Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM

Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 13; H. 1; S. 14876 - 12
Hauptverfasser: Wang, Xiashuang, Wang, Yinglei, Liu, Dunwei, Wang, Ying, Wang, Zhengjun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 08.09.2023
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease’ condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists.
AbstractList Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease’ condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists.
Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease' condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists.Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease' condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists.
Abstract Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research. Electroencephalogram (EEG) signals exhibit better temporal characteristics in the detection of epilepsy compared to radiation medical images like computed tomography (CT) and magnetic resonance imaging (MRI), as they provide real-time insights into the disease’ condition. While classical machine learning methods have been used for epilepsy EEG classification, they still often require manual parameter adjustments. Previous studies primarily focused on binary epilepsy recognition (epilepsy vs. healthy subjects) rather than as ternary status recognition (continuous epilepsy vs. intermittent epilepsy vs. healthy subjects). In this study, we propose a novel deep learning method that combines a convolution neural network (CNN) with a long short-term memory (LSTM) network for multi-class classification including both binary and ternary tasks, using a publicly available benchmark database on epilepsy EEGs. The hybrid CNN-LSTM automatically acquires knowledge without the need for extra pre-processing or manual intervention. Besides, the joint network method benefits from memory function and stronger feature extraction ability. Our proposed hybrid CNN-LSTM achieves state-of-the-art performance in ternary classification, outperforming classical machine learning and the latest deep learning models. For the three-class classification, in the method achieves an accuracy, specificity, sensitivity, and ROC of 98%, 97.4, 98.3% and 96.8%, respectively. In binary classification, the method achieves better results, with ACC of 100%, 100%, and 99.8%, respectively. Our dual stream spatiotemporal hybrid network demonstrates superior performance compared to other methods. Notably, it eliminates the need for manual operations, making it more efficient for doctors to diagnose during the clinical process and alleviating the workload of neurologists.
ArticleNumber 14876
Author Wang, Ying
Wang, Xiashuang
Wang, Yinglei
Liu, Dunwei
Wang, Zhengjun
Author_xml – sequence: 1
  givenname: Xiashuang
  surname: Wang
  fullname: Wang, Xiashuang
  email: wxs_sky@outlook.com
  organization: The Second Academy of China Aerospace Science and Industry Corporation (CASIC)
– sequence: 2
  givenname: Yinglei
  surname: Wang
  fullname: Wang, Yinglei
  organization: The Second Academy of China Aerospace Science and Industry Corporation (CASIC)
– sequence: 3
  givenname: Dunwei
  surname: Liu
  fullname: Liu, Dunwei
  organization: The Second Academy of China Aerospace Science and Industry Corporation (CASIC)
– sequence: 4
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  organization: The Second Academy of China Aerospace Science and Industry Corporation (CASIC)
– sequence: 5
  givenname: Zhengjun
  surname: Wang
  fullname: Wang, Zhengjun
  organization: The Second Academy of China Aerospace Science and Industry Corporation (CASIC)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37684278$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAkdiwCcR_ib1C1WgolYayoKwtx7lJPUrsYDtI7Yp34A15EpyZFtou6o2v7XM-H9n3ZXZgnYUse43K96gk_EOgiAlelJgUqSJ1cfMsO8IlZQUmGB_cqw-zkxC2ZRoMC4rEi-yQ1BWnuOZHWX86RzeqCG3uQbvemmiczV2Xw2QGmMJ13nk35uv1WR5Mb9UQ8jkY2-cq125sjF3qMCkNf379jmaEXA298yZejQtldXFRbL5dfnmVPe-SF05u5-Ps-6f15epzsfl6dr463RSaURQLQFBT1JYEd4xpjatWCFBVC0pUJRUIa0So1kwTnZZMsVYDbmtOW85BUCDH2fme2zq1lZM3o_LX0ikjdxvO91L5aPQAsq5FTTitSyw6ymjHtVYN57TRrOsAN4n1cc-a5maEdJONXg0PoA9PrLmSvfsp0RK1YmUivLslePdjhhDlaIKGYVAW3Bwk5hXBoqoRTtK3j6RbN_vlvRcVrkohdqo39yP9y3L3oUnA9wLtXQgeOqlNVMufpoRmSNHk0j5y3z4ytY_ctY-8SVb8yHpHf9JE9qaQxLYH_z_2E66_S5PY5w
CitedBy_id crossref_primary_10_1080_1573062X_2024_2399644
crossref_primary_10_3389_fncom_2024_1415967
crossref_primary_10_1186_s12911_024_02845_0
crossref_primary_10_2196_58423
crossref_primary_10_3390_s24123968
crossref_primary_10_1016_j_knosys_2025_113703
crossref_primary_10_1016_j_media_2025_103813
crossref_primary_10_1093_nsr_nwaf086
crossref_primary_10_1016_j_compbiomed_2024_109558
crossref_primary_10_1016_j_najef_2025_102375
crossref_primary_10_1016_j_measurement_2025_118517
crossref_primary_10_1007_s44443_025_00152_w
crossref_primary_10_1109_ACCESS_2024_3450449
crossref_primary_10_1177_24723444251353784
crossref_primary_10_1016_j_asr_2025_06_018
crossref_primary_10_1007_s11581_025_06350_w
crossref_primary_10_30773_pi_2025_0133
crossref_primary_10_1049_sil2_7543401
crossref_primary_10_1038_s41598_025_05888_z
crossref_primary_10_3390_technologies12120261
crossref_primary_10_3390_app15031538
Cites_doi 10.3389/fnhum.2019.00052
10.1007/s12264-021-00659-y
10.3390/electronics9010142
10.1016/S0031-3203(96)00142-2
10.1016/j.patrec.2005.10.010
10.1016/j.eswa.2011.08.088
10.1016/j.nicl.2019.101684
10.1016/j.patrec.2017.03.023
10.1016/0013-4694(92)90179-L
10.3390/s17050989
10.1002/ima.22441
10.1109/TBME.2014.2360101
10.3390/s19020219
10.1148/radiology.143.1.7063747
10.3390/electronics9040660
10.1016/j.cmpb.2021.106007
10.1016/j.compbiomed.2021.104232
10.1049/iet-cds.2017.0216
10.1007/s10994-006-8199-5
10.1109/ICSEngT.2013.6650205
10.1016/j.compbiomed.2017.09.017
10.1007/s12264-015-1553-5
10.7555/JBR.34.20190043
10.3390/electronics9122092
10.1007/978-3-642-24797-2
ContentType Journal Article
Copyright The Author(s) 2023
2023. Springer Nature Limited.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. Springer Nature Limited.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-41537-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic


Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_77973847029f454f8ccab884bc5ffe2b
PMC10491650
37684278
10_1038_s41598_023_41537_z
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-e1e741d032f55cc26d99ea6dea9604912c134cc5c3c0495a5dce2d784d88e94e3
IEDL.DBID DOA
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001064547300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:45:44 EDT 2025
Tue Nov 04 02:06:26 EST 2025
Thu Oct 02 11:43:09 EDT 2025
Tue Oct 07 08:08:26 EDT 2025
Mon Jul 21 05:46:03 EDT 2025
Sat Nov 29 06:05:09 EST 2025
Tue Nov 18 22:06:34 EST 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. Springer Nature Limited.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e1e741d032f55cc26d99ea6dea9604912c134cc5c3c0495a5dce2d784d88e94e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/77973847029f454f8ccab884bc5ffe2b
PMID 37684278
PQID 2862609912
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_77973847029f454f8ccab884bc5ffe2b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10491650
proquest_miscellaneous_2863296712
proquest_journals_2862609912
pubmed_primary_37684278
crossref_citationtrail_10_1038_s41598_023_41537_z
crossref_primary_10_1038_s41598_023_41537_z
springer_journals_10_1038_s41598_023_41537_z
PublicationCentury 2000
PublicationDate 2023-09-08
PublicationDateYYYYMMDD 2023-09-08
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Sharma, Pachori, Acharya (CR8) 2017; 94
Yasin, Hussain, Aslan (CR19) 2021; 202
Liu, Hu, Xu (CR12) 2021; 37
CR14
Samiee, Kovacs, Gabbouj (CR29) 2014; 62
Drummond, Holte (CR25) 2006; 65
Graves (CR27) 2012
Wang, Gong, Li (CR13) 2019; 19
TajDini, Sokolov, Kuzminykh (CR2) 2020; 9
Emami, Kunii, Matsuo (CR11) 2019; 22
Bradley (CR24) 1997; 30
Ilakiyaselvan, Khan, Shahina (CR32) 2020; 34
Seok, Yeo, You (CR18) 2020; 9
Fawcett (CR23) 2005; 27
Ashokkumar, Mohanbabu, Anupallavi (CR10) 2020; 30
Mohanbabu, Anupallavi, Ashokkumar (CR20) 2022; 14
Shorvon (CR1) 2010; 37
Wang, Gong, Li (CR17) 2019; 13
Polat, Güneş (CR6) 2007; 187
Yuanfa, Zun (CR31) 2018; 12
Amo, De Santiago, Barea (CR16) 2017; 17
Hamlin, Kobylarz, Lever (CR3) 2021; 130
CR28
Acharya, Oh, Hagiwara (CR21) 2018; 10
Hanley (CR22) 1982; 143
Isa, Pasya, Taib (CR15) 2013
Sharma, Pachori, Acharya (CR30) 2017; 94
Dattola, Morabito, Mammone (CR4) 2020; 9
Liu, Hahn, Heldt (CR5) 1992; 82
Swami, Gandhi, Panigrahi (CR9) 2017; 4
Tang, Durand (CR26) 2012; 39
Bauquier, Lai, Jiang, Sui, Cook (CR7) 2015; 31
41537_CR14
G Mohanbabu (41537_CR20) 2022; 14
X Wang (41537_CR13) 2019; 19
S Yasin (41537_CR19) 2021; 202
Sebastien H. Bauquier (41537_CR7) 2015; 31
P Bradley (41537_CR24) 1997; 30
N Ilakiyaselvan (41537_CR32) 2020; 34
UR Acharya (41537_CR21) 2018; 10
K Samiee (41537_CR29) 2014; 62
RM Isa (41537_CR15) 2013
SD Shorvon (41537_CR1) 2010; 37
C Amo (41537_CR16) 2017; 17
T Fawcett (41537_CR23) 2005; 27
A Liu (41537_CR5) 1992; 82
M Sharma (41537_CR8) 2017; 94
W Yuanfa (41537_CR31) 2018; 12
M Sharma (41537_CR30) 2017; 94
J Hanley (41537_CR22) 1982; 143
X Wang (41537_CR17) 2019; 13
A Graves (41537_CR27) 2012
S Dattola (41537_CR4) 2020; 9
41537_CR28
C Drummond (41537_CR25) 2006; 65
A Hamlin (41537_CR3) 2021; 130
A Emami (41537_CR11) 2019; 22
W Seok (41537_CR18) 2020; 9
P Swami (41537_CR9) 2017; 4
X Liu (41537_CR12) 2021; 37
K Polat (41537_CR6) 2007; 187
Y Tang (41537_CR26) 2012; 39
M TajDini (41537_CR2) 2020; 9
SR Ashokkumar (41537_CR10) 2020; 30
References_xml – volume: 13
  start-page: 52
  year: 2019
  end-page: 64
  ident: CR17
  article-title: Detection analysis of epileptic EEG using a novel random forest model combined with grid search optimization
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00052
– volume: 14
  start-page: 219
  issue: 1
  year: 2022
  end-page: 219
  ident: CR20
  article-title: Retraction note to: An optimized deep learning network model for EEG based seizure classification using synchronization and functional connectivity measures
  publication-title: J. Ambient. Intell. Humaniz. Comput.
– volume: 37
  start-page: 1
  year: 2021
  end-page: 12
  ident: CR12
  article-title: An automatic HFO detection method combining visual inspection features with multi-domain features
  publication-title: Neurosci. Bull.
  doi: 10.1007/s12264-021-00659-y
– ident: CR14
– volume: 9
  start-page: 142
  issue: 1
  year: 2020
  ident: CR18
  article-title: Optimal feature search for vigilance estimation using deep reinforcement learning
  publication-title: Electronics
  doi: 10.3390/electronics9010142
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  end-page: 1159
  ident: CR24
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 27
  start-page: 861
  issue: 8
  year: 2005
  end-page: 874
  ident: CR23
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 39
  start-page: 3925
  issue: 4
  year: 2012
  end-page: 3938
  ident: CR26
  article-title: A tunable support vector machine assembly classifier for epileptic seizure detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.088
– volume: 22
  start-page: 101684
  year: 2019
  ident: CR11
  article-title: Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2019.101684
– volume: 94
  start-page: 172
  issue: 15
  year: 2017
  end-page: 179
  ident: CR30
  article-title: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.03.023
– volume: 82
  start-page: 30
  issue: 1
  year: 1992
  end-page: 37
  ident: CR5
  article-title: Detection of neonatal seizures through computerized EEG analysis
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(92)90179-L
– volume: 17
  start-page: 989
  issue: 5
  year: 2017
  ident: CR16
  article-title: Analysis of gamma-band activity from human EEG using empirical mode decomposition
  publication-title: Sensors
  doi: 10.3390/s17050989
– volume: 37
  start-page: S1
  issue: s2
  year: 2010
  end-page: S3
  ident: CR1
  article-title: The epidemiology and treatment of chronic and refractory epilepsy
  publication-title: Epilepsia
– volume: 187
  start-page: 1017
  issue: 2
  year: 2007
  end-page: 1026
  ident: CR6
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Appl. Math. Comput.
– volume: 30
  start-page: 978
  year: 2020
  end-page: 993
  ident: CR10
  article-title: A novel two-band equilateral wavelet filter bank method for an automated detection of seizure from EEG signals
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22441
– volume: 62
  start-page: 541
  issue: 2
  year: 2014
  end-page: 552
  ident: CR29
  article-title: Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2360101
– volume: 19
  start-page: 219
  issue: 2
  year: 2019
  end-page: 231
  ident: CR13
  article-title: Automated recognition of epileptic EEG states using a combination of symlet wavelet processing, gradient boosting machine, and grid search optimizer
  publication-title: Sensors
  doi: 10.3390/s19020219
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: CR22
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 94
  start-page: 172
  year: 2017
  end-page: 179
  ident: CR8
  article-title: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.03.023
– volume: 9
  start-page: 660
  issue: 4
  year: 2020
  ident: CR4
  article-title: Findings about LORETA applied to high-density EEG—A review
  publication-title: Electronics
  doi: 10.3390/electronics9040660
– volume: 202
  start-page: 106007
  issue: 1
  year: 2021
  ident: CR19
  article-title: EEG based major depressive disorder and bipolar disorder detection using neural networks: A review
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2021.106007
– volume: 130
  start-page: 104232
  year: 2021
  ident: CR3
  article-title: Assessing the feasibility of detecting epileptic seizures using non-cerebral sensor data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104232
– volume: 4
  start-page: 41
  issue: 1
  year: 2017
  end-page: 52
  ident: CR9
  article-title: A comparative account of modelling seizure detection system using wavelet techniques
  publication-title: Int. J. Syst. Sci. Oper. Logist.
– volume: 12
  start-page: 108
  issue: 1
  year: 2018
  end-page: 115
  ident: CR31
  article-title: Hardware design of multiclass SVM classification for epilepsy and epileptic seizure detection
  publication-title: IET Circuits Devices Syst.
  doi: 10.1049/iet-cds.2017.0216
– volume: 65
  start-page: 95
  issue: 1
  year: 2006
  end-page: 130
  ident: CR25
  article-title: Cost curves: An improved method for visualizing classifier performance
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-8199-5
– start-page: 385
  year: 2013
  end-page: 388
  ident: CR15
  article-title: EEG brainwave behaviour due to RF exposure using kNN classification
  publication-title: 2013 IEEE 3rd International Conference on System Engineering and Technology
  doi: 10.1109/ICSEngT.2013.6650205
– volume: 10
  start-page: 270
  year: 2018
  end-page: 278
  ident: CR21
  article-title: Deep convolution neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 31
  start-page: 601
  issue: 5
  year: 2015
  end-page: 610
  ident: CR7
  article-title: Evaluation of an automated spike-and-wave complex detection model in the EEG from a rat model of absence epilepsy
  publication-title: Neurosci. Bull.
  doi: 10.1007/s12264-015-1553-5
– volume: 34
  start-page: 240
  issue: 3
  year: 2020
  end-page: 251
  ident: CR32
  article-title: Deep learning approach to detect seizure using reconstructed phase space images
  publication-title: J. Biomed. Res.
  doi: 10.7555/JBR.34.20190043
– ident: CR28
– volume: 9
  start-page: 2092
  issue: 12
  year: 2020
  ident: CR2
  article-title: Wireless sensors for brain activity—A survey
  publication-title: Electronics
  doi: 10.3390/electronics9122092
– start-page: 5
  year: 2012
  end-page: 13
  ident: CR27
  publication-title: Supervised Sequence Labelling[M]//Supervised Sequence Labeling with Recurrent Neural Networks
  doi: 10.1007/978-3-642-24797-2
– volume: 202
  start-page: 106007
  issue: 1
  year: 2021
  ident: 41537_CR19
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2021.106007
– volume: 12
  start-page: 108
  issue: 1
  year: 2018
  ident: 41537_CR31
  publication-title: IET Circuits Devices Syst.
  doi: 10.1049/iet-cds.2017.0216
– volume: 10
  start-page: 270
  year: 2018
  ident: 41537_CR21
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 30
  start-page: 978
  year: 2020
  ident: 41537_CR10
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22441
– volume: 65
  start-page: 95
  issue: 1
  year: 2006
  ident: 41537_CR25
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-8199-5
– volume: 17
  start-page: 989
  issue: 5
  year: 2017
  ident: 41537_CR16
  publication-title: Sensors
  doi: 10.3390/s17050989
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 41537_CR24
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 19
  start-page: 219
  issue: 2
  year: 2019
  ident: 41537_CR13
  publication-title: Sensors
  doi: 10.3390/s19020219
– ident: 41537_CR28
– volume: 9
  start-page: 142
  issue: 1
  year: 2020
  ident: 41537_CR18
  publication-title: Electronics
  doi: 10.3390/electronics9010142
– volume: 39
  start-page: 3925
  issue: 4
  year: 2012
  ident: 41537_CR26
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.088
– start-page: 5
  volume-title: Supervised Sequence Labelling[M]//Supervised Sequence Labeling with Recurrent Neural Networks
  year: 2012
  ident: 41537_CR27
  doi: 10.1007/978-3-642-24797-2
– volume: 143
  start-page: 29
  year: 1982
  ident: 41537_CR22
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 82
  start-page: 30
  issue: 1
  year: 1992
  ident: 41537_CR5
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(92)90179-L
– volume: 4
  start-page: 41
  issue: 1
  year: 2017
  ident: 41537_CR9
  publication-title: Int. J. Syst. Sci. Oper. Logist.
– volume: 13
  start-page: 52
  year: 2019
  ident: 41537_CR17
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00052
– volume: 37
  start-page: S1
  issue: s2
  year: 2010
  ident: 41537_CR1
  publication-title: Epilepsia
– volume: 14
  start-page: 219
  issue: 1
  year: 2022
  ident: 41537_CR20
  publication-title: J. Ambient. Intell. Humaniz. Comput.
– volume: 94
  start-page: 172
  issue: 15
  year: 2017
  ident: 41537_CR30
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.03.023
– volume: 9
  start-page: 660
  issue: 4
  year: 2020
  ident: 41537_CR4
  publication-title: Electronics
  doi: 10.3390/electronics9040660
– volume: 37
  start-page: 1
  year: 2021
  ident: 41537_CR12
  publication-title: Neurosci. Bull.
  doi: 10.1007/s12264-021-00659-y
– ident: 41537_CR14
– volume: 22
  start-page: 101684
  year: 2019
  ident: 41537_CR11
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2019.101684
– start-page: 385
  volume-title: 2013 IEEE 3rd International Conference on System Engineering and Technology
  year: 2013
  ident: 41537_CR15
  doi: 10.1109/ICSEngT.2013.6650205
– volume: 130
  start-page: 104232
  year: 2021
  ident: 41537_CR3
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104232
– volume: 94
  start-page: 172
  year: 2017
  ident: 41537_CR8
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.03.023
– volume: 31
  start-page: 601
  issue: 5
  year: 2015
  ident: 41537_CR7
  publication-title: Neurosci. Bull.
  doi: 10.1007/s12264-015-1553-5
– volume: 27
  start-page: 861
  issue: 8
  year: 2005
  ident: 41537_CR23
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 62
  start-page: 541
  issue: 2
  year: 2014
  ident: 41537_CR29
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2360101
– volume: 9
  start-page: 2092
  issue: 12
  year: 2020
  ident: 41537_CR2
  publication-title: Electronics
  doi: 10.3390/electronics9122092
– volume: 187
  start-page: 1017
  issue: 2
  year: 2007
  ident: 41537_CR6
  publication-title: Appl. Math. Comput.
– volume: 34
  start-page: 240
  issue: 3
  year: 2020
  ident: 41537_CR32
  publication-title: J. Biomed. Res.
  doi: 10.7555/JBR.34.20190043
SSID ssj0000529419
Score 2.569555
Snippet Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research....
Abstract Intelligent recognition methods for classifying non-stationary and non-invasive epileptic diagnoses are essential tools in neurological research....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14876
SubjectTerms 631/114
631/114/116
631/114/116/1925
631/378
692/699
Algorithms
Classification
Computed tomography
Deep learning
EEG
Electroencephalography
Epilepsy
Epilepsy - diagnostic imaging
Humanities and Social Sciences
Humans
Learning algorithms
Long short-term memory
Machine learning
Magnetic resonance imaging
multidisciplinary
Neural networks
Neural Networks, Computer
Science
Science (multidisciplinary)
Working conditions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgCxIX3qULBRmJG1jd-JE4J9RWWzhAVEGRerMc29lWKsmyyVZqT_wH_iG_hLHjTbU8euGWhxON_Y3HnzzjGYReMWOp1YyRMrEp4cY4ImVuSSKNAHZNK-7KUGwiKwp5fJwfxg23NoZVrmxiMNS2MX6PfIcG6g1shr6dfyO-apT3rsYSGjfRhs9UxkdoY29aHH4adlm8H4sneTwtM2Fyp4UVy58qo4zAFcvI5dqKFBL3_41t_hk0-ZvnNCxIB_f-tyv30d1IRfFurzsP0A1XP0S3--KUF4_QbHfZNcBnncVDlFFT46bCbg6mZN5eYH82BU-n77CPAgE9xj6KfoY1BjnKUHkCg8Ey7uf3H76GPdZnM5CjO_nq_7JfFOTD56OPj9GXg-nR_nsSyzIQI3jSEZc4oCF2wmglhDE0tXnudGqd9oleoFcmYQC6MMzArdAChozaTHIrpcu5Y5toVDe120KYl6nV2jApLDALDdfMTaTWJTXOaifHKFlBo0zMWe5LZ5yp4DtnUvVwKoBTBTjV5Ri9Hr6Z9xk7rm295xEfWvps2-FBs5ipOHlVluUZg2V8QvOKC15JUPtSSl4aUVWOlmO0vQJaRRPQqiuUx-jl8Bomr_fI6No1y9CG0TzNfJsnvXoNkrDgIs1gDOSa4q2Juv6mPj0JCcITDwNQ7zF6s9LRK7n-PRZPr-_GM3SH-mnjvWlyG426xdI9R7fMeXfaLl7EmfcLTBY5LQ
  priority: 102
  providerName: ProQuest
Title Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM
URI https://link.springer.com/article/10.1038/s41598-023-41537-z
https://www.ncbi.nlm.nih.gov/pubmed/37684278
https://www.proquest.com/docview/2862609912
https://www.proquest.com/docview/2863296712
https://pubmed.ncbi.nlm.nih.gov/PMC10491650
https://doaj.org/article/77973847029f454f8ccab884bc5ffe2b
Volume 13
WOSCitedRecordID wos001064547300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgA4kXxN8RGJWReANrjR3H9uM2dYBEowqGVJ4ix3a6SiOp2hRpe-I78A35JJydNKz8feHFcmInce7O55915zuEnjNjqdWMkSK2KUmMcURKZUksDQd0TcvEFSHZhMgyOZ2qyZVUX94nrA0P3BLuQAglGKjQIVVlwpNSwicLKZPC8LJ0tPDaF1DPlc1UG9WbqiRW3SmZIZMHK1ip_GkyygjUmCCXWytRCNj_O5T5q7PkTxbTsBCd3EG3OwSJD9uR30XXXHUP3WxzSl7cR7PDdVMDDHUW985BdYXrErsFaIDF6gL7IyV4NHqFvfMGiB_2zu8zrDFIXxESRmDQM8Z9-_LVp57H-nxWL-fN2Sf_luMsI2_fn44foA8no9Pj16TLpkAMT-KGuNgBerBDRkvOjaGpVcrp1Drt47OomJqYAa-4YQYuuebwx9QKmVgpnUoce4h2qrpyjxBOitRqbZjkFgCBhjpzQ6l1QY2z2skIxRvK5qYLNe4zXpznweTNZN5yIwdu5IEb-WWEXvTPLNpAG3_tfeQZ1vf0QbLDDRCdvBOd_F-iE6H9Dbvzbuauchq2eICaaYSe9c0w57whRVeuXoc-jKpU-D57rXT0I2HBsimABnJLbraGut1Szc9CXO_YswEQc4RebkTsx7j-TIvH_4MWT9At6ueGN5XJfbTTLNfuKbphPjfz1XKAroupCKUcoN2jUTZ5NwgTDsoxnfhSQLk7eTOefPwOMZwxCA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMEL90thgJHgCaw1dhI7DwiN0bFpXYVEkfpmHNvpKm1JaVNQ98R_4H_wo_glHDuXqVz2tgfektixfPnO8bHPDaFnTBtqFGMkDUxMQq0tESIxJBA6AumaZqFNfbIJPhiI0Sh5v4Z-NL4wzqyy4YmeUZtCuzvyTepFb5Bm6OvpZ-KyRjntapNCo4LFvl1-hSPb_NXeW1jf55Tu9Ibbu6TOKkB0FAYlsYGFXdR0Gc2iSGsamySxKjZWuTgl0L4OGPQ50kzDa6Qioy01XIRGCJuElkG7F9BF4OPcmZDxEW_vdJzWLAyS2jeny8TmHPZH58NGGYEnxsnJyv7n0wT8Tbb900TzNz2t3_52rv9vE3cDXasFbbxVUcZNtGbzW-hylXpzeRuNtxZlAdK6Nbi1oSpyXGTYToFRTudL7DxvcK_3DjsbF6BS7HwExlhhGHfq82pgYMfa_vz2vZwcW6yOxjDu8vDYtbI9GJD-h-HBHfTxXEZ5F63nRW7vIxymsVFKMxEZkJsUPDPbFUqlVFujrOigoIGC1HVEdpcY5Eh6ywAmZAUfCfCRHj7ypINetP9Mq3gkZ9Z-4xDW1nSxxP2HYjaWNWuSnCecgZDSpUkWRmEmgKhTIcJUR1lmadpBGw2wZM3g5vIUVR30tC0G1uT0TSq3xcLXYTSJuatzr4Jz2xPmFcAc5kCsAH2lq6sl-eTQhz8P3DLAwaKDXjY0cdqvf8_Fg7OH8QRd2R0e9GV_b7D_EF2ljmSd3lBsoPVytrCP0CX9pZzMZ489zWP06bxp5Rc-jJUY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtMwGLbGOIgbzmyFAUaCK2a1sePGuUBobC1M26pKDGl3xrGdrtKWlDYFdVe8A2_D4_Ak_HYOUznsbhfc5eAktvN9v__kPyH0gmlDjWKMJIHpklBrS4SIDQmE5qBd0zS0iS82EQ0G4ugoHq6gH3UsjHOrrGWiF9Qm1-4feZt61Ru0GdpOK7eI4U7_zeQzcRWknKW1LqdRQmTPLr7C59vs9e4OvOuXlPZ7h9vvSVVhgGgeBgWxgYUV1XQYTTnXmnZNHFvVNVa5nCXwLB0w6D_XTMMuV9xoS00kQiOEjUPL4L5X0NUo5Nyx64AOm_87zoIWBnEVp9Nhoj2DtdLFs1FGYItF5GxpLfQlA_6m5_7prvmbzdYvhf3b__Mk3kG3KgUcb5WMuYtWbHYPXS9Lci7uo9HWvMhBi7cGN75VeYbzFNsJCNDJbIFdRA7u9d5h5_sC7MUudmCEFYY5SHy9DQxiWtuf374X41OL1ckIxl0cn7q7bA8GZP_D4cED9PFSRvkQrWZ5ZtcRDpOuUUozwQ3oUwq2me0IpRKqrVFWtFBQw0LqKlO7KxhyIr3HABOyhJIEKEkPJXnWQq-aayZlnpILW791aGtauhzj_kA-HclKZMkoiiMGykuHxmnIw1QA2RMhwkTzNLU0aaGNGmSyEnwzeY6wFnrenAaR5exQKrP53LdhNO5Grs1aCe2mJ8wbhiOYA7EE-qWuLp_Jxsc-LXrgXgN8cLTQZs2P8379ey4eXTyMZ-gGUETu7w72HqOb1LHXmRPFBlotpnP7BF3TX4rxbPrU0x-jT5dNlV_5hp3l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+recognition+of+epilepsy+from+EEG+signals+using+a+combining+space-time+algorithm+of+CNN-LSTM&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Xiashuang&rft.au=Wang%2C+Yinglei&rft.au=Liu%2C+Dunwei&rft.au=Wang%2C+Ying&rft.date=2023-09-08&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=14876&rft_id=info:doi/10.1038%2Fs41598-023-41537-z&rft_id=info%3Apmid%2F37684278&rft.externalDocID=37684278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon