Lightweight visual localization algorithm for UAVs
The Lightv8nPnP lightweight visual positioning algorithm model has been introduced to make deep learning-based drone visual positioning algorithms more lightweight. The core objective of this research is to develop an efficient visual positioning algorithm model that can achieve accurate 3D position...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 6069 - 14 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
19.02.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Lightv8nPnP lightweight visual positioning algorithm model has been introduced to make deep learning-based drone visual positioning algorithms more lightweight. The core objective of this research is to develop an efficient visual positioning algorithm model that can achieve accurate 3D positioning for drones. To enhance model performance, several optimizations are proposed. Firstly, to reduce the complexity of the detection head module, GhostConv is introduced into the detection head module, constructing the GDetect detection head module. Secondly, to address the issues of imbalanced sample difficulty and uneven pixel quality in our custom dataset that result in suboptimal detection performance, Wise-IoU is introduced as the model’s bounding box regression loss function. Lastly, based on the characteristics of the drone aerial dataset samples, modifications are made to the YOLOv8n network structure to reduce redundant feature maps, resulting in the creation of the TrimYOLO network structure. Experimental results demonstrate that the Lightv8nPnP algorithm reduces the number of parameters and computational load compared to benchmark algorithms, achieves a detection rate of 186 frames per second, and maintains a positioning error of less than 5.5 centimeters across the X, Y, and Z axes in three-dimensional space. |
|---|---|
| AbstractList | Abstract The Lightv8nPnP lightweight visual positioning algorithm model has been introduced to make deep learning-based drone visual positioning algorithms more lightweight. The core objective of this research is to develop an efficient visual positioning algorithm model that can achieve accurate 3D positioning for drones. To enhance model performance, several optimizations are proposed. Firstly, to reduce the complexity of the detection head module, GhostConv is introduced into the detection head module, constructing the GDetect detection head module. Secondly, to address the issues of imbalanced sample difficulty and uneven pixel quality in our custom dataset that result in suboptimal detection performance, Wise-IoU is introduced as the model’s bounding box regression loss function. Lastly, based on the characteristics of the drone aerial dataset samples, modifications are made to the YOLOv8n network structure to reduce redundant feature maps, resulting in the creation of the TrimYOLO network structure. Experimental results demonstrate that the Lightv8nPnP algorithm reduces the number of parameters and computational load compared to benchmark algorithms, achieves a detection rate of 186 frames per second, and maintains a positioning error of less than 5.5 centimeters across the X, Y, and Z axes in three-dimensional space. The Lightv8nPnP lightweight visual positioning algorithm model has been introduced to make deep learning-based drone visual positioning algorithms more lightweight. The core objective of this research is to develop an efficient visual positioning algorithm model that can achieve accurate 3D positioning for drones. To enhance model performance, several optimizations are proposed. Firstly, to reduce the complexity of the detection head module, GhostConv is introduced into the detection head module, constructing the GDetect detection head module. Secondly, to address the issues of imbalanced sample difficulty and uneven pixel quality in our custom dataset that result in suboptimal detection performance, Wise-IoU is introduced as the model’s bounding box regression loss function. Lastly, based on the characteristics of the drone aerial dataset samples, modifications are made to the YOLOv8n network structure to reduce redundant feature maps, resulting in the creation of the TrimYOLO network structure. Experimental results demonstrate that the Lightv8nPnP algorithm reduces the number of parameters and computational load compared to benchmark algorithms, achieves a detection rate of 186 frames per second, and maintains a positioning error of less than 5.5 centimeters across the X, Y, and Z axes in three-dimensional space. The Lightv8nPnP lightweight visual positioning algorithm model has been introduced to make deep learning-based drone visual positioning algorithms more lightweight. The core objective of this research is to develop an efficient visual positioning algorithm model that can achieve accurate 3D positioning for drones. To enhance model performance, several optimizations are proposed. Firstly, to reduce the complexity of the detection head module, GhostConv is introduced into the detection head module, constructing the GDetect detection head module. Secondly, to address the issues of imbalanced sample difficulty and uneven pixel quality in our custom dataset that result in suboptimal detection performance, Wise-IoU is introduced as the model's bounding box regression loss function. Lastly, based on the characteristics of the drone aerial dataset samples, modifications are made to the YOLOv8n network structure to reduce redundant feature maps, resulting in the creation of the TrimYOLO network structure. Experimental results demonstrate that the Lightv8nPnP algorithm reduces the number of parameters and computational load compared to benchmark algorithms, achieves a detection rate of 186 frames per second, and maintains a positioning error of less than 5.5 centimeters across the X, Y, and Z axes in three-dimensional space.The Lightv8nPnP lightweight visual positioning algorithm model has been introduced to make deep learning-based drone visual positioning algorithms more lightweight. The core objective of this research is to develop an efficient visual positioning algorithm model that can achieve accurate 3D positioning for drones. To enhance model performance, several optimizations are proposed. Firstly, to reduce the complexity of the detection head module, GhostConv is introduced into the detection head module, constructing the GDetect detection head module. Secondly, to address the issues of imbalanced sample difficulty and uneven pixel quality in our custom dataset that result in suboptimal detection performance, Wise-IoU is introduced as the model's bounding box regression loss function. Lastly, based on the characteristics of the drone aerial dataset samples, modifications are made to the YOLOv8n network structure to reduce redundant feature maps, resulting in the creation of the TrimYOLO network structure. Experimental results demonstrate that the Lightv8nPnP algorithm reduces the number of parameters and computational load compared to benchmark algorithms, achieves a detection rate of 186 frames per second, and maintains a positioning error of less than 5.5 centimeters across the X, Y, and Z axes in three-dimensional space. |
| ArticleNumber | 6069 |
| Author | Xian, Qinglong Jia, Zhen-Hong Du, Zongdong Li, Feng Feng, Xuefeng Wang, Yuhang Liu, Chang |
| Author_xml | – sequence: 1 givenname: Yuhang surname: Wang fullname: Wang, Yuhang organization: College of Computer Science and Technology, Xinjiang University, Xinjiang University Signal Detection and Processing Autonomous Region Key Laboratory – sequence: 2 givenname: Xuefeng surname: Feng fullname: Feng, Xuefeng organization: Xinjiang Uygur Autonomous Region Research Institute of Measurement and Testing – sequence: 3 givenname: Feng surname: Li fullname: Li, Feng organization: Xinjiang Uygur Autonomous Region Research Institute of Measurement and Testing – sequence: 4 givenname: Qinglong surname: Xian fullname: Xian, Qinglong organization: Xinjiang Uygur Autonomous Region Research Institute of Measurement and Testing – sequence: 5 givenname: Zhen-Hong surname: Jia fullname: Jia, Zhen-Hong email: jzhh@xju.edu.cn organization: College of Computer Science and Technology, Xinjiang University, Xinjiang University Signal Detection and Processing Autonomous Region Key Laboratory – sequence: 6 givenname: Zongdong surname: Du fullname: Du, Zongdong organization: College of Computer Science and Technology, Xinjiang University, Xinjiang University Signal Detection and Processing Autonomous Region Key Laboratory – sequence: 7 givenname: Chang surname: Liu fullname: Liu, Chang organization: College of Computer Science and Technology, Xinjiang University, Xinjiang University Signal Detection and Processing Autonomous Region Key Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39971988$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu3CAURVWqJk3zA11Ulrrpxi0vY1hVUdRHpJGySbJFmIeHEWNSsBNNv76Mnea1CAu4gnPOvdx73oODIQ4WgI8IfkWQ8G-ZokbwGuKm5hxyUe_egCMMaVNjgvHBk_gQnOS8gWU1WFAk3oFDIkSLBOdHAK98vx7v7H6vbn2eVKhC1Cr4v2r0cahU6GPy43pbuZiqq9Pr_AG8dSpke3J_HoOrnz8uz37Xq4tf52enq1o3FI210Q5C1gptlO6wIIwzQ7Dl2LmWIWQYd0Z1FHNOBEbcaEuNEo4ZVhjGdOQYnC-6JqqNvEl-q9JORuXlfBFTL1UavQ5WtlzbhnXOUEepoEq1AnHmoMMdoR1si9b3Retm6ra25BrGpMIz0ecvg1_LPt5KhDjdN64ofLlXSPHPZPMotz5rG4IabJyyJIjxlgk4J_v8ArqJUxpKr2ZUgymBsKA-PS3poZb_sykAvAB0ijkn6x4gCMq9B-TiAVk8IGcPyF0h8Rck7cd5kuVbPrxOJQs1lzxDb9Nj2a-w_gGLgcaO |
| CitedBy_id | crossref_primary_10_3390_drones9060392 crossref_primary_10_1007_s11227_025_07446_w crossref_primary_10_1109_ACCESS_2025_3590402 crossref_primary_10_3390_computation13070162 crossref_primary_10_3390_make7030081 crossref_primary_10_1016_j_rineng_2025_106613 |
| Cites_doi | 10.23919/JSEE.2023.000022 10.1109/TIM.2023.3326234 10.1177/17298806231164831 10.3390/s23156941 10.1007/s00521-021-06764-3 10.3390/su16052105 10.1109/AIC57670.2023.10263892 10.1109/ISCSIC60498.2023.00041 10.1109/JSTARS.2021.3054832 10.1016/j.robot.2020.103666 10.3390/s24072102 10.1016/j.scs.2024.105390 10.1007/BFb0067700 10.1109/CVPR42600.2020.00165 10.1109/TITS.2024.3432761 10.1016/j.eswa.2020.113743 10.1109/CVPR52729.2023.00721 10.1016/j.rsase.2022.100712 10.1109/34.888718 10.1007/s10462-022-10189-2 10.1109/TVT.2024.3426538 10.1007/s10694-023-01437-0 10.1109/TITS.2022.3175656 10.3390/drones6110362 10.3390/s23167190 10.1109/ICCVW.2017.250 10.1109/TITS.2024.3417826 10.1016/j.nantod.2021.101366 10.1088/1361-6501/ad14e7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-88089-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_78ce56bfd4f4494aa79186f0f2b34b07 PMC11840052 39971988 10_1038_s41598_025_88089_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Xinjiang Uygur Au- tonomous Region Metrology and Testing Institute Project grantid: No. XJRIMT2022-5 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-dcf00679cdacb293686d32e82ff7611d68fdab428839218dce4da9f6d6cdaddb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001426710900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 18:58:31 EDT 2025 Tue Nov 04 02:06:16 EST 2025 Fri Sep 05 08:12:29 EDT 2025 Tue Oct 07 08:08:09 EDT 2025 Mon Jul 21 05:57:20 EDT 2025 Tue Nov 18 21:26:36 EST 2025 Sat Nov 29 08:19:00 EST 2025 Mon Jul 21 06:09:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Vision-based positioning Lightweight |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-dcf00679cdacb293686d32e82ff7611d68fdab428839218dce4da9f6d6cdaddb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/78ce56bfd4f4494aa79186f0f2b34b07 |
| PMID | 39971988 |
| PQID | 3168524300 |
| PQPubID | 2041939 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_78ce56bfd4f4494aa79186f0f2b34b07 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11840052 proquest_miscellaneous_3168769007 proquest_journals_3168524300 pubmed_primary_39971988 crossref_primary_10_1038_s41598_025_88089_y crossref_citationtrail_10_1038_s41598_025_88089_y springer_journals_10_1038_s41598_025_88089_y |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-19 |
| PublicationDateYYYYMMDD | 2025-02-19 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | P Cong (88089_CR16) 2024; 24 88089_CR22 88089_CR24 Y Luo (88089_CR4) 2023; 56 88089_CR20 L Ma (88089_CR7) 2023; 20 A Couturier (88089_CR9) 2021; 135 W Gao (88089_CR6) 2022; 42 S Cheng (88089_CR18) 2022; 72 H Liu (88089_CR13) 2023; 35 N Amarasingam (88089_CR3) 2022; 26 R Cheng (88089_CR25) 2021; 165 88089_CR15 88089_CR14 88089_CR17 BY Lattimer (88089_CR2) 2023; 59 88089_CR11 88089_CR33 88089_CR10 88089_CR32 KA Tsintotas (88089_CR19) 2022; 23 88089_CR31 Q Cui (88089_CR23) 2023; 3 88089_CR30 X Lei (88089_CR1) 2023; 34 MH Mughal (88089_CR21) 2021; 14 Z Zhang (88089_CR27) 2000; 22 M Bakirci (88089_CR5) 2024; 106 P Tang (88089_CR8) 2024; 16 C Zhao (88089_CR12) 2023; 23 88089_CR29 88089_CR28 G Wang (88089_CR26) 2023; 23 |
| References_xml | – volume: 34 start-page: 99 issue: 1 year: 2023 ident: 88089_CR1 publication-title: J. Syst. Eng. Electron. doi: 10.23919/JSEE.2023.000022 – ident: 88089_CR29 – volume: 72 start-page: 1 year: 2022 ident: 88089_CR18 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3326234 – ident: 88089_CR31 – volume: 20 start-page: 172988062311648 issue: 3 year: 2023 ident: 88089_CR7 publication-title: Int. J. Adv. Rob. Syst. doi: 10.1177/17298806231164831 – volume: 23 start-page: 6941 issue: 15 year: 2023 ident: 88089_CR12 publication-title: Sensors doi: 10.3390/s23156941 – ident: 88089_CR17 doi: 10.1007/s00521-021-06764-3 – volume: 16 start-page: 2105 issue: 5 year: 2024 ident: 88089_CR8 publication-title: Sustainability doi: 10.3390/su16052105 – ident: 88089_CR14 doi: 10.1109/AIC57670.2023.10263892 – ident: 88089_CR15 doi: 10.1109/ISCSIC60498.2023.00041 – volume: 14 start-page: 2445 year: 2021 ident: 88089_CR21 publication-title: IEEE J. Sel. Top. Appl. Earth Obs Remote Sens. doi: 10.1109/JSTARS.2021.3054832 – volume: 135 start-page: 103666 year: 2021 ident: 88089_CR9 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2020.103666 – volume: 24 start-page: 2102 issue: 7 year: 2024 ident: 88089_CR16 publication-title: Sensors doi: 10.3390/s24072102 – volume: 106 start-page: 105390 year: 2024 ident: 88089_CR5 publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2024.105390 – ident: 88089_CR28 doi: 10.1007/BFb0067700 – ident: 88089_CR30 doi: 10.1109/CVPR42600.2020.00165 – ident: 88089_CR10 doi: 10.1109/TITS.2024.3432761 – volume: 165 start-page: 113743 year: 2021 ident: 88089_CR25 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113743 – ident: 88089_CR33 doi: 10.1109/CVPR52729.2023.00721 – volume: 26 start-page: 100712 year: 2022 ident: 88089_CR3 publication-title: Remote Sens. Applications: Soc. Environ. doi: 10.1016/j.rsase.2022.100712 – volume: 22 start-page: 1330 issue: 11 year: 2000 ident: 88089_CR27 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.888718 – volume: 56 start-page: 173 issue: 1 year: 2023 ident: 88089_CR4 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10189-2 – ident: 88089_CR32 – ident: 88089_CR22 doi: 10.1109/TVT.2024.3426538 – volume: 59 start-page: 2961 issue: 6 year: 2023 ident: 88089_CR2 publication-title: Fire Technol. doi: 10.1007/s10694-023-01437-0 – volume: 23 start-page: 19929 issue: 11 year: 2022 ident: 88089_CR19 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3175656 – ident: 88089_CR24 doi: 10.3390/drones6110362 – volume: 23 start-page: 7190 issue: 16 year: 2023 ident: 88089_CR26 publication-title: Sensors doi: 10.3390/s23167190 – ident: 88089_CR20 doi: 10.1109/ICCVW.2017.250 – ident: 88089_CR11 doi: 10.1109/TITS.2024.3417826 – volume: 42 start-page: 101366 year: 2022 ident: 88089_CR6 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101366 – volume: 35 start-page: 035117 issue: 3 year: 2023 ident: 88089_CR13 publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ad14e7 – volume: 3 start-page: 100088 issue: 1 year: 2023 ident: 88089_CR23 publication-title: Biomim. Intell. Rob. |
| SSID | ssj0000529419 |
| Score | 2.4752376 |
| Snippet | The Lightv8nPnP lightweight visual positioning algorithm model has been introduced to make deep learning-based drone visual positioning algorithms more... Abstract The Lightv8nPnP lightweight visual positioning algorithm model has been introduced to make deep learning-based drone visual positioning algorithms... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6069 |
| SubjectTerms | 639/705 639/705/117 Algorithms Deep learning Drones Humanities and Social Sciences Lightweight Load distribution Localization multidisciplinary Science Science (multidisciplinary) Vision-based positioning Visual discrimination learning |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAakXyrMNFBQkbhA1dhw_TqhFVByg6oGi3izHjtuVSrbd7Bbtv8fjeFMtj164xmPL9sx4JjP2fABviSmtUaQpvEEIM974QllbFZYE2-eNaI00EWxCHB3J01N1nAJufbpWuToT40HtphZj5HsIsFRTVpXlh8urAlGjMLuaIDTuwr3g2RC80vWVHo8xFsxiMaLSW5myknt9sFf4pozWRRBcqYrlmj2KZfv_5mv-eWXyt7xpNEeHW_-7kEfwMDmi-f4gOY_hTts9gQcDNOXyKdAv-Nf-MwZO8-tJvwi00e6ld5u5uTgLo87Pf-TB7c1P9r_3z-Dk8NO3j5-LhK9Q2JqReeGsR2OlrDO2CWafS-4q2krqveCEOC69Mw1DPGIVPIGwduaM8tzx0MO5pnoOG920a3cgd6x2tG6Z8IIyyXnDvTctsYJy62tBMiCrXdY2FR9HDIwLHZPgldQDZ3TgjI6c0csM3o19LofSG7dSHyDzRkosmx0_TGdnOmmhFtK2dZBHxzxjihkjFJHcl542FWtKkcHuimc66XKvbxiWwZuxOWghplZM104XA43gqsQhtgdJGWcSXEBBlJQZyDUZWpvqeks3OY-Vvgn-fwcpzuD9Stxu5vXvvXhx-zJewiZFDUBYG7ULG_PZon0F9-31fNLPXkcV-gXG0yR8 priority: 102 providerName: ProQuest |
| Title | Lightweight visual localization algorithm for UAVs |
| URI | https://link.springer.com/article/10.1038/s41598-025-88089-y https://www.ncbi.nlm.nih.gov/pubmed/39971988 https://www.proquest.com/docview/3168524300 https://www.proquest.com/docview/3168769007 https://pubmed.ncbi.nlm.nih.gov/PMC11840052 https://doaj.org/article/78ce56bfd4f4494aa79186f0f2b34b07 |
| Volume | 15 |
| WOSCitedRecordID | wos001426710900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BC1IviDeBsgoSN4gaO44fxxa1AomuIkTRcrIcP-hKJVttdov23-NHdunyvHDxIR5bo89jzTj2zAfwEqlSK4HawqlAYUZbVwitq0Ij7_ucYlZxFckm2HjMJxPRXKP6Cm_CUnngBNwB49rWfgpDHCGCKMUE4tSVDrcVaVMeecnEtcNUquqNBUFiyJIpK37Qe08VsslwXXiT5aJYbXmiWLD_d1Hmr48lf7oxjY7o5C7cGSLI_DBpfg9u2O4-3E6ckqsHgN-H4_a3-Mczv5r2Sy8bHdaQcJmriy-z-XRx_jX38Wp-dvipfwhnJ8cf37wtBmKEQtcELQqjXfAyQhulW--vKaemwpZj5xhFyFDujGpJIBIW3oV71YlRwlFD_Qhj2uoR7HSzzj6B3JDa4NoS5hgmnNKWOqcs0gxT7WqGMkBrkKQeqoYH8ooLGW-vKy4TsNIDKyOwcpXBq82Yy1Qz46_SRwH7jWSodx0_eCuQgxXIf1lBBvvrlZPDJuxl4OSqManKMoMXm26_fcKdiOrsbJlkGBVlmOJxWuiNJj52Y0hwngHfMoEtVbd7uul5LNGNwsHZG2EGr9fW8kOvP2Px9H9g8Qz2cDDzwFoj9mFnMV_a53BLXy2m_XwEN9mExZaPYPfoeNx8GMW949tT3ISW-Xa3eXfafP4Otnkdvw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQIEhwgqix43g5IFSWqlWHUQ8t6s04XtqRSqZMZlrNn-I3YjvJVMPSWw9c40WO_b337Pfs9wG8QirXSqAqcypQmNHKZULrItPI2z6nmFVcRbIJNhzygwOxuwI_-7cw4VplrxOjojZjHXzk64FgqcSkyPP3Jz-ywBoVoqs9hUYLix07P_NHtubd9ie_vq8x3vy893Er61gFMl0SNM2MdkFFC22Urryxo5yaAluOnfNHemQod0ZVJLDwCm__jLbEKOGoob6FMVXh-70CV0nILBauCuLdhU8nRM0IEt3bnLzg6423j-ENGy4zLyhcZPMl-xdpAv62t_3ziuZvcdpo_jZv_28TdwdudRvtdKOVjLuwYut7cL2l3pzfBzwIXomz6BhOT0fNzNeNdr17l5qq40P_F9Oj76nf1qf7G1-bB7B_KQN-CKv1uLaPITWkNLi0hDmGCae0os4pizTDVLuSoQRQv6pSd8nVA8fHsYxB_oLLFgnSI0FGJMh5Am8WbU7a1CIX1v4QwLKoGdKCxw_jyaHstIxkXNvSy5shjhBBlGICcepyh6uCVDlLYK3HiOx0VSPPAZLAy0Wx1zIhdKRqO561dRgVeejiUYvMxUj8FpchwXkCfAmzS0NdLqlHRzGTOQr-BS81Cbzt4X0-rn_PxZOLf-MF3Nja-zKQg-3hzlO4iYP0BQofsQar08nMPoNr-nQ6aibPo_im8O2yYf8LZ_yEpg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qKVRc2CkDBQYJTjDK2OPxckCoUCKiligHitqT8XhpI5WkZJJW-Wv8OuxZUoWltx64jhd57O8tfs_2B_ASqVQrgYrEqUBhRguXCK2zRCNv-5xiVnFVkU2wwYAfHIjhGvxs78KEY5WtTqwUtZnoECPvBoKlHJMsTbuuORYx3Om9O_2RBAapkGlt6TRqiOzaxbnfvpVv-zt-rV9h3Pv45cOnpGEYSHRO0Cwx2gV1LbRRuvCGj3JqMmw5ds5v75Gh3BlVkMDIK7wtNNoSo4SjhvoWxhSZ7_carHuXnOAOrA_7n4eHywhPyKERJJqbOmnGu6W3luFGG84TLzZcJIsVa1iRBvzN0_3zwOZvWdvKGPZu_8_TeAduNS54vF3LzF1Ys-N7cKMm5VzcB7wX4hXnVcg4PhuVc1-3svjNjdVYnRz5v5gdf4-9wx_vb38tH8D-lQz4IXTGk7F9BLEhucG5JcwxTDilBXVOWaQZptrlDEWA2hWWunl2PbB_nMgq_Z9xWaNCelTIChVyEcHrZZvT-tGRS2u_D8BZ1gwPhlcfJtMj2egfybi2uZdEQxwhgijFBOLUpQ4XGSlSFsFWixfZaLFSXoAlghfLYq9_QlJJje1kXtdhVKShi80apcuReOeXIcF5BHwFvytDXS0Zj46rN85RiDx4CYrgTQv1i3H9ey4eX_4bz2HDo13u9Qe7T-AmDoIYuH3EFnRm07l9Ctf12WxUTp81shzDt6vG_S9Y2I7v |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+visual+localization+algorithm+for+UAVs&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Yuhang&rft.au=Feng%2C+Xuefeng&rft.au=Li%2C+Feng&rft.au=Xian%2C+Qinglong&rft.date=2025-02-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-88089-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_88089_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |