start-page: 2771
  issue: 9–12
  year: 2019
  end-page: 2784
  ident: CR33
  article-title: A hybrid grey wolf optimizer algorithm with evolutionary operators for optimal QoS-aware service composition and optimal selection in cloud manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-3028-0
– ident: CR4
– ident: CR14
– volume: 104
  start-page: 1
  issue: 1
  year: 2022
  end-page: 21
  ident: CR46
  article-title: A novel and efficient salp swarm algorithm for large-scale QoS-aware service composition selection
  publication-title: Computing
  doi: 10.1007/s00607-019-00725-4
– ident: CR2
– ident: CR37
– volume: 114
  year: 2022
  ident: CR10
  article-title: Eagle strategy using uniform mutation and modified whale optimization algorithm for QoS-aware cloud service composition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108053
– volume: 11
  start-page: 725
  issue: 12
  year: 2022
  ident: CR12
  article-title: An improved whale optimization algorithm for web service composition
  publication-title: Axioms
  doi: 10.3390/axioms11120725
– volume: 45
  start-page: 1343
  issue: 2
  year: 2023
  end-page: 1356
  ident: CR26
  article-title: Neighborhood search based improved bat algorithm for web service composition
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.031142
– ident: CR29
– volume: 13
  start-page: 257
  issue: 4
  year: 2019
  end-page: 268
  ident: CR25
  article-title: Cloud service composition using an inverted ant colony optimisation algorithm
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2019.100139
– volume: 10
  start-page: 1851
  issue: 5
  year: 2019
  end-page: 1864
  ident: CR30
  article-title: A new agent-based method for QoS-aware cloud service composition using particle swarm optimization algorithm
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-0773-8
– volume: 15
  start-page: 95
  issue: 2
  year: 2016
  end-page: 126
  ident: CR6
  article-title: Multi-objective quantum inspired Cuckoo search algorithm and multi-objective bat inspired algorithm for the web service composition problem
  publication-title: Int. J. Intell. Syst. Technol. Appl.
– volume: 31
  start-page: 39
  year: 2015
  end-page: 58
  ident: CR1
  article-title: WSMO-Lite and hRESTS: Lightweight semantic annotations for Web services and RESTful APIs
  publication-title: J. Web Semant.
  doi: 10.1016/j.websem.2014.11.006
– year: 2017
  ident: CR43
  publication-title: Applications of Metaheuristic Optimization Algorithms in Civil Engineering
  doi: 10.1007/978-3-319-48012-1
– volume: 32
  start-page: e5282
  issue: 15
  year: 2020
  ident: CR39
  article-title: Cloud service composition using minimal unsatisfiability and genetic algorithm
  publication-title: Concurr Comput
  doi: 10.1002/cpe.5282
– volume: 94
  start-page: 185
  year: 2019
  end-page: 198
  ident: CR35
  article-title: Optimal fitness aware cloud service composition using an adaptive genotypes evolution based genetic algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.11.022
– volume: 14
  start-page: 1
  issue: 3
  year: 2020
  end-page: 38
  ident: CR36
  article-title: QoS-aware automatic web service composition with multiple objectives
  publication-title: ACM Trans. Web (TWEB)
  doi: 10.1145/3389147
– ident: CR44
– volume: 12
  start-page: 1
  year: 2015
  end-page: 14
  ident: CR16
  article-title: An approach to quality assessment for web service selection based on the analytic hierarchy process for cases of incomplete information
  publication-title: Sci. China Inf. Sci.
– volume: 7
  start-page: 34207
  year: 2019
  end-page: 34226
  ident: CR32
  article-title: A trust-based agent learning model for service composition in mobile cloud computing environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904081
– year: 2022
  ident: CR27
  article-title: Hybrid metaheuristics web service composition model for QoS aware services
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2022.020352
– ident: CR3
– ident: CR15
– ident: CR38
– volume: 87
  year: 2020
  ident: CR34
  article-title: An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106003
– ident: CR17
– volume: 102
  start-page: 355
  year: 2019
  end-page: 368
  ident: CR20
  article-title: A dynamic ant-colony genetic algorithm for cloud service composition optimization
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-03215-7
– ident: CR13
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR41
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: CR5
– volume: 16
  start-page: 1444
  issue: 4
  year: 2019
  end-page: 1453
  ident: CR19
  article-title: Integrated ant colony and artificial bee colony optimization meta heuristic mechanism for quality of service based web service composition
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2019.8057
– ident: CR7
– year: 2014
  ident: CR8
  publication-title: Cognitive Ant Colony Optimization: A New Framework in Swarm Intelligence
– year: 2023
  ident: CR28
  article-title: QoS-aware cloud service optimization algorithm in cloud manufacturing environment
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.32604/iasc.2023.030484
– volume: 130
  start-page: 14
  year: 2019
  end-page: 38
  ident: CR31
  article-title: Towards agent-based petri net decision making modelling for cloud service composition: A literature survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.12.001
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  end-page: 82
  ident: CR40
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.585893
– ident: CR24
– volume: 9
  start-page: 17196
  year: 2021
  end-page: 17207
  ident: CR21
  article-title: An effective multi-agent ant colony optimization algorithm for QoS-aware cloud service composition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052907
– volume: 9
  start-page: 17196
  year: 2021
  ident: 73414_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052907
– volume-title: Cognitive Ant Colony Optimization: A New Framework in Swarm Intelligence
  year: 2014
  ident: 73414_CR8
– volume: 16
  start-page: 1444
  issue: 4
  year: 2019
  ident: 73414_CR19
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2019.8057
– year: 2024
  ident: 73414_CR11
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/spe.3211
– volume: 10
  start-page: 25013
  issue: 2
  year: 2020
  ident: 73414_CR42
  publication-title: AIP Adv.
  doi: 10.1063/1.5130599
– ident: 73414_CR45
  doi: 10.1109/ICWS.2013.60
– ident: 73414_CR17
  doi: 10.1109/ICWS.2014.102
– ident: 73414_CR2
  doi: 10.1109/ISCC47284.2019.8969690
– volume: 114
  year: 2022
  ident: 73414_CR10
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108053
– ident: 73414_CR44
  doi: 10.1145/1242572.1242795
– volume: 10
  start-page: 1851
  issue: 5
  year: 2019
  ident: 73414_CR30
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-0773-8
– volume: 66
  start-page: 662
  issue: 3
  year: 2023
  ident: 73414_CR9
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxab187
– volume: 13
  start-page: 257
  issue: 4
  year: 2019
  ident: 73414_CR25
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2019.100139
– ident: 73414_CR37
  doi: 10.1007/s00500-019-04266-y
– volume: 14
  start-page: 1
  issue: 3
  year: 2020
  ident: 73414_CR36
  publication-title: ACM Trans. Web (TWEB)
  doi: 10.1145/3389147
– volume: 7
  start-page: 34207
  year: 2019
  ident: 73414_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904081
– volume: 94
  start-page: 185
  year: 2019
  ident: 73414_CR35
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.11.022
– ident: 73414_CR7
  doi: 10.1007/978-3-030-77584-1_17
– ident: 73414_CR4
– start-page: 183
  volume-title: Smart Innovation
  year: 2022
  ident: 73414_CR23
– volume: 104
  start-page: 1
  issue: 1
  year: 2022
  ident: 73414_CR46
  publication-title: Computing
  doi: 10.1007/s00607-019-00725-4
– volume: 95
  start-page: 51
  year: 2016
  ident: 73414_CR41
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2023
  ident: 73414_CR28
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.32604/iasc.2023.030484
– volume: 101
  start-page: 2771
  issue: 9–12
  year: 2019
  ident: 73414_CR33
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-3028-0
– year: 2022
  ident: 73414_CR27
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2022.020352
– volume: 130
  start-page: 14
  year: 2019
  ident: 73414_CR31
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.12.001
– volume: 102
  start-page: 355
  year: 2019
  ident: 73414_CR20
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-03215-7
– volume: 12
  start-page: 1
  year: 2015
  ident: 73414_CR16
  publication-title: Sci. China Inf. Sci.
– ident: 73414_CR13
  doi: 10.1109/ICACRS55517.2022.10029245
– volume: 87
  year: 2020
  ident: 73414_CR34
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106003
– ident: 73414_CR5
  doi: 10.1109/ICWS.2006.69
– ident: 73414_CR22
  doi: 10.1007/978-3-030-89698-0_13
– ident: 73414_CR29
  doi: 10.1007/978-981-15-9509-7_38
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 73414_CR40
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.585893
– ident: 73414_CR18
  doi: 10.1155/2022/5231262
– volume: 11
  start-page: 725
  issue: 12
  year: 2022
  ident: 73414_CR12
  publication-title: Axioms
  doi: 10.3390/axioms11120725
– ident: 73414_CR38
  doi: 10.1007/s12652-020-01723-7
– volume: 45
  start-page: 1343
  issue: 2
  year: 2023
  ident: 73414_CR26
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.031142
– volume: 15
  start-page: 95
  issue: 2
  year: 2016
  ident: 73414_CR6
  publication-title: Int. J. Intell. Syst. Technol. Appl.
– ident: 73414_CR3
  doi: 10.1109/ICFN.2010.27
– ident: 73414_CR15
  doi: 10.1155/2022/9741278
– volume-title: Applications of Metaheuristic Optimization Algorithms in Civil Engineering
  year: 2017
  ident: 73414_CR43
  doi: 10.1007/978-3-319-48012-1
– volume: 32
  start-page: e5282
  issue: 15
  year: 2020
  ident: 73414_CR39
  publication-title: Concurr Comput
  doi: 10.1002/cpe.5282
– ident: 73414_CR24
  doi: 10.1109/ICDS50568.2020.9268756
– volume: 31
  start-page: 39
  year: 2015
  ident: 73414_CR1
  publication-title: J. Web Semant.
  doi: 10.1016/j.websem.2014.11.006
– ident: 73414_CR14
  doi: 10.1109/ICEIEC54567.2022.9835060
SSID ssj0000529419
Score 2.459056
Snippet With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality...
Abstract With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22622
SubjectTerms 639/705/117
639/705/258
Algorithms
Environmental factors
Humanities and Social Sciences
Internet service providers
Multi-agent whale optimization algorithm
multidisciplinary
Optimization algorithms
Quality of service
Science
Science (multidisciplinary)
Service-oriented computing
Web service composition
Whale optimization algorithm
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSlPAtpCzISN7CaxIkfp6pUVJyqIkDqzXLsZHelNimbbSv-PTOOk2qh9MIhl8SJ7MzbM56PkPeZEB7Rq5jyjYQAxWmmVd4wYRs0d74umgFsQh4fq9NTfRI33PpYVjnqxKCofedwj3yPIyY6MEvK9y9-MkSNwuxqhNC4Tx5glwQeSvdOpj0WzGIVmY5nZVKu9nqwV3imLC-YBP1dMLVmj0Lb_tt8zb9LJv_ImwZzdPTkfxfylGxGR5QeDJzzjNyr2-fk0QBN-esFMQctXUTE1Kuajq3HKfi49Gv3jdlru6wp6GDaD9qGYnF6rACjWE0_o9dzsD60A6V0Hk97Uns2g7ms5ucvyY-jz98Pv7AIxsBcWWQrVntVcSV0ZbWXTS0qJWxhgaTg31SNKLLUCQXOmEDwXy6cU2kFzlGeWpFXlSj5Ftlou7Z-TWjmtcfsaZk3GtjBKV_BhSlPRD0reUKykSTGxU7lCJhxZkLGnCszkNEAGU0go1EJ-TC9czH06bhz9Cek9DQSe2yHG91yZqLIGtlU4OuUTjXCwRekFTIvpIQQLMts6nVCdkcCmyj4vbmhbkLeTY9BZDEPY9u6uxzGCC6lgjGvBraaZsI1hxiU5wlRawy3NtX1J-1iHtqCQ2SLzoVIyMeRN2_m9e9_sX33MnbI4xzFJZTI7JKN1fKyfkMeuqvVol--DfL2GxkNMHg
  priority: 102
  providerName: ProQuest
Title An innovative approach for QoS-aware web service composition using whale optimization algorithm
URI https://link.springer.com/article/10.1038/s41598-024-73414-8
https://www.ncbi.nlm.nih.gov/pubmed/39349932
https://www.proquest.com/docview/3111363803
https://www.proquest.com/docview/3111637783
https://pubmed.ncbi.nlm.nih.gov/PMC11442996
https://doaj.org/article/7fb6135c8f6c4157a67247755911a0d9
Volume 14
WOSCitedRecordID wos001326080400057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxKXimdJKSsjcYOosZ34cWxRKzh0FV7ScrIcJ-mu1CZod9uKf8_Yzi5dnhcOmUPsSI5n7PmsGc8H8JIKUXv2qlTVrcQDitOpVqxNhW29u6ubvI1kE3I8VpOJLm9QffmcsFgeOE7cgWwr9DiFU61w6GykFZLlUiIQptRmdbi6h6jnxmEqVvVmOqd6uCWTcXWwwI_9bTKWpxJ37jxVG54oFOz_Hcr8NVnyp4hpcEQn92FnQJDkMI78AdxquodwN3JKfnsE5rAjs4Hq9Kohq5rhBMEped9_TO21nTcEN0-yiNsE8VnlQ-oW8WnwZ-R6im6D9LibXAzXNIk9P-vns-X04jF8Pjn-9OZtOrAopK7I6TJtalVxJXRldS3bRlRK2NyiLhCYVK3IaeaEQhQlPGsvF86prEJUwzIrWFWJgj-Bra7vmqdAaK1rH_YsWKtRj07VFT4-VunpygqeAF3NqHFDiXHPdHFuQqibKxO1YFALJmjBqARerb_5Ggts_LX3kVfUuqcvjh1eoMmYwWTMv0wmgf2Vms2wYheGU89uw1WGf_Fi3YxrzQdQbNf0l7GP4FIq7LMbrWI9Eq45Hh45S0Bt2MvGUDdbutk01PPGI6lHBSKB1yvT-jGuP8_F3v-Yi2dwj_k1ETJg9mFrOb9snsMdd7WcLeYjuC0nMkg1gu2j43H5YRQWGspTVnopUW6X707LL98BUMwoNg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qCggu7IuhwCDBCUa1Z5yZ8QGhslStWqIiitTbMB7bSaTWLknaqH-K38h73qqw9NYDh1ziSTRjf2_zWz6Al5FSGbFXcZMVGgMUn_DEiIIrV5C5y_K4aMgm9HBoDg6SvRX42fXCUFllpxNrRZ1Vnt6Rr0viREewhPLd8Q9OrFGUXe0oNBpY7ORnCwzZZm-3P-LzfSXE5qf9D1u8ZRXgfhBHc55nJpVGJalLMl3kKjXKxQ73hoY6LVQchV4Z9CoUsdhK5b0JU7TyInRKpKkilghU-VfQjRCmLhXc69_pUNYsjpK2NyeUZn2G9pF62ETMNdqLmJsl-1fTBPzNt_2zRPO3PG1t_jZv_W837jbcbB1tttFIxh1Yycu7cK2h3jy7B3ajZJOWEfY0Z91odYY-PPtSfeVu4aY5QxvDZo02ZVR831a4MeoWGLHFGK0rq1DpHrXdrMwdjvDs8_HRffh2Kad7AKtlVeaPgEVZklF2eCCKBOHuTZbih1K6xOo2kAFEHQSsbyexEyHIoa0rAqSxDWwswsbWsLEmgNf9b46bOSQXrn5PyOpX0gzx-otqOrKtSrK6SNGXG3hTKI__oJ3SItYaQ8wocmGWBLDWAcq2im1mz9EUwIv-MqokyjO5Mq9OmjVKam1wzcMGxv1OZCIxxpYiALME8KWtLl8pJ-N67DlG7uQ8qQDedLJwvq9_34vHFx_jOVzf2v-8a3e3hztP4IYgUa3LgdZgdT49yZ_CVX86n8ymz2pZZ_D9smXkF511i-8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qyiIu7IuhwCDBCUaxPc7M-IBQoURURVEQIPU2HY_tJFJrlzht1L_Gr-M9b1VYeuuBQy7xJJqxv7f5LR_Ay0DKlNiruE5zhQGKi3msw5xLm5O5S7Mob8gm1His9_fjyQb87HphqKyy04m1ok5LR-_IB4I40REsvhjkbVnEZGf07vgHJwYpyrR2dBoNRPaysxWGb9Xb3R181q_CcPTx24dPvGUY4G4YBUuepToRWsaJjVOVZzLR0kYW94lGO8llFPhOavQwJDHaCumc9hO0-KFvZZgkkhgjUP1fUTS0vC4bnPTvdyiDFgVx26fjCz2o0FZSP1sYcYW2I-J6zRbWlAF_83P_LNf8LWdbm8LRrf_5Jt6Gm60DzrYbibkDG1lxF641lJxn98BsF2zeMsWeZqwbuc7Qt2dfyq_cruwiY2h7WNVoWUZF-W3lG6MugilbzdDqshKV8VHb5crs4RTPvpwd3Yfvl3K6B7BZlEX2CFiQxilljYdhHqMYOJ0m-KFUL7G9DYUHQQcH49oJ7UQUcmjqSgGhTQMhgxAyNYSM9uB1_5vjZj7JhavfE8r6lTRbvP6iXExNq6qMyhP08YZO59LhPygrVRgphaFnEFg_jT3Y6sBlWoVXmXNkefCiv4yqivJPtsjKk2aNFEppXPOwgXS_ExELjL1F6IFeA_vaVtevFPNZPQ4dI3pyqqQHbzq5ON_Xv-_F44uP8Ryuo2iYz7vjvSdwIySprauEtmBzuTjJnsJVd7qcV4tntdgzOLhsEfkF2B6UrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+innovative+approach+for+QoS-aware+web+service+composition+using+whale+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Fadl+Dahan&rft.date=2024-09-30&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-024-73414-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7fb6135c8f6c4157a67247755911a0d9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon