A novel RFE-GRU model for diabetes classification using PIMA Indian dataset

Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 982 - 22
Main Authors: Shams, Mahmoud Y., Tarek, Zahraa, Elshewey, Ahmed M.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 06.01.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances and 9 features; eight of the features are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that includes mean imputation and data normalization. Afterwards, we trained the extracted features using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that are most important in predicting the target variable. While the GRU handles the challenge of vanishing and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The comparative results showed that the RFE-GRU model is better than other classification models.
AbstractList Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances and 9 features; eight of the features are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that includes mean imputation and data normalization. Afterwards, we trained the extracted features using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that are most important in predicting the target variable. While the GRU handles the challenge of vanishing and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The comparative results showed that the RFE-GRU model is better than other classification models.
Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances and 9 features; eight of the features are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that includes mean imputation and data normalization. Afterwards, we trained the extracted features using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that are most important in predicting the target variable. While the GRU handles the challenge of vanishing and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The comparative results showed that the RFE-GRU model is better than other classification models.Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances and 9 features; eight of the features are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that includes mean imputation and data normalization. Afterwards, we trained the extracted features using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that are most important in predicting the target variable. While the GRU handles the challenge of vanishing and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The comparative results showed that the RFE-GRU model is better than other classification models.
Abstract Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances and 9 features; eight of the features are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that includes mean imputation and data normalization. Afterwards, we trained the extracted features using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that are most important in predicting the target variable. While the GRU handles the challenge of vanishing and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The comparative results showed that the RFE-GRU model is better than other classification models.
ArticleNumber 982
Author Tarek, Zahraa
Elshewey, Ahmed M.
Shams, Mahmoud Y.
Author_xml – sequence: 1
  givenname: Mahmoud Y.
  surname: Shams
  fullname: Shams, Mahmoud Y.
  email: mahmoud.yasin@ai.kfs.edu.eg
  organization: Faculty of Artificial Intelligence, Kafrelsheikh University
– sequence: 2
  givenname: Zahraa
  surname: Tarek
  fullname: Tarek, Zahraa
  organization: Faculty of Computers and Information, Computer Science Department, Mansoura University
– sequence: 3
  givenname: Ahmed M.
  surname: Elshewey
  fullname: Elshewey, Ahmed M.
  organization: Department of Computer Science, Faculty of Computers and Information, Suez University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39762262$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhoNUbK39A17IgDfejCYnH5NcyVLaulhRir0OmUmyZplNajJb8N-b3Wm17UVDIF_v-_CSc16jg5iiQ-gtwR8JpvJTYYQr2WJgrQQGuFUv0BFgxlugAAcP9ofopJQ1roODYkS9QodUdQJAwBH6umhiunVjc3V-1l5cXTebZOvJp9zYYHo3udIMoykl-DCYKaTYbEuIq-bH8tuiWcYqio01kylueoNeejMWd3K3HqPr87Ofp1_ay-8Xy9PFZTtwRqbWSY_BwmC8gl4KRzG24IWV3eBEnVRaahxlBsuOEuY4dR5Yj4H6vhPe02O0nLk2mbW-yWFj8h-dTND7i5RX2uQpDKPThHZC9awaFa4kbHqleCcxUZ3iVvHK-jyzbrb9xtnBxSmb8RH08UsMv_Qq3WpCOsywgEr4cEfI6ffWlUlvQhncOJro0rZoSjiVQgDfSd8_ka7TNsf6VzsVURIAZFW9exjpX5b7olWBnAVDTqVk5_UQpn1tasIwaoL1rkX03CK6tojet4hW1QpPrPf0Z010NpUqjiuX_8d-xvUXDi7LHw
CitedBy_id crossref_primary_10_1016_j_jrras_2025_101483
crossref_primary_10_3390_electronics14132583
crossref_primary_10_48084_etasr_10900
Cites_doi 10.1023/A:1012487302797
10.1038/s41598-024-73536-z
10.1038/s41574-023-00898-1
10.1016/j.compbiomed.2021.104606
10.1109/ACCESS.2024.3443876
10.1109/ICSESS.2017.8342938
10.3389/fenrg.2021.652801
10.1016/j.ygeno.2019.09.006
10.1007/s12083-024-01763-2
10.1016/j.aci.2018.12.004
10.1016/j.jclinepi.2006.01.014
10.1109/UBMYK48245.2019.8965556
10.3390/app10072469
10.1016/j.jvoice.2020.03.009
10.1186/s12874-024-02173-x
10.1007/978-981-33-4909-4_53
10.3390/w16213102
10.1109/IC_ASET61847.2024.10596176
10.5121/ijdkp.2015.5201
10.7717/peerj-cs.2169
10.1109/ACCESS.2024.3359760
10.1007/s13755-021-00169-1
10.1016/j.asoc.2019.105524
10.1109/ACCESS.2021.3069001
10.1155/2022/1684017
10.1109/RoboMech.2016.7813171
10.1016/j.icte.2021.02.004
10.1186/s13677-023-00560-1
10.1007/s13755-019-0089-x
10.3390/su16188092
10.1016/j.health.2024.100362
10.1016/j.bspc.2022.104424
10.48550/ARXIV.2403.14687
10.1134/S1063454122010022
10.1049/htl2.12010
10.1016/j.ymssp.2013.12.013
10.1109/Confluence60223.2024.10463223
10.1016/j.eswa.2011.01.017
10.1016/j.diabres.2020.108072
10.1007/s00521-022-07049-z
10.1007/s11042-024-19766-9
10.3390/en11082163
10.1088/1757-899X/1070/1/012059
10.1080/10095020.2024.2387457
10.1155/2021/9930985
10.1371/journal.pone.0297037
10.1109/ACCESS.2021.3105485
10.1109/ICCISci.2019.8716405
10.1007/978-981-13-1642-5_59
10.1016/j.ymeth.2021.05.016
10.1109/ICCCNT51525.2021.9579869
10.1007/s11440-021-01440-1
10.3390/app12030950
10.1063/5.0207998
10.1016/j.energy.2020.117081
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-82420-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 22
ExternalDocumentID oai_doaj_org_article_13769b4fb7904e50ab99578019795d95
PMC11704062
39762262
10_1038_s41598_024_82420_9
Genre Journal Article
GrantInformation_xml – fundername: Kafr El Shiekh University
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-e8f02d2caf92b86e300d2f6d87ce6ce638d3ae34a087314e53ef24b023fb76ff3
IEDL.DBID M7P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001391785200045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:08:36 EDT 2025
Tue Nov 04 02:04:06 EST 2025
Thu Sep 04 16:48:09 EDT 2025
Tue Oct 07 07:41:22 EDT 2025
Mon Jul 21 06:03:16 EDT 2025
Tue Nov 18 21:43:58 EST 2025
Sat Nov 29 03:22:15 EST 2025
Fri Feb 21 02:35:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords KNN
Gated recurrent unit (GRU)
Recursive feature elimination (RFE)
Diabetes classification
Machine learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e8f02d2caf92b86e300d2f6d87ce6ce638d3ae34a087314e53ef24b023fb76ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3151982228?pq-origsite=%requestingapplication%
PMID 39762262
PQID 3151982228
PQPubID 2041939
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_13769b4fb7904e50ab99578019795d95
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11704062
proquest_miscellaneous_3153866252
proquest_journals_3151982228
pubmed_primary_39762262
crossref_citationtrail_10_1038_s41598_024_82420_9
crossref_primary_10_1038_s41598_024_82420_9
springer_journals_10_1038_s41598_024_82420_9
PublicationCentury 2000
PublicationDate 2025-01-06
PublicationDateYYYYMMDD 2025-01-06
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References C Ao (82420_CR42) 2022; 203
KC Howlader (82420_CR15) 2022; 10
D Singh (82420_CR35) 2020; 97
Z Niu (82420_CR55) 2020; 196
SKS Modak (82420_CR64) 2024
R Haritha (82420_CR19) 2018; 13
82420_CR11
M Hossin (82420_CR62) 2015; 5
82420_CR12
82420_CR53
82420_CR10
82420_CR54
NS Mohd Nafis (82420_CR48) 2021; 9
82420_CR51
82420_CR52
82420_CR50
82420_CR17
82420_CR18
82420_CR59
M Arif (82420_CR49) 2020; 112
82420_CR57
82420_CR14
JJ Khanam (82420_CR13) 2021; 7
K Alnowaiser (82420_CR32) 2024; 12
Y Wang (82420_CR56) 2018; 11
PT Nguyen (82420_CR36) 2020; 10
82420_CR44
YM Wazery (82420_CR38) 2021; 9
82420_CR43
82420_CR41
S Lin (82420_CR45) 2022; 17
H Salem (82420_CR26) 2022; 12
82420_CR4
A El-Magd (82420_CR40) 2022; 15
82420_CR5
82420_CR2
82420_CR3
C Fan (82420_CR27) 2021; 9
I Guyon (82420_CR46) 2002; 46
Q Zhou (82420_CR47) 2014; 46
82420_CR33
82420_CR34
82420_CR31
82420_CR30
Y Zhang (82420_CR20) 2018; 7
R Williams (82420_CR1) 2020; 162
MY Shams (82420_CR7) 2021; 135
W Xiong (82420_CR58) 2024; 12
L Chen (82420_CR39) 2021; 35
B Kalantar (82420_CR37) 2018; 9
D Çalişir (82420_CR16) 2011; 38
82420_CR23
82420_CR21
82420_CR65
82420_CR63
SK Bhoi (82420_CR24) 2021; 12
82420_CR60
M Maniruzzaman (82420_CR9) 2020; 8
82420_CR61
82420_CR8
A Khanwalkar (82420_CR22) 2020; 8
82420_CR6
82420_CR28
82420_CR29
82420_CR25
References_xml – volume: 9
  start-page: 49
  issue: 1
  year: 2018
  ident: 82420_CR37
  publication-title: Geomatics
– volume: 46
  start-page: 389
  issue: 1
  year: 2002
  ident: 82420_CR46
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– ident: 82420_CR53
  doi: 10.1038/s41598-024-73536-z
– ident: 82420_CR3
  doi: 10.1038/s41574-023-00898-1
– volume: 135
  start-page: 104606
  year: 2021
  ident: 82420_CR7
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104606
– volume: 12
  start-page: 113918
  year: 2024
  ident: 82420_CR58
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3443876
– ident: 82420_CR18
  doi: 10.1109/ICSESS.2017.8342938
– ident: 82420_CR17
– volume: 9
  start-page: 652801
  year: 2021
  ident: 82420_CR27
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2021.652801
– volume: 112
  start-page: 1565
  issue: 2
  year: 2020
  ident: 82420_CR49
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.09.006
– ident: 82420_CR50
  doi: 10.1007/s12083-024-01763-2
– ident: 82420_CR61
– ident: 82420_CR5
– ident: 82420_CR4
  doi: 10.1016/j.aci.2018.12.004
– ident: 82420_CR28
  doi: 10.1016/j.jclinepi.2006.01.014
– ident: 82420_CR11
  doi: 10.1109/UBMYK48245.2019.8965556
– volume: 10
  start-page: 2469
  issue: 7
  year: 2020
  ident: 82420_CR36
  publication-title: Appl. Sci.
  doi: 10.3390/app10072469
– volume: 35
  start-page: 932
  issue: 6
  year: 2021
  ident: 82420_CR39
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2020.03.009
– volume: 7
  start-page: 151
  issue: 8
  year: 2018
  ident: 82420_CR20
  publication-title: Int. J. Sci. Technol. Res.
– ident: 82420_CR29
  doi: 10.1186/s12874-024-02173-x
– ident: 82420_CR12
  doi: 10.1007/978-981-33-4909-4_53
– ident: 82420_CR54
  doi: 10.3390/w16213102
– ident: 82420_CR63
  doi: 10.1109/IC_ASET61847.2024.10596176
– volume: 15
  start-page: 1
  issue: 3
  year: 2022
  ident: 82420_CR40
  publication-title: Arab. J. Geosci.
– volume: 5
  start-page: 1
  issue: 2
  year: 2015
  ident: 82420_CR62
  publication-title: Int. J. data Min. Knowl. Manage. Process.
  doi: 10.5121/ijdkp.2015.5201
– volume: 13
  start-page: 896
  issue: 2
  year: 2018
  ident: 82420_CR19
  publication-title: Int. J. Appl. Eng. Res.
– ident: 82420_CR59
  doi: 10.7717/peerj-cs.2169
– volume: 12
  start-page: 16783
  year: 2024
  ident: 82420_CR32
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3359760
– volume: 10
  start-page: 1
  issue: 1
  year: 2022
  ident: 82420_CR15
  publication-title: Health Inform. Sci. Syst.
  doi: 10.1007/s13755-021-00169-1
– volume: 97
  start-page: 105524
  year: 2020
  ident: 82420_CR35
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105524
– volume: 9
  start-page: 52177
  year: 2021
  ident: 82420_CR48
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3069001
– ident: 82420_CR8
  doi: 10.1155/2022/1684017
– ident: 82420_CR41
  doi: 10.1109/RoboMech.2016.7813171
– volume: 7
  start-page: 432
  issue: 4
  year: 2021
  ident: 82420_CR13
  publication-title: ICT Express
  doi: 10.1016/j.icte.2021.02.004
– ident: 82420_CR57
  doi: 10.1186/s13677-023-00560-1
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: 82420_CR9
  publication-title: Health Inform. Sci. Syst.
  doi: 10.1007/s13755-019-0089-x
– volume: 12
  start-page: 3074
  issue: 10
  year: 2021
  ident: 82420_CR24
  publication-title: Turkish J. Comput. Math. Educ. (TURCOMAT)
– ident: 82420_CR31
  doi: 10.3390/su16188092
– ident: 82420_CR52
  doi: 10.1016/j.health.2024.100362
– ident: 82420_CR60
  doi: 10.1016/j.bspc.2022.104424
– ident: 82420_CR34
  doi: 10.48550/ARXIV.2403.14687
– ident: 82420_CR43
  doi: 10.1134/S1063454122010022
– ident: 82420_CR25
  doi: 10.1049/htl2.12010
– ident: 82420_CR44
– volume: 46
  start-page: 82
  issue: 1
  year: 2014
  ident: 82420_CR47
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.12.013
– ident: 82420_CR65
  doi: 10.1109/Confluence60223.2024.10463223
– volume: 38
  start-page: 8311
  issue: 7
  year: 2011
  ident: 82420_CR16
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.017
– volume: 162
  start-page: 108072
  year: 2020
  ident: 82420_CR1
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2020.108072
– ident: 82420_CR6
  doi: 10.1007/s00521-022-07049-z
– year: 2024
  ident: 82420_CR64
  publication-title: Multimed Tools Appl. Jul
  doi: 10.1007/s11042-024-19766-9
– volume: 11
  start-page: 2163
  issue: 8
  year: 2018
  ident: 82420_CR56
  publication-title: Energies
  doi: 10.3390/en11082163
– ident: 82420_CR23
  doi: 10.1088/1757-899X/1070/1/012059
– ident: 82420_CR51
  doi: 10.1080/10095020.2024.2387457
– ident: 82420_CR2
  doi: 10.1155/2021/9930985
– ident: 82420_CR30
  doi: 10.1371/journal.pone.0297037
– volume: 9
  start-page: 113666
  year: 2021
  ident: 82420_CR38
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3105485
– ident: 82420_CR21
  doi: 10.1109/ICCISci.2019.8716405
– ident: 82420_CR10
  doi: 10.1007/978-981-13-1642-5_59
– volume: 203
  start-page: 32
  year: 2022
  ident: 82420_CR42
  publication-title: Methods
  doi: 10.1016/j.ymeth.2021.05.016
– volume: 8
  start-page: 973
  year: 2020
  ident: 82420_CR22
  publication-title: J. Crit. Rev.
– ident: 82420_CR14
  doi: 10.1109/ICCCNT51525.2021.9579869
– volume: 17
  start-page: 1477
  issue: 4
  year: 2022
  ident: 82420_CR45
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-021-01440-1
– volume: 12
  start-page: 950
  issue: 3
  year: 2022
  ident: 82420_CR26
  publication-title: Appl. Sci.
  doi: 10.3390/app12030950
– ident: 82420_CR33
  doi: 10.1063/5.0207998
– volume: 196
  start-page: 117081
  year: 2020
  ident: 82420_CR55
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117081
SSID ssj0000529419
Score 2.4910173
Snippet Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure,...
Abstract Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 982
SubjectTerms 639/705
692/308
692/700
Algorithms
Bayes Theorem
Blood levels
Classification
Databases, Factual
Datasets
Diabetes
Diabetes classification
Diabetes mellitus
Diabetes Mellitus - classification
Diabetes Mellitus - diagnosis
Diabetes Mellitus - epidemiology
Gated recurrent unit (GRU)
Humanities and Social Sciences
Humans
KNN
Learning algorithms
Logistic Models
Machine Learning
multidisciplinary
Myocardial infarction
Pima People
Recursive feature elimination (RFE)
Renal failure
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dSxwxFL2IKPgiWlsdtSVC32owk2Rnkse1uK2IIqLgW5jJhwoyK-4q-O-9ycyublvti7BPmwxcTk7mnpncORfgOyrgGvNCTktRMCoxiVClmaYucK5LXqvgZGo2UZ6cqMtLffqq1VesCWvtgVvg9nLcAbqWoS41k77HqlprZBkqk1L3nE7upah6Xj1Mta7eXMtcd1_JMKH2RhhR_JqMS6owLTGqZzJRMuz_l8r8u1jyjxPTlIgGK7DcKUjSbyNfhTnffILFtqfk0xoc9UkzfPS35GxwQH-dXZDU64agNiWT96zERskca4TSspBY-35FTg-P--SwiXwhsW505Mef4WJwcP7zN-06JlDbk_mYehUYd9xWQSPMhReMOR4Kp0rrC_wJ5UTlhayYKkWOcAofuKwxbyO-RQjiC8w3w8ZvAGG1VRVqA2kLJ3PH65xZvDkqK6QomQ8Z5BP0jO3sxGNXi1uTjrWFMi3iBhE3CXGjM_gxveauNdN4d_Z-XJTpzGiEnf5AepiOHuZ_9Mhge7KkptudIyOQnNG3kKsMdqbDuK_iYUnV-OFDmiNUgU-HPIP1lgHTSKKGQ9mKI2qGGzOhzo40N9fJuzs2-kENhZfuTmj0EtfbWGx-BBZbsMRj9-L4AqnYhvnx_YP_Cgv2cXwzuv-WNtAzM3MXbw
  priority: 102
  providerName: Directory of Open Access Journals
Title A novel RFE-GRU model for diabetes classification using PIMA Indian dataset
URI https://link.springer.com/article/10.1038/s41598-024-82420-9
https://www.ncbi.nlm.nih.gov/pubmed/39762262
https://www.proquest.com/docview/3151982228
https://www.proquest.com/docview/3153866252
https://pubmed.ncbi.nlm.nih.gov/PMC11704062
https://doaj.org/article/13769b4fb7904e50ab99578019795d95
Volume 15
WOSCitedRecordID wos001391785200045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (ODIN)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfA8CozISb2DNsd3YfkIdamFCq6KKSeXJSmxnTJqS0XaT-O85Ox9T-dgLUpSH2InOufPdL3eXO4TeAgIuwS6kRPKMEgFGhChNNXEVY1qyUlVOxGYTcj5Xy6XOO4fbukur7HViVNSuscFHfsjhgaHWHFMfLn-Q0DUqRFe7Fho7aC9USeAxdS8ffCwhiiVS3f0rQ7k6XANd4Z8yJogC40SJ3rJHsWz_37DmnymTv8VNozmaPfzfhTxCDzogiiet5DxGd3z9BN1rW1P-fIq-THDdXPsLvJhNyafFKY4tczBAXNy7a7ENyDukGkXu4pBCf4bz45MJPq6D2OGQfrr2m2fodDb9-vEz6RovEDsW6YZ4VVHmmC0qDdzKPKfUsSpzSlqfwcGV44XnoqBK8lT4MfcVEyWY_6qUWVXxfbRbN7V_gTAtrSoAYgibOZE6VqbUgo5Vlgsuqa8SlPav39iuKnlojnFhYnScK9OyzADLTGSZ0Ql6N9xz2dbkuHX2UeDqMDPU044XmtWZ6banSUHP6lIA-ZrCemhRag26DPCv1GOnxwk66Jlpuk2-NjecTNCbYRi2Z4i5FLVvruIcrjL4yGQJet6K0EBJgIKAfmFEbQnXFqnbI_X591gCPPQLAigGt77v5fCGrn-_i5e3L-MVus9Ce-PgYcoO0O5mdeVfo7v2enO-Xo3QjlzKeFYjtHc0neeLUXRhwPmE5aO492AE5Cz_9gsTAy4R
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VAoIL70eggJHgRK16bWfXPiAUoKFR2iiqWqk3s-v1lkrVbknSov4pfiNj76MKj956QMop9q7G3s8znz3jGYA3yIAztAsRTUTMqEQjQpVmmuYF5zrhmSpyGYpNJJOJOjjQ0xX42d6F8WGVrU4MijqvrD8j3xD4Qp9rjqsPJ9-prxrlvattCY0aFmN3_gO3bPP3o8_4fd9yPtzc-7RFm6oC1PZltKBOFYzn3KaFRlFiJxjLeRHnKrEuxp9QuUidkClTiYik6wtXcJmhbSuyJC4Kge-9BteRRnAVQgWn3ZmO95rJSDd3c5hQG3OcB3-HjUuq0BgyqpfsXygT8Ddu-2eI5m9-2mD-hnf_t4m7B3caok0G9cq4DyuufAA369Kb5w9hPCBldeaOye5wk37Z3SehJBBBCk_a42hi_c7Ch1IF9BJ_ReCQTEc7AzIq_bIiPrx27haPYP9KRvIYVsuqdE-BsMyqFCmUtHEuo5xnEbNoQ5QVUiTMFT2I2s9tbJN13Rf_ODbB-y-UqSFiECImQMToHrzrnjmpc45c2vujR1HX0-cLD39Us0PTqB8ToR3RmUTxNcPxsDTTGnU18vtE93Pd78FaCx7TKLG5uUBOD153zah-vE8pLV11GvoIFeMmmvfgSQ3ZThJPdZHdY4taAvOSqMst5dG3kOLc10NCqomPrre4v5Dr33Px7PJhvIJbW3s722Z7NBk_h9vcl3L2p2nxGqwuZqfuBdywZ4uj-exlWNcEvl71evgFeS6FXg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKgYoL70eggJHgBFa8trNrHxAKtIEoEEUVlXozu167rVRtSpIW9a_x65jx7qYKj956QMop9q7G3m8etsfzEfISIuAC_ELCMplypsCJMG24YWUQwmSi0KFUkWwiG4_13p6ZrJGf7V0YTKtsbWI01OXU4R55V8ILsdac0N3QpEVMtgbvjr8zZJDCk9aWTqOGyMif_YDl2_ztcAu-9SshBttfP3xiDcMAcz2VLJjXgYtSuDwYECv1kvNShLTUmfMp_KQuZe6lyrnOZKJ8T_ogVAF-LhRZGoKE914hVzMsWh7TBifL_R08QVOJae7pcKm7c5gTvM8mFNPgGDkzK74wUgb8Lc79M13ztzPb6AoHt_7nSbxNbjYBOO3XGnOHrPnqLrleU3Ke3SOjPq2mp_6I7gy22cedXRqpgiiE9rTdpqYOVxyYYhVRTfHqwD6dDL_06bBCdaOYdjv3i_tk91JG8oCsV9PKPyKUF07nEFopl5YqKUWRcAe-RTupZMZ96JCk_fTWNdXYkRTkyMasAKltDRcLcLERLtZ0yOvlM8d1LZILe79HRC17Yh3x-Md0tm8bs2QT8C-mUCC-4TAenhfGgA2HuD8zvdL0OmSzBZJtjNvcnqOoQ14sm8Es4VlTXvnpSewjdQqLa9EhD2v4LiXBEBiifmjRK8BeEXW1pTo8iKXPkScJQlB49E2rA-dy_XsuHl88jOdkA9TAfh6OR0_IDYEMz7jJlm6S9cXsxD8l19zp4nA-exZVnJJvl60OvwAAIo4b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+RFE-GRU+model+for+diabetes+classification+using+PIMA+Indian+dataset&rft.jtitle=Scientific+reports&rft.au=Shams%2C+Mahmoud+Y&rft.au=Tarek%2C+Zahraa&rft.au=Elshewey%2C+Ahmed+M&rft.date=2025-01-06&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=982&rft_id=info:doi/10.1038%2Fs41598-024-82420-9&rft_id=info%3Apmid%2F39762262&rft.externalDocID=39762262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon