Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM
Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed...
Saved in:
| Published in: | Scientific reports Vol. 13; no. 1; pp. 14876 - 12 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
08.09.2023
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease’ condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists. |
|---|---|
| AbstractList | Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease’ condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists. Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease' condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists.Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease' condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists. Abstract Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease’ condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists. |
| ArticleNumber | 14876 |
| Author | Wang, Ying Wang, Xiashuang Wang, Yinglei Liu, Dunwei Wang, Zhengjun |
| Author_xml | – sequence: 1 givenname: Xiashuang surname: Wang fullname: Wang, Xiashuang email: wxs_sky@outlook.com organization: The Second Academy of China Aerospace Science and Industry Corporation (CASIC) – sequence: 2 givenname: Yinglei surname: Wang fullname: Wang, Yinglei organization: The Second Academy of China Aerospace Science and Industry Corporation (CASIC) – sequence: 3 givenname: Dunwei surname: Liu fullname: Liu, Dunwei organization: The Second Academy of China Aerospace Science and Industry Corporation (CASIC) – sequence: 4 givenname: Ying surname: Wang fullname: Wang, Ying organization: The Second Academy of China Aerospace Science and Industry Corporation (CASIC) – sequence: 5 givenname: Zhengjun surname: Wang fullname: Wang, Zhengjun organization: The Second Academy of China Aerospace Science and Industry Corporation (CASIC) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37684278$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAUhSNUREvpC7BAkdiwCcR_ib1C1WgolYayoKwtx7lJPUrsYDtI7Yp34A15EpyZFtou6o2v7XM-H9n3ZXZgnYUse43K96gk_EOgiAlelJgUqSJ1cfMsO8IlZQUmGB_cqw-zkxC2ZRoMC4rEi-yQ1BWnuOZHWX86RzeqCG3uQbvemmiczV2Xw2QGmMJ13nk35uv1WR5Mb9UQ8jkY2-cq125sjF3qMCkNf379jmaEXA298yZejQtldXFRbL5dfnmVPe-SF05u5-Ps-6f15epzsfl6dr463RSaURQLQFBT1JYEd4xpjatWCFBVC0pUJRUIa0So1kwTnZZMsVYDbmtOW85BUCDH2fme2zq1lZM3o_LX0ikjdxvO91L5aPQAsq5FTTitSyw6ymjHtVYN57TRrOsAN4n1cc-a5maEdJONXg0PoA9PrLmSvfsp0RK1YmUivLslePdjhhDlaIKGYVAW3Bwk5hXBoqoRTtK3j6RbN_vlvRcVrkohdqo39yP9y3L3oUnA9wLtXQgeOqlNVMufpoRmSNHk0j5y3z4ytY_ctY-8SVb8yHpHf9JE9qaQxLYH_z_2E66_S5PY5w |
| CitedBy_id | crossref_primary_10_1080_1573062X_2024_2399644 crossref_primary_10_3389_fncom_2024_1415967 crossref_primary_10_1186_s12911_024_02845_0 crossref_primary_10_2196_58423 crossref_primary_10_3390_s24123968 crossref_primary_10_1016_j_knosys_2025_113703 crossref_primary_10_1016_j_media_2025_103813 crossref_primary_10_1093_nsr_nwaf086 crossref_primary_10_1016_j_compbiomed_2024_109558 crossref_primary_10_1016_j_najef_2025_102375 crossref_primary_10_1016_j_measurement_2025_118517 crossref_primary_10_1007_s44443_025_00152_w crossref_primary_10_1109_ACCESS_2024_3450449 crossref_primary_10_1177_24723444251353784 crossref_primary_10_1016_j_asr_2025_06_018 crossref_primary_10_1007_s11581_025_06350_w crossref_primary_10_30773_pi_2025_0133 crossref_primary_10_1049_sil2_7543401 crossref_primary_10_1038_s41598_025_05888_z crossref_primary_10_3390_technologies12120261 crossref_primary_10_3390_app15031538 |
| Cites_doi | 10.3389/fnhum.2019.00052 10.1007/s12264-021-00659-y 10.3390/electronics9010142 10.1016/S0031-3203(96)00142-2 10.1016/j.patrec.2005.10.010 10.1016/j.eswa.2011.08.088 10.1016/j.nicl.2019.101684 10.1016/j.patrec.2017.03.023 10.1016/0013-4694(92)90179-L 10.3390/s17050989 10.1002/ima.22441 10.1109/TBME.2014.2360101 10.3390/s19020219 10.1148/radiology.143.1.7063747 10.3390/electronics9040660 10.1016/j.cmpb.2021.106007 10.1016/j.compbiomed.2021.104232 10.1049/iet-cds.2017.0216 10.1007/s10994-006-8199-5 10.1109/ICSEngT.2013.6650205 10.1016/j.compbiomed.2017.09.017 10.1007/s12264-015-1553-5 10.7555/JBR.34.20190043 10.3390/electronics9122092 10.1007/978-3-642-24797-2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. Springer Nature Limited. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Springer Nature Limited 2023 |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. Springer Nature Limited. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Springer Nature Limited 2023 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-41537-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_77973847029f454f8ccab884bc5ffe2b PMC10491650 37684278 10_1038_s41598_023_41537_z |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-e1e741d032f55cc26d99ea6dea9604912c134cc5c3c0495a5dce2d784d88e94e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001064547300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:45:44 EDT 2025 Tue Nov 04 02:06:26 EST 2025 Thu Oct 02 11:43:09 EDT 2025 Tue Oct 07 08:08:26 EDT 2025 Mon Jul 21 05:46:03 EDT 2025 Sat Nov 29 06:05:09 EST 2025 Tue Nov 18 22:06:34 EST 2025 Fri Feb 21 02:37:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. Springer Nature Limited. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-e1e741d032f55cc26d99ea6dea9604912c134cc5c3c0495a5dce2d784d88e94e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2862609912?pq-origsite=%requestingapplication% |
| PMID | 37684278 |
| PQID | 2862609912 |
| PQPubID | 2041939 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_77973847029f454f8ccab884bc5ffe2b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10491650 proquest_miscellaneous_2863296712 proquest_journals_2862609912 pubmed_primary_37684278 crossref_citationtrail_10_1038_s41598_023_41537_z crossref_primary_10_1038_s41598_023_41537_z springer_journals_10_1038_s41598_023_41537_z |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-08 |
| PublicationDateYYYYMMDD | 2023-09-08 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Sharma, Pachori, Acharya (CR8) 2017; 94 Yasin, Hussain, Aslan (CR19) 2021; 202 Liu, Hu, Xu (CR12) 2021; 37 CR14 Samiee, Kovacs, Gabbouj (CR29) 2014; 62 Drummond, Holte (CR25) 2006; 65 Graves (CR27) 2012 Wang, Gong, Li (CR13) 2019; 19 TajDini, Sokolov, Kuzminykh (CR2) 2020; 9 Emami, Kunii, Matsuo (CR11) 2019; 22 Bradley (CR24) 1997; 30 Ilakiyaselvan, Khan, Shahina (CR32) 2020; 34 Seok, Yeo, You (CR18) 2020; 9 Fawcett (CR23) 2005; 27 Ashokkumar, Mohanbabu, Anupallavi (CR10) 2020; 30 Mohanbabu, Anupallavi, Ashokkumar (CR20) 2022; 14 Shorvon (CR1) 2010; 37 Wang, Gong, Li (CR17) 2019; 13 Polat, Güneş (CR6) 2007; 187 Yuanfa, Zun (CR31) 2018; 12 Amo, De Santiago, Barea (CR16) 2017; 17 Hamlin, Kobylarz, Lever (CR3) 2021; 130 CR28 Acharya, Oh, Hagiwara (CR21) 2018; 10 Hanley (CR22) 1982; 143 Isa, Pasya, Taib (CR15) 2013 Sharma, Pachori, Acharya (CR30) 2017; 94 Dattola, Morabito, Mammone (CR4) 2020; 9 Liu, Hahn, Heldt (CR5) 1992; 82 Swami, Gandhi, Panigrahi (CR9) 2017; 4 Tang, Durand (CR26) 2012; 39 Bauquier, Lai, Jiang, Sui, Cook (CR7) 2015; 31 41537_CR14 G Mohanbabu (41537_CR20) 2022; 14 X Wang (41537_CR13) 2019; 19 S Yasin (41537_CR19) 2021; 202 Sebastien H. Bauquier (41537_CR7) 2015; 31 P Bradley (41537_CR24) 1997; 30 N Ilakiyaselvan (41537_CR32) 2020; 34 UR Acharya (41537_CR21) 2018; 10 K Samiee (41537_CR29) 2014; 62 RM Isa (41537_CR15) 2013 SD Shorvon (41537_CR1) 2010; 37 C Amo (41537_CR16) 2017; 17 T Fawcett (41537_CR23) 2005; 27 A Liu (41537_CR5) 1992; 82 M Sharma (41537_CR8) 2017; 94 W Yuanfa (41537_CR31) 2018; 12 M Sharma (41537_CR30) 2017; 94 J Hanley (41537_CR22) 1982; 143 X Wang (41537_CR17) 2019; 13 A Graves (41537_CR27) 2012 S Dattola (41537_CR4) 2020; 9 41537_CR28 C Drummond (41537_CR25) 2006; 65 A Hamlin (41537_CR3) 2021; 130 A Emami (41537_CR11) 2019; 22 W Seok (41537_CR18) 2020; 9 P Swami (41537_CR9) 2017; 4 X Liu (41537_CR12) 2021; 37 K Polat (41537_CR6) 2007; 187 Y Tang (41537_CR26) 2012; 39 M TajDini (41537_CR2) 2020; 9 SR Ashokkumar (41537_CR10) 2020; 30 |
| References_xml | – volume: 13 start-page: 52 year: 2019 end-page: 64 ident: CR17 article-title: Detection analysis of epileptic EEG using a novel random forest model combined with grid search optimization publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2019.00052 – volume: 14 start-page: 219 issue: 1 year: 2022 end-page: 219 ident: CR20 article-title: Retraction note to: An optimized deep learning network model for EEG based seizure classification using synchronization and functional connectivity measures publication-title: J. Ambient. Intell. Humaniz. Comput. – volume: 37 start-page: 1 year: 2021 end-page: 12 ident: CR12 article-title: An automatic HFO detection method combining visual inspection features with multi-domain features publication-title: Neurosci. Bull. doi: 10.1007/s12264-021-00659-y – ident: CR14 – volume: 9 start-page: 142 issue: 1 year: 2020 ident: CR18 article-title: Optimal feature search for vigilance estimation using deep reinforcement learning publication-title: Electronics doi: 10.3390/electronics9010142 – volume: 30 start-page: 1145 issue: 7 year: 1997 end-page: 1159 ident: CR24 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(96)00142-2 – volume: 27 start-page: 861 issue: 8 year: 2005 end-page: 874 ident: CR23 article-title: An introduction to ROC analysis publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 39 start-page: 3925 issue: 4 year: 2012 end-page: 3938 ident: CR26 article-title: A tunable support vector machine assembly classifier for epileptic seizure detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.08.088 – volume: 22 start-page: 101684 year: 2019 ident: CR11 article-title: Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2019.101684 – volume: 94 start-page: 172 issue: 15 year: 2017 end-page: 179 ident: CR30 article-title: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.03.023 – volume: 82 start-page: 30 issue: 1 year: 1992 end-page: 37 ident: CR5 article-title: Detection of neonatal seizures through computerized EEG analysis publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(92)90179-L – volume: 17 start-page: 989 issue: 5 year: 2017 ident: CR16 article-title: Analysis of gamma-band activity from human EEG using empirical mode decomposition publication-title: Sensors doi: 10.3390/s17050989 – volume: 37 start-page: S1 issue: s2 year: 2010 end-page: S3 ident: CR1 article-title: The epidemiology and treatment of chronic and refractory epilepsy publication-title: Epilepsia – volume: 187 start-page: 1017 issue: 2 year: 2007 end-page: 1026 ident: CR6 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Appl. Math. Comput. – volume: 30 start-page: 978 year: 2020 end-page: 993 ident: CR10 article-title: A novel two-band equilateral wavelet filter bank method for an automated detection of seizure from EEG signals publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22441 – volume: 62 start-page: 541 issue: 2 year: 2014 end-page: 552 ident: CR29 article-title: Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2360101 – volume: 19 start-page: 219 issue: 2 year: 2019 end-page: 231 ident: CR13 article-title: Automated recognition of epileptic EEG states using a combination of symlet wavelet processing, gradient boosting machine, and grid search optimizer publication-title: Sensors doi: 10.3390/s19020219 – volume: 143 start-page: 29 year: 1982 end-page: 36 ident: CR22 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 94 start-page: 172 year: 2017 end-page: 179 ident: CR8 article-title: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.03.023 – volume: 9 start-page: 660 issue: 4 year: 2020 ident: CR4 article-title: Findings about LORETA applied to high-density EEG—A review publication-title: Electronics doi: 10.3390/electronics9040660 – volume: 202 start-page: 106007 issue: 1 year: 2021 ident: CR19 article-title: EEG based major depressive disorder and bipolar disorder detection using neural networks: A review publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2021.106007 – volume: 130 start-page: 104232 year: 2021 ident: CR3 article-title: Assessing the feasibility of detecting epileptic seizures using non-cerebral sensor data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104232 – volume: 4 start-page: 41 issue: 1 year: 2017 end-page: 52 ident: CR9 article-title: A comparative account of modelling seizure detection system using wavelet techniques publication-title: Int. J. Syst. Sci. Oper. Logist. – volume: 12 start-page: 108 issue: 1 year: 2018 end-page: 115 ident: CR31 article-title: Hardware design of multiclass SVM classification for epilepsy and epileptic seizure detection publication-title: IET Circuits Devices Syst. doi: 10.1049/iet-cds.2017.0216 – volume: 65 start-page: 95 issue: 1 year: 2006 end-page: 130 ident: CR25 article-title: Cost curves: An improved method for visualizing classifier performance publication-title: Mach. Learn. doi: 10.1007/s10994-006-8199-5 – start-page: 385 year: 2013 end-page: 388 ident: CR15 article-title: EEG brainwave behaviour due to RF exposure using kNN classification publication-title: 2013 IEEE 3rd International Conference on System Engineering and Technology doi: 10.1109/ICSEngT.2013.6650205 – volume: 10 start-page: 270 year: 2018 end-page: 278 ident: CR21 article-title: Deep convolution neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – volume: 31 start-page: 601 issue: 5 year: 2015 end-page: 610 ident: CR7 article-title: Evaluation of an automated spike-and-wave complex detection model in the EEG from a rat model of absence epilepsy publication-title: Neurosci. Bull. doi: 10.1007/s12264-015-1553-5 – volume: 34 start-page: 240 issue: 3 year: 2020 end-page: 251 ident: CR32 article-title: Deep learning approach to detect seizure using reconstructed phase space images publication-title: J. Biomed. Res. doi: 10.7555/JBR.34.20190043 – ident: CR28 – volume: 9 start-page: 2092 issue: 12 year: 2020 ident: CR2 article-title: Wireless sensors for brain activity—A survey publication-title: Electronics doi: 10.3390/electronics9122092 – start-page: 5 year: 2012 end-page: 13 ident: CR27 publication-title: Supervised Sequence Labelling[M]//Supervised Sequence Labeling with Recurrent Neural Networks doi: 10.1007/978-3-642-24797-2 – volume: 202 start-page: 106007 issue: 1 year: 2021 ident: 41537_CR19 publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2021.106007 – volume: 12 start-page: 108 issue: 1 year: 2018 ident: 41537_CR31 publication-title: IET Circuits Devices Syst. doi: 10.1049/iet-cds.2017.0216 – volume: 10 start-page: 270 year: 2018 ident: 41537_CR21 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – volume: 30 start-page: 978 year: 2020 ident: 41537_CR10 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22441 – volume: 65 start-page: 95 issue: 1 year: 2006 ident: 41537_CR25 publication-title: Mach. Learn. doi: 10.1007/s10994-006-8199-5 – volume: 17 start-page: 989 issue: 5 year: 2017 ident: 41537_CR16 publication-title: Sensors doi: 10.3390/s17050989 – volume: 30 start-page: 1145 issue: 7 year: 1997 ident: 41537_CR24 publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(96)00142-2 – volume: 19 start-page: 219 issue: 2 year: 2019 ident: 41537_CR13 publication-title: Sensors doi: 10.3390/s19020219 – ident: 41537_CR28 – volume: 9 start-page: 142 issue: 1 year: 2020 ident: 41537_CR18 publication-title: Electronics doi: 10.3390/electronics9010142 – volume: 39 start-page: 3925 issue: 4 year: 2012 ident: 41537_CR26 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.08.088 – start-page: 5 volume-title: Supervised Sequence Labelling[M]//Supervised Sequence Labeling with Recurrent Neural Networks year: 2012 ident: 41537_CR27 doi: 10.1007/978-3-642-24797-2 – volume: 143 start-page: 29 year: 1982 ident: 41537_CR22 publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 82 start-page: 30 issue: 1 year: 1992 ident: 41537_CR5 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(92)90179-L – volume: 4 start-page: 41 issue: 1 year: 2017 ident: 41537_CR9 publication-title: Int. J. Syst. Sci. Oper. Logist. – volume: 13 start-page: 52 year: 2019 ident: 41537_CR17 publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2019.00052 – volume: 37 start-page: S1 issue: s2 year: 2010 ident: 41537_CR1 publication-title: Epilepsia – volume: 14 start-page: 219 issue: 1 year: 2022 ident: 41537_CR20 publication-title: J. Ambient. Intell. Humaniz. Comput. – volume: 94 start-page: 172 issue: 15 year: 2017 ident: 41537_CR30 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.03.023 – volume: 9 start-page: 660 issue: 4 year: 2020 ident: 41537_CR4 publication-title: Electronics doi: 10.3390/electronics9040660 – volume: 37 start-page: 1 year: 2021 ident: 41537_CR12 publication-title: Neurosci. Bull. doi: 10.1007/s12264-021-00659-y – ident: 41537_CR14 – volume: 22 start-page: 101684 year: 2019 ident: 41537_CR11 publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2019.101684 – start-page: 385 volume-title: 2013 IEEE 3rd International Conference on System Engineering and Technology year: 2013 ident: 41537_CR15 doi: 10.1109/ICSEngT.2013.6650205 – volume: 130 start-page: 104232 year: 2021 ident: 41537_CR3 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104232 – volume: 94 start-page: 172 year: 2017 ident: 41537_CR8 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.03.023 – volume: 31 start-page: 601 issue: 5 year: 2015 ident: 41537_CR7 publication-title: Neurosci. Bull. doi: 10.1007/s12264-015-1553-5 – volume: 27 start-page: 861 issue: 8 year: 2005 ident: 41537_CR23 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 62 start-page: 541 issue: 2 year: 2014 ident: 41537_CR29 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2360101 – volume: 9 start-page: 2092 issue: 12 year: 2020 ident: 41537_CR2 publication-title: Electronics doi: 10.3390/electronics9122092 – volume: 187 start-page: 1017 issue: 2 year: 2007 ident: 41537_CR6 publication-title: Appl. Math. Comput. – volume: 34 start-page: 240 issue: 3 year: 2020 ident: 41537_CR32 publication-title: J. Biomed. Res. doi: 10.7555/JBR.34.20190043 |
| SSID | ssj0000529419 |
| Score | 2.569555 |
| Snippet | Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research.... Abstract Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research.... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 14876 |
| SubjectTerms | 631/114 631/114/116 631/114/116/1925 631/378 692/699 Algorithms Classification Computed tomography Deep learning EEG Electroencephalography Epilepsy Epilepsy - diagnostic imaging Humanities and Social Sciences Humans Learning algorithms Long short-term memory Machine learning Magnetic resonance imaging multidisciplinary Neural networks Neural Networks, Computer Science Science (multidisciplinary) Working conditions |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQw0EIVSFwQbwItMhI3sLqxndg-ttW2HMoKiYJ6sxw_tiu1yWo3i9Se-Af-kC9h7GRDt7wu3BJ7kkzm5bFmPIPQa8sraYpKEhmsINzxnFSSWWKdNI4FNapS_5TPx2Iykaen6sO1Vl8xJ6wrD9wRblcIJRiY0BFVgRc8SPhkJSWvbBGCp1W0vuD1XNtMdVW9qeK56k_JjJjcXcJKFU-TUUbgiglytbESpYL9v_Myf02WvBExTQvR4X10r_cg8V6H-QN0y9cP0Z2up-TlIzTdW7UNuKHe4SE5qKlxE7CfgwWYLy9xPFKCx-MjHJM3QPxwTH6fYoNB-qrUMAKDnbH--9dvsfU8NufTZjFrzy7iWw4mE3L88eT9Y_TpcHxy8I703RSILXjeEp978B7ciNFQFNbS0inlTem8ifVZVE5tzri1hWUWbgtTwB9TJyR3UnrFPXuCtuqm9s8QZsYGGKSlZ4Y7CrOl9VJVwpkc_BefoXxNWW37UuOx48W5TiFvJnXHDQ3c0Ikb-ipDb4Zn5l2hjb9C70eGDZCxSHYaANHRvejof4lOhrbX7Na95i41TVs88Jpphl4N06BzMZBiat-sEgyjqhQR5mknHQMmLEU2hcyQ3JCbDVQ3Z-rZWarrnUc2gMecobdrEfuJ159p8fx_0OIFukujbsRQmdxGW-1i5XfQbfulnS0XL5Ny_QBe0Clx priority: 102 providerName: Directory of Open Access Journals |
| Title | Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM |
| URI | https://link.springer.com/article/10.1038/s41598-023-41537-z https://www.ncbi.nlm.nih.gov/pubmed/37684278 https://www.proquest.com/docview/2862609912 https://www.proquest.com/docview/2863296712 https://pubmed.ncbi.nlm.nih.gov/PMC10491650 https://doaj.org/article/77973847029f454f8ccab884bc5ffe2b |
| Volume | 13 |
| WOSCitedRecordID | wos001064547300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8MRakHjhGxYYlZF4A2uN7dTOE9qmDpDWqoKBylPk2E43aSRdP5C2J_4D_5BfwtlNM5WPvfBiJfYlOvs-fPKd7wBeGpErneSKqsJIKqyIaa64ocYqbXmRdvNQP-XzkRwO1XicjuoDt3kdVrnWiUFR28r4M_JdFkxvtGbYm-k59VWjvHe1LqGxBW2fqUy0oL3fH44-NKcs3o8l4rS-LdPlaneOO5a_VcY4xScu6eXGjhQS9__N2vwzaPI3z2nYkA7v_u9U7sGd2hQleyveuQ83XPkAbq2KU148hMneclGhPessaaKMqpJUBXFTVCXT-QXxd1NIv_-W-CgQ5GPio-gnRBPEIw-VJwgqLON-fv_ha9gTfTZBPBYnX_1fDoZDevTxePAIPh32jw_e0bosAzWJiBfUxQ7NENvlrEgSY1jPpqnTPeu0T_SCszIxF8Ykhht8TXSCS8asVMIq5VLh-GNolVXptoFwbQrsZD3HtbAMR3vGqTSXVsdoCLkI4jVpMlPnLPelM86y4DvnKluRM0NyZoGc2WUEr5pvpquMHddC73uKN5A-23boqGaTrBbeTMpUctzGuywtRCIKhWyfKyVykxSFY3kEO2tCZ7UKmGdXVI7gRTOMwus9Mrp01TLAcJb2pId5smKvBhMeXKRSRaA2GG8D1c2R8vQkJAiPPRnQ9I7g9ZpHr_D691o8vX4az-A282LjvWlqB1qL2dI9h5vm2-J0PuvAlhzL0KpOLYWdcMCB7YCNfCuxbY_eD0ZffgGAHz7x |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAcGFfQkUMBKcwOrEdsbOAaFSprTqdIREqeZmEtuZjtQmw0wGND3xH_gf_Ch-Cc_OUg1Lbz1wS2LH8vK952e_DaFnmqcyiVJJZKYF4YaHJJVME21kYlgWd1KfP-WgLwYDORzG71fQj8YXxplVNjzRM2pTaHdHvk696A3SDH09-Uxc1iinXW1SaFSw2LWLr3Bkm73aeQvr-5zSrd7-5japswoQHfGwJDa0sIuaDqNZFGlNuyaObdI1NnFxSqB9HTKudaSZhtcoiYy21AjJjZQ25pZBuxfQReDjwpmQiaFo73Sc1oyHce2b02FyfQb7o_Nho4zAExPkZGn_82kC_ibb_mmi-Zue1m9_W9f_t4m7ga7VgjbeqCjjJlqx-S10uUq9ubiNRhvzsgBp3Rrc2lAVOS4ybCfAKCezBXaeN7jXe4edjQtQKXY-AiOcYBh36vNqYGDH2v789r0cH1ucHI1g3OXhsWtlczAg_Q_7e3fQx3MZ5V20mhe5vY8wS3QGH2nXsoQbCqVdbWWcCpOEIObZAIUNFJSuI7K7xCBHylsGMKkq-CiAj_LwUScBetH-M6nikZxZ-41DWFvTxRL3H4rpSNWsSQkRCwZCSofGGY94JoGoUyl5qqMsszQN0FoDLFUzuJk6RVWAnrbFwJqcvinJbTH3dRiNu8LVuVfBue0J8wpgIQMkl4C-1NXlknx86MOfh24Z4GARoJcNTZz2699z8eDsYTxBV7b39_qqvzPYfYiuUkeyTm8o19BqOZ3bR-iS_lKOZ9PHnuYx-nTetPILjB2UgQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtMwGLbGOIgbzofAACPBFURtbKd2LhAaWwvTuqoSA-0uOLbTVdqS0qSg7op34G14HJ6E385hKofd7YK7NHZS2_m-33_ynxB6plgiZJgIX6SK-0yzwE8EVb7SQmqaRt3E1U_5OOSjkTg4iMZr6EcTC2PdKhuZ6AS1zpX9Rt4hTvUGbYZ00totYrw9eD377NsKUtbS2pTTqCCya5Zf4fWteLWzDc_6OSGD_v7WO7-uMOCrkAWlbwIDO6ruUpKGoVKkp6PIyJ420uYsgf9SAWVKhYoq-BnKUCtDNBdMC2EiZijc9wK6yFkYWnbtkXH7fcda0FgQ1XE6XSo6BeyVNp6NUB-OKPdPVvZCVzLgb3run-6av9ls3VY4uP4_L-INdK1WwPFmxZibaM1kt9DlqiTn8jaabC7KHLR4o3HrW5VnOE-xmYEAnRVLbCNycL__FlvfF2AvtrEDEywxrEHi6m1gENPK_Pz2vZweGyyPJjDv8vDY3mVrNPKH7_f37qAP5zLLu2g9yzNzH2EqVQonSc9QyTSB1p4yIkq4lgGof8ZDQQOLWNWZ2m3BkKPYeQxQEVdQigFKsYNSfOKhF-01sypPyZm931i0tT1tjnF3Ip9P4lpkxZxHnILy0iVRykKWCiB7IgRLVJimhiQe2mhAFteCr4hPEeahp20ziCxrh5KZyReuDyVRj9s-9ypotyOhzjDMhYfECuhXhrrakk0PXVr0wD4GeOHw0MuGH6fj-vdaPDh7Gk_QFaBIPNwZ7T5EV4llrzUnig20Xs4X5hG6pL6U02L-2NEfo0_nTZVfTD2dTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+recognition+of+epilepsy+from+EEG+signals+using+a+combining+space%E2%80%93time+algorithm+of+CNN-LSTM&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Xiashuang&rft.au=Wang%2C+Yinglei&rft.au=Liu%2C+Dunwei&rft.au=Wang%2C+Ying&rft.date=2023-09-08&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=14876&rft_id=info:doi/10.1038%2Fs41598-023-41537-z&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |