A novel RFE-GRU model for diabetes classification using PIMA Indian dataset
Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 982 - 22 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
06.01.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances and 9 features; eight of the features are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that includes mean imputation and data normalization. Afterwards, we trained the extracted features using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that are most important in predicting the target variable. While the GRU handles the challenge of vanishing and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The comparative results showed that the RFE-GRU model is better than other classification models. |
|---|---|
| AbstractList | Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances and 9 features; eight of the features are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that includes mean imputation and data normalization. Afterwards, we trained the extracted features using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that are most important in predicting the target variable. While the GRU handles the challenge of vanishing and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The comparative results showed that the RFE-GRU model is better than other classification models. Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances and 9 features; eight of the features are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that includes mean imputation and data normalization. Afterwards, we trained the extracted features using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that are most important in predicting the target variable. While the GRU handles the challenge of vanishing and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The comparative results showed that the RFE-GRU model is better than other classification models.Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances and 9 features; eight of the features are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that includes mean imputation and data normalization. Afterwards, we trained the extracted features using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that are most important in predicting the target variable. While the GRU handles the challenge of vanishing and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The comparative results showed that the RFE-GRU model is better than other classification models. Abstract Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances and 9 features; eight of the features are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that includes mean imputation and data normalization. Afterwards, we trained the extracted features using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that are most important in predicting the target variable. While the GRU handles the challenge of vanishing and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The comparative results showed that the RFE-GRU model is better than other classification models. |
| ArticleNumber | 982 |
| Author | Tarek, Zahraa Elshewey, Ahmed M. Shams, Mahmoud Y. |
| Author_xml | – sequence: 1 givenname: Mahmoud Y. surname: Shams fullname: Shams, Mahmoud Y. email: mahmoud.yasin@ai.kfs.edu.eg organization: Faculty of Artificial Intelligence, Kafrelsheikh University – sequence: 2 givenname: Zahraa surname: Tarek fullname: Tarek, Zahraa organization: Faculty of Computers and Information, Computer Science Department, Mansoura University – sequence: 3 givenname: Ahmed M. surname: Elshewey fullname: Elshewey, Ahmed M. organization: Department of Computer Science, Faculty of Computers and Information, Suez University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39762262$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl1rFDEUhoNUbK39A17IgDfejCYnH5NcyVLaulhRir0OmUmyZplNajJb8N-b3Wm17UVDIF_v-_CSc16jg5iiQ-gtwR8JpvJTYYQr2WJgrQQGuFUv0BFgxlugAAcP9ofopJQ1roODYkS9QodUdQJAwBH6umhiunVjc3V-1l5cXTebZOvJp9zYYHo3udIMoykl-DCYKaTYbEuIq-bH8tuiWcYqio01kylueoNeejMWd3K3HqPr87Ofp1_ay-8Xy9PFZTtwRqbWSY_BwmC8gl4KRzG24IWV3eBEnVRaahxlBsuOEuY4dR5Yj4H6vhPe02O0nLk2mbW-yWFj8h-dTND7i5RX2uQpDKPThHZC9awaFa4kbHqleCcxUZ3iVvHK-jyzbrb9xtnBxSmb8RH08UsMv_Qq3WpCOsywgEr4cEfI6ffWlUlvQhncOJro0rZoSjiVQgDfSd8_ka7TNsf6VzsVURIAZFW9exjpX5b7olWBnAVDTqVk5_UQpn1tasIwaoL1rkX03CK6tojet4hW1QpPrPf0Z010NpUqjiuX_8d-xvUXDi7LHw |
| CitedBy_id | crossref_primary_10_1016_j_jrras_2025_101483 crossref_primary_10_3390_electronics14132583 crossref_primary_10_48084_etasr_10900 |
| Cites_doi | 10.1023/A:1012487302797 10.1038/s41598-024-73536-z 10.1038/s41574-023-00898-1 10.1016/j.compbiomed.2021.104606 10.1109/ACCESS.2024.3443876 10.1109/ICSESS.2017.8342938 10.3389/fenrg.2021.652801 10.1016/j.ygeno.2019.09.006 10.1007/s12083-024-01763-2 10.1016/j.aci.2018.12.004 10.1016/j.jclinepi.2006.01.014 10.1109/UBMYK48245.2019.8965556 10.3390/app10072469 10.1016/j.jvoice.2020.03.009 10.1186/s12874-024-02173-x 10.1007/978-981-33-4909-4_53 10.3390/w16213102 10.1109/IC_ASET61847.2024.10596176 10.5121/ijdkp.2015.5201 10.7717/peerj-cs.2169 10.1109/ACCESS.2024.3359760 10.1007/s13755-021-00169-1 10.1016/j.asoc.2019.105524 10.1109/ACCESS.2021.3069001 10.1155/2022/1684017 10.1109/RoboMech.2016.7813171 10.1016/j.icte.2021.02.004 10.1186/s13677-023-00560-1 10.1007/s13755-019-0089-x 10.3390/su16188092 10.1016/j.health.2024.100362 10.1016/j.bspc.2022.104424 10.48550/ARXIV.2403.14687 10.1134/S1063454122010022 10.1049/htl2.12010 10.1016/j.ymssp.2013.12.013 10.1109/Confluence60223.2024.10463223 10.1016/j.eswa.2011.01.017 10.1016/j.diabres.2020.108072 10.1007/s00521-022-07049-z 10.1007/s11042-024-19766-9 10.3390/en11082163 10.1088/1757-899X/1070/1/012059 10.1080/10095020.2024.2387457 10.1155/2021/9930985 10.1371/journal.pone.0297037 10.1109/ACCESS.2021.3105485 10.1109/ICCISci.2019.8716405 10.1007/978-981-13-1642-5_59 10.1016/j.ymeth.2021.05.016 10.1109/ICCCNT51525.2021.9579869 10.1007/s11440-021-01440-1 10.3390/app12030950 10.1063/5.0207998 10.1016/j.energy.2020.117081 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-82420-9 |
| DatabaseName | SpringerOpen CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 22 |
| ExternalDocumentID | oai_doaj_org_article_13769b4fb7904e50ab99578019795d95 PMC11704062 39762262 10_1038_s41598_024_82420_9 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Kafr El Shiekh University |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-e8f02d2caf92b86e300d2f6d87ce6ce638d3ae34a087314e53ef24b023fb76ff3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001391785200045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:08:36 EDT 2025 Tue Nov 04 02:04:06 EST 2025 Thu Sep 04 16:48:09 EDT 2025 Tue Oct 07 07:41:22 EDT 2025 Mon Jul 21 06:03:16 EDT 2025 Tue Nov 18 21:43:58 EST 2025 Sat Nov 29 03:22:15 EST 2025 Fri Feb 21 02:35:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | KNN Gated recurrent unit (GRU) Recursive feature elimination (RFE) Diabetes classification Machine learning |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-e8f02d2caf92b86e300d2f6d87ce6ce638d3ae34a087314e53ef24b023fb76ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3151982228?pq-origsite=%requestingapplication% |
| PMID | 39762262 |
| PQID | 3151982228 |
| PQPubID | 2041939 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_13769b4fb7904e50ab99578019795d95 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11704062 proquest_miscellaneous_3153866252 proquest_journals_3151982228 pubmed_primary_39762262 crossref_citationtrail_10_1038_s41598_024_82420_9 crossref_primary_10_1038_s41598_024_82420_9 springer_journals_10_1038_s41598_024_82420_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-06 |
| PublicationDateYYYYMMDD | 2025-01-06 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | C Ao (82420_CR42) 2022; 203 KC Howlader (82420_CR15) 2022; 10 D Singh (82420_CR35) 2020; 97 Z Niu (82420_CR55) 2020; 196 SKS Modak (82420_CR64) 2024 R Haritha (82420_CR19) 2018; 13 82420_CR11 M Hossin (82420_CR62) 2015; 5 82420_CR12 82420_CR53 82420_CR10 82420_CR54 NS Mohd Nafis (82420_CR48) 2021; 9 82420_CR51 82420_CR52 82420_CR50 82420_CR17 82420_CR18 82420_CR59 M Arif (82420_CR49) 2020; 112 82420_CR57 82420_CR14 JJ Khanam (82420_CR13) 2021; 7 K Alnowaiser (82420_CR32) 2024; 12 Y Wang (82420_CR56) 2018; 11 PT Nguyen (82420_CR36) 2020; 10 82420_CR44 YM Wazery (82420_CR38) 2021; 9 82420_CR43 82420_CR41 S Lin (82420_CR45) 2022; 17 H Salem (82420_CR26) 2022; 12 82420_CR4 A El-Magd (82420_CR40) 2022; 15 82420_CR5 82420_CR2 82420_CR3 C Fan (82420_CR27) 2021; 9 I Guyon (82420_CR46) 2002; 46 Q Zhou (82420_CR47) 2014; 46 82420_CR33 82420_CR34 82420_CR31 82420_CR30 Y Zhang (82420_CR20) 2018; 7 R Williams (82420_CR1) 2020; 162 MY Shams (82420_CR7) 2021; 135 W Xiong (82420_CR58) 2024; 12 L Chen (82420_CR39) 2021; 35 B Kalantar (82420_CR37) 2018; 9 D Çalişir (82420_CR16) 2011; 38 82420_CR23 82420_CR21 82420_CR65 82420_CR63 SK Bhoi (82420_CR24) 2021; 12 82420_CR60 M Maniruzzaman (82420_CR9) 2020; 8 82420_CR61 82420_CR8 A Khanwalkar (82420_CR22) 2020; 8 82420_CR6 82420_CR28 82420_CR29 82420_CR25 |
| References_xml | – volume: 9 start-page: 49 issue: 1 year: 2018 ident: 82420_CR37 publication-title: Geomatics – volume: 46 start-page: 389 issue: 1 year: 2002 ident: 82420_CR46 publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – ident: 82420_CR53 doi: 10.1038/s41598-024-73536-z – ident: 82420_CR3 doi: 10.1038/s41574-023-00898-1 – volume: 135 start-page: 104606 year: 2021 ident: 82420_CR7 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104606 – volume: 12 start-page: 113918 year: 2024 ident: 82420_CR58 publication-title: IEEE Access. doi: 10.1109/ACCESS.2024.3443876 – ident: 82420_CR18 doi: 10.1109/ICSESS.2017.8342938 – ident: 82420_CR17 – volume: 9 start-page: 652801 year: 2021 ident: 82420_CR27 publication-title: Front. Energy Res. doi: 10.3389/fenrg.2021.652801 – volume: 112 start-page: 1565 issue: 2 year: 2020 ident: 82420_CR49 publication-title: Genomics doi: 10.1016/j.ygeno.2019.09.006 – ident: 82420_CR50 doi: 10.1007/s12083-024-01763-2 – ident: 82420_CR61 – ident: 82420_CR5 – ident: 82420_CR4 doi: 10.1016/j.aci.2018.12.004 – ident: 82420_CR28 doi: 10.1016/j.jclinepi.2006.01.014 – ident: 82420_CR11 doi: 10.1109/UBMYK48245.2019.8965556 – volume: 10 start-page: 2469 issue: 7 year: 2020 ident: 82420_CR36 publication-title: Appl. Sci. doi: 10.3390/app10072469 – volume: 35 start-page: 932 issue: 6 year: 2021 ident: 82420_CR39 publication-title: J. Voice doi: 10.1016/j.jvoice.2020.03.009 – volume: 7 start-page: 151 issue: 8 year: 2018 ident: 82420_CR20 publication-title: Int. J. Sci. Technol. Res. – ident: 82420_CR29 doi: 10.1186/s12874-024-02173-x – ident: 82420_CR12 doi: 10.1007/978-981-33-4909-4_53 – ident: 82420_CR54 doi: 10.3390/w16213102 – ident: 82420_CR63 doi: 10.1109/IC_ASET61847.2024.10596176 – volume: 15 start-page: 1 issue: 3 year: 2022 ident: 82420_CR40 publication-title: Arab. J. Geosci. – volume: 5 start-page: 1 issue: 2 year: 2015 ident: 82420_CR62 publication-title: Int. J. data Min. Knowl. Manage. Process. doi: 10.5121/ijdkp.2015.5201 – volume: 13 start-page: 896 issue: 2 year: 2018 ident: 82420_CR19 publication-title: Int. J. Appl. Eng. Res. – ident: 82420_CR59 doi: 10.7717/peerj-cs.2169 – volume: 12 start-page: 16783 year: 2024 ident: 82420_CR32 publication-title: IEEE Access. doi: 10.1109/ACCESS.2024.3359760 – volume: 10 start-page: 1 issue: 1 year: 2022 ident: 82420_CR15 publication-title: Health Inform. Sci. Syst. doi: 10.1007/s13755-021-00169-1 – volume: 97 start-page: 105524 year: 2020 ident: 82420_CR35 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105524 – volume: 9 start-page: 52177 year: 2021 ident: 82420_CR48 publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3069001 – ident: 82420_CR8 doi: 10.1155/2022/1684017 – ident: 82420_CR41 doi: 10.1109/RoboMech.2016.7813171 – volume: 7 start-page: 432 issue: 4 year: 2021 ident: 82420_CR13 publication-title: ICT Express doi: 10.1016/j.icte.2021.02.004 – ident: 82420_CR57 doi: 10.1186/s13677-023-00560-1 – volume: 8 start-page: 1 issue: 1 year: 2020 ident: 82420_CR9 publication-title: Health Inform. Sci. Syst. doi: 10.1007/s13755-019-0089-x – volume: 12 start-page: 3074 issue: 10 year: 2021 ident: 82420_CR24 publication-title: Turkish J. Comput. Math. Educ. (TURCOMAT) – ident: 82420_CR31 doi: 10.3390/su16188092 – ident: 82420_CR52 doi: 10.1016/j.health.2024.100362 – ident: 82420_CR60 doi: 10.1016/j.bspc.2022.104424 – ident: 82420_CR34 doi: 10.48550/ARXIV.2403.14687 – ident: 82420_CR43 doi: 10.1134/S1063454122010022 – ident: 82420_CR25 doi: 10.1049/htl2.12010 – ident: 82420_CR44 – volume: 46 start-page: 82 issue: 1 year: 2014 ident: 82420_CR47 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.12.013 – ident: 82420_CR65 doi: 10.1109/Confluence60223.2024.10463223 – volume: 38 start-page: 8311 issue: 7 year: 2011 ident: 82420_CR16 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.017 – volume: 162 start-page: 108072 year: 2020 ident: 82420_CR1 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2020.108072 – ident: 82420_CR6 doi: 10.1007/s00521-022-07049-z – year: 2024 ident: 82420_CR64 publication-title: Multimed Tools Appl. Jul doi: 10.1007/s11042-024-19766-9 – volume: 11 start-page: 2163 issue: 8 year: 2018 ident: 82420_CR56 publication-title: Energies doi: 10.3390/en11082163 – ident: 82420_CR23 doi: 10.1088/1757-899X/1070/1/012059 – ident: 82420_CR51 doi: 10.1080/10095020.2024.2387457 – ident: 82420_CR2 doi: 10.1155/2021/9930985 – ident: 82420_CR30 doi: 10.1371/journal.pone.0297037 – volume: 9 start-page: 113666 year: 2021 ident: 82420_CR38 publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3105485 – ident: 82420_CR21 doi: 10.1109/ICCISci.2019.8716405 – ident: 82420_CR10 doi: 10.1007/978-981-13-1642-5_59 – volume: 203 start-page: 32 year: 2022 ident: 82420_CR42 publication-title: Methods doi: 10.1016/j.ymeth.2021.05.016 – volume: 8 start-page: 973 year: 2020 ident: 82420_CR22 publication-title: J. Crit. Rev. – ident: 82420_CR14 doi: 10.1109/ICCCNT51525.2021.9579869 – volume: 17 start-page: 1477 issue: 4 year: 2022 ident: 82420_CR45 publication-title: Acta Geotech. doi: 10.1007/s11440-021-01440-1 – volume: 12 start-page: 950 issue: 3 year: 2022 ident: 82420_CR26 publication-title: Appl. Sci. doi: 10.3390/app12030950 – ident: 82420_CR33 doi: 10.1063/5.0207998 – volume: 196 start-page: 117081 year: 2020 ident: 82420_CR55 publication-title: Energy doi: 10.1016/j.energy.2020.117081 |
| SSID | ssj0000529419 |
| Score | 2.4910173 |
| Snippet | Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal failure,... Abstract Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety of complex disorders such as stroke, renal... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 982 |
| SubjectTerms | 639/705 692/308 692/700 Algorithms Bayes Theorem Blood levels Classification Databases, Factual Datasets Diabetes Diabetes classification Diabetes mellitus Diabetes Mellitus - classification Diabetes Mellitus - diagnosis Diabetes Mellitus - epidemiology Gated recurrent unit (GRU) Humanities and Social Sciences Humans KNN Learning algorithms Logistic Models Machine Learning multidisciplinary Myocardial infarction Pima People Recursive feature elimination (RFE) Renal failure Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bSxwxFA4iCn0pbe1lqpYIfWuDuU0meVzFbUUrIgq-hczkTCvIbHFXwX_fk8zs1q29vBTmaZIM4cvJnC_JyXcIeV82SBJCWTHkHrhACRaYQ1rLat62qgpQlpBFXI-rkxN7eelOH6T6SjFhvTxwD9yuwBngat3WleMaSh5qhx_D_6qrXBldVi9F1vNgMdWrekunhRtuyXBld6foqdJtMqmZRbfEmVvyRFmw_3cs83Gw5C8nptkRjZ-RpwODpKO-58_JCnQvyHqfU_J-gxyNaDe5g2t6Nj5gn84uaM51Q5Gb0vk-K20SZU4xQnlYaIp9_0pPD7-M6GGX7IWmuNEpzF6Si_HB-f5nNmRMYE2pxYyBbbmMsgmtk7U1oDiPsjXRVg0YfJSNKoDSgdtKCYRTQSt1jX4b8TU4Oq_Iajfp4A2hwlmoTYxYIHQVeR0BayEb0QGEMKYgYo6ebwY58ZTV4trnY21lfY-4R8R9Rty7gnxYtPnei2n8tfZeGpRFzSSEnV-gefjBPPy_zKMgW_Mh9cPsnHqFNCfpFkpbkJ1FMc6rdFgSOpjc5jrKGlwdyoK87i1g0ZPE4ZC2Yoldso2lri6XdFffsnZ3SvSDHAqbfpyb0c9-_RmLt_8Di03yRKbsxWkDyWyR1dnNLWyTteZudjW9eZcn0A_5Vxit priority: 102 providerName: Directory of Open Access Journals |
| Title | A novel RFE-GRU model for diabetes classification using PIMA Indian dataset |
| URI | https://link.springer.com/article/10.1038/s41598-024-82420-9 https://www.ncbi.nlm.nih.gov/pubmed/39762262 https://www.proquest.com/docview/3151982228 https://www.proquest.com/docview/3153866252 https://pubmed.ncbi.nlm.nih.gov/PMC11704062 https://doaj.org/article/13769b4fb7904e50ab99578019795d95 |
| Volume | 15 |
| WOSCitedRecordID | wos001391785200045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZN0kIvfT_cposKvbUmsmRb0qlsym4b2ixmaWB7ErYlp4Fgp-tNoP--M_IjbB-5FIwOHgkkz0jzaWY8Q8ibpASQkCcyBOwBF5RcuVADrA0LVlVC5i5JnE_i-kUuFmq10llvcGv7sMrhTPQHtW1KtJEfCFBNmGuOq_cXP0KsGoXe1b6Exg7ZwywJwofuZaONBb1YcaT7f2WYUAct6Cv8p4zHoQLlxEK9pY982v6_Yc0_QyZ_85t6dTS__78LeUDu9UCUTjvJeUhuufoRudOVpvz5mHye0rq5cud0OZ-FH5cn1JfMoQBx6WCupSUibww18tylGEJ_SrOj4yk9qlHsKIaftm7zhJzMZ18_fAr7wgthmcTRJnSqYtzyMq80L1TqBGOWV6lVsnQpPEJZkTsR50xJEcUuEa7icQHqvypkCkx-SnbrpnbPCYWluiK1FghRLC0rrINeAGri3EVRmgYkGj6_Kfus5Fgc49x477hQpmOZAZYZzzKjA_J2HHPR5eS4sfchcnXsifm0_YtmfWr67WkiOGd1EcMsNYP1sLzQILKgvbXUidVJQPYHZpp-k7fmmpMBeT2SYXuizyWvXXPp-wiVwiWTB-RZJ0LjTBAKAvoFitoSrq2pblPqs-8-BTjWCwIoBkPfDXJ4Pa9_f4sXNy_jJbnLsbwxWpjSfbK7WV-6V-R2ebU5a9cTsiNX0rdqQvYOZ4tsOfEmDGiPeTbxew8oIGfZt18TMS9P |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHgRKM6dh72AaEFunS129WqaqXeTBI7baUqKZttUf8Uv5Gx86iWR289IO0pdla2883MZ894BuBtlCNJSKPER-6BG5RUGF8irfUzWhQ8SU0UGZfEdZJMp-LgQM5W4Gd3F8aGVXY60SlqXeX2jHyTo2myueaY-Hj63bdVo6x3tSuh0cBibC5-4Jat_jD6gt_3HWPDrb3P235bVcDPozBY-EYUlGmWp4VkmYgNp1SzItYiyU2MPy40Tw0PUyoSHoQm4qZgYYa2rciSGGeA_3sDbiKNYMKFCs76Mx3rNQsD2d7NoVxs1mgf7R02FvoCjSH15ZL9c2UC_sZt_wzR_M1P68zf8P7_tnAP4F5LtMmgkYyHsGLKR3C7Kb158RjGA1JW5-aE7A63_K-7-8SVBCJI4Ul3HE1yu7OwoVQOvcReETgks9HOgIxKK1bEhtfWZvEE9q9lJk9htaxK8wwILq3JYq2xIQgTTTNtsBeStjA1QRDHHgTd51Z5m3XdFv84Uc77z4VqIKIQIspBREkP3vfvnDY5R67s_cmiqO9p84W7B9X8ULXqRwVoR2QW4iglxfnQNJMokshOZCIjLSMP1jvwqFaJ1eoSOR686ZtR_VifUlqa6sz14SLGTTTzYK2BbD8SS3WR3WOLWALz0lCXW8rjI5fi3NZDQqqJr250uL8c17_X4vnV03gNd7b3diZqMpqOX8BdZks529O0eB1WF_Mz8xJu5eeL43r-ysk1gW_XLQ-_AIF9hpw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VcogX7iNQwEjwRKN17Bz2A0IL7cJqy2pVUalvJodTKlVJ2d0W9a_x65hxjmo5-tYHpDzFTuTjm5nP9ngG4FWUI0lIo8RH7oELlFRZXyOt9TNeljJJbRRZF8R1J5lO1f6-nq3Bz-4uDLlVdjrRKeqizmmPfCDRNFGsOaEGZesWMdsavTv-7lMGKTpp7dJpNBCZ2LMfuHxbvB1v4Vy_FmK0_eXDJ7_NMODnURgsfatKLgqRp6UWmYqt5LwQZVyoJLcxPlIVMrUyTLlKZBDaSNpShBnauTJLYuwN_vcKXE0oaLlzG5z1-zt0ghYGur2nw6UaLNBW0n02EfoKDSP39YotdCkD_sZz_3TX_O3M1pnC0e3_eRDvwK2WgLNhIzF3Yc1W9-B6k5Lz7D5MhqyqT-0R2x1t-x9395hLFcSQ2rNum5rltOIgFyuHakZXBw7YbPx5yMYViRsjt9uFXT6AvUvpyUNYr-rKPgaGw2yzuCiwIAiTgmeFxVpI5sLUBkEcexB0U2_yNho7JQU5Ms4rQCrTwMUgXIyDi9EevOm_OW5ikVxY-z0hqq9JccTdi3p-YFq1ZAK0LzoLsZWaY394mmkUVWQtOtFRoSMPNjogmVa5Lcw5ijx42RejWqKzprSy9YmrI1WMi2vhwaMGvn1LiAIj68cStQLslaaullSH31zoc8qThBQUP93sZOC8Xf8eiycXd-MF3EAxMDvj6eQp3BSU4Zk22eINWF_OT-wzuJafLg8X8-dOxBl8vWxx-AUaC49Z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+RFE-GRU+model+for+diabetes+classification+using+PIMA+Indian+dataset&rft.jtitle=Scientific+reports&rft.au=Shams%2C+Mahmoud+Y.&rft.au=Tarek%2C+Zahraa&rft.au=Elshewey%2C+Ahmed+M.&rft.date=2025-01-06&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-82420-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_82420_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |