Application of deep learning technology for temporal analysis of videofluoroscopic swallowing studies

Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 13; no. 1; pp. 17522 - 12
Main Authors: Jeong, Seong Yun, Kim, Jeong Min, Park, Ji Eun, Baek, Seung Jun, Yang, Seung Nam
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 16.10.2023
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning has been attempted. We aimed to develop a model for the automatic measurement of various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were included. Seven temporal parameters were manually measured by two physiatrists as ground-truth data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal sphincter opening duration. ResNet3D was selected as the base model for the deep learning of temporal parameters. The performances of ResNet3D variants were compared with those of the VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of accuracy, F1 score, and average precision values. Through the clinical application of this automatic model, temporal analysis of VFSS will be easier and more accurate.
AbstractList Abstract Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning has been attempted. We aimed to develop a model for the automatic measurement of various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were included. Seven temporal parameters were manually measured by two physiatrists as ground-truth data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal sphincter opening duration. ResNet3D was selected as the base model for the deep learning of temporal parameters. The performances of ResNet3D variants were compared with those of the VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of accuracy, F1 score, and average precision values. Through the clinical application of this automatic model, temporal analysis of VFSS will be easier and more accurate.
Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning has been attempted. We aimed to develop a model for the automatic measurement of various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were included. Seven temporal parameters were manually measured by two physiatrists as ground-truth data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal sphincter opening duration. ResNet3D was selected as the base model for the deep learning of temporal parameters. The performances of ResNet3D variants were compared with those of the VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of accuracy, F1 score, and average precision values. Through the clinical application of this automatic model, temporal analysis of VFSS will be easier and more accurate.Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning has been attempted. We aimed to develop a model for the automatic measurement of various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were included. Seven temporal parameters were manually measured by two physiatrists as ground-truth data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal sphincter opening duration. ResNet3D was selected as the base model for the deep learning of temporal parameters. The performances of ResNet3D variants were compared with those of the VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of accuracy, F1 score, and average precision values. Through the clinical application of this automatic model, temporal analysis of VFSS will be easier and more accurate.
Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning has been attempted. We aimed to develop a model for the automatic measurement of various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were included. Seven temporal parameters were manually measured by two physiatrists as ground-truth data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal sphincter opening duration. ResNet3D was selected as the base model for the deep learning of temporal parameters. The performances of ResNet3D variants were compared with those of the VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of accuracy, F1 score, and average precision values. Through the clinical application of this automatic model, temporal analysis of VFSS will be easier and more accurate.
ArticleNumber 17522
Author Park, Ji Eun
Jeong, Seong Yun
Yang, Seung Nam
Kim, Jeong Min
Baek, Seung Jun
Author_xml – sequence: 1
  givenname: Seong Yun
  surname: Jeong
  fullname: Jeong, Seong Yun
  organization: Department of Computer Science and Engineering, Korea University
– sequence: 2
  givenname: Jeong Min
  surname: Kim
  fullname: Kim, Jeong Min
  organization: Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Korea University College of Medicine
– sequence: 3
  givenname: Ji Eun
  surname: Park
  fullname: Park, Ji Eun
  organization: Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Korea University College of Medicine
– sequence: 4
  givenname: Seung Jun
  surname: Baek
  fullname: Baek, Seung Jun
  email: sjbaek@korea.ac.kr
  organization: Department of Computer Science and Engineering, Korea University
– sequence: 5
  givenname: Seung Nam
  surname: Yang
  fullname: Yang, Seung Nam
  email: snamyang@korea.ac.kr
  organization: Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Korea University College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37845272$$D View this record in MEDLINE/PubMed
BookMark eNp9kktP3DAUhaOKqlDKH-iiitRNN2n9jO1VhVAfSEjdtGvLcW6CRx47tRPQ_Hs8E2iBBd74dc6nY9_7tjoKMUBVvcfoM0ZUfskMcyUbRGjDmESkoa-qE4IYbwgl5OjR-rg6y3mDyuBEMazeVMdUSMaJICcVnE-Td9bMLoY6DnUPMNUeTAoujPUM9jpEH8ddPcRUttspJuNrE4zfZZf3jhvXQxz8ElPMNk7O1vnWeB9v94A8L72D_K56PRif4ex-Pq3-fP_2--Jnc_Xrx-XF-VVjOcNz03ddh7kYhIJeUtK1iCvWEdIRqQTBktEeWgSdYAJkxwgSFuzAzYCAshYxelpdrtw-mo2ektuatNPROH04iGnUJs3OetBUCGuFkK2SihELqjMMG6Nay3hfrgrr68qalm4LvYUwl6c_gT69Ce5aj_FGY8SFIlgVwqd7Qop_F8iz3rpswXsTIC5ZEykkUZjKtkg_PpNu4pLKLx9UgivSCl5UHx5H-pfloZxFIFeBLcXICQZt3XyobUnofImm982j1-bRpXn0oXk0LVbyzPpAf9FEV1Mu4jBC-h_7Bdcd137YJA
CitedBy_id crossref_primary_10_1016_j_anl_2025_05_002
crossref_primary_10_3390_brainsci14060546
crossref_primary_10_1007_s15036_025_3870_5
crossref_primary_10_3390_diagnostics14131444
crossref_primary_10_1016_j_cmpb_2024_108505
crossref_primary_10_1097_MOO_0000000000000948
crossref_primary_10_1016_j_otc_2024_04_002
crossref_primary_10_1002_smll_202503969
crossref_primary_10_1109_ACCESS_2025_3573282
crossref_primary_10_1016_j_compbiomed_2025_109759
Cites_doi 10.1001/archotol.127.10.1224
10.2147/cia.S23404
10.1007/pl00009576
10.1044/2019_jslhr-s-18-0448
10.1007/s00455-008-9185-9
10.5535/arm.2012.36.3.347
10.1097/00004424-198411000-00009
10.1007/bf00262751
10.1007/bf00417897
10.1007/pl00009559
10.1007/s00455-018-9904-9
10.1109/78.650093
10.1016/j.otc.2013.08.008
10.4321/s1130-01082004000200005
10.1016/j.neucli.2015.12.007
10.1038/nrgastro.2015.199
10.5535/arm.2017.41.4.564
10.1007/s00455-020-10174-3
10.1016/j.cmpb.2022.107058
10.1007/s11910-020-01081-z
10.1016/j.ejrad.2013.05.009
10.1038/s41598-018-30182-6
10.1159/000274517
10.1038/s41598-020-71713-4
10.3390/app10186179
10.3390/s19183873
10.1177/0194599817691276
10.3390/diagnostics11020300
10.1016/j.gerinurse.2007.12.001
10.2307/3001913
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2024
2023. Springer Nature Limited.
The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2024
– notice: 2023. Springer Nature Limited.
– notice: The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-44802-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_377cc778698942ce9ba41aa96c45d7cc
PMC10579219
37845272
10_1038_s41598_023_44802_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and ICT, South Korea
  grantid: IITP-2022-2020-0-01819; IITP-2022-2020-0-01819
– fundername: ;
  grantid: IITP-2022-2020-0-01819; IITP-2022-2020-0-01819
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-dbbb157f79ed832b60594b22b289721843de60eb747e8b4207cecf5af0e346043
IEDL.DBID BENPR
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001087127100076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:26:20 EDT 2025
Tue Nov 04 02:06:10 EST 2025
Wed Oct 01 17:23:25 EDT 2025
Tue Oct 07 09:19:52 EDT 2025
Thu Apr 03 06:57:06 EDT 2025
Tue Nov 18 21:44:21 EST 2025
Sat Nov 29 06:05:27 EST 2025
Fri Feb 21 02:37:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. Springer Nature Limited.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-dbbb157f79ed832b60594b22b289721843de60eb747e8b4207cecf5af0e346043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2877592675?pq-origsite=%requestingapplication%
PMID 37845272
PQID 2877592675
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_377cc778698942ce9ba41aa96c45d7cc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10579219
proquest_miscellaneous_2878291386
proquest_journals_2877592675
pubmed_primary_37845272
crossref_citationtrail_10_1038_s41598_023_44802_3
crossref_primary_10_1038_s41598_023_44802_3
springer_journals_10_1038_s41598_023_44802_3
PublicationCentury 2000
PublicationDate 2023-10-16
PublicationDateYYYYMMDD 2023-10-16
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Sura, Madhavan, Carnaby, Crary (CR2) 2012; 7
Scott, Perry, Bench (CR12) 1998; 13
Langmore (CR4) 1998; 13
Lee, Ko, Kim, Choi (CR26) 2020; 10
Martin-Harris (CR29) 2008; 23
Clavé, Terré, de Kraa, Serra (CR11) 2004; 96
CR39
CR38
CR37
Lee, Park, Hwang, Jung, Park (CR25) 2020; 10
CR36
CR35
CR34
Kendall, Leonard (CR18) 2001; 127
CR33
CR10
CR32
Swan, Cordier, Brown, Speyer (CR8) 2021; 36
CR30
Curtis, Cruess, Dachman, Maso (CR17) 1984; 19
Rommel, Hamdy (CR7) 2016; 13
Schuster, Paliwal (CR31) 1997; 45
Jo, Hwang, Pyun (CR21) 2017; 41
Lee, Lee, Choi, Pyun (CR24) 2021; 11
Waito, Steele, Peladeau-Pigeon, Genge, Argov (CR15) 2018; 33
Bandini, Smaoui, Steele (CR27) 2022; 225
Jones, Colletti, Ding (CR6) 2020; 20
Wieseke, Bantz, Siktberg, Dillard (CR3) 2008; 29
Martin (CR5) 1994; 9
Steele (CR14) 2019; 62
Moon, Pyun, Kwon (CR20) 2012; 36
Rosenbek, Robbins, Roecker, Coyle, Wood (CR28) 1996; 11
Seçil (CR19) 2016; 46
Zhang, Coyle, Sejdić (CR22) 2018; 8
Baijens, Barikroo, Pilz (CR13) 2013; 82
Roden, Altman (CR1) 2013; 46
Lee, Randall, Evangelista, Kuhn, Belafsky (CR9) 2017; 156
Lee, Park, Jung (CR23) 2019; 19
Kang (CR16) 2010; 56
CA Jones (44802_CR6) 2020; 20
P Clavé (44802_CR11) 2004; 96
JT Lee (44802_CR23) 2019; 19
A Wieseke (44802_CR3) 2008; 29
BS Kang (44802_CR16) 2010; 56
AA Waito (44802_CR15) 2018; 33
44802_CR39
44802_CR38
44802_CR37
SE Langmore (44802_CR4) 1998; 13
A Scott (44802_CR12) 1998; 13
HI Moon (44802_CR20) 2012; 36
44802_CR10
44802_CR32
L Baijens (44802_CR13) 2013; 82
DF Roden (44802_CR1) 2013; 46
44802_CR30
K Swan (44802_CR8) 2021; 36
44802_CR36
Z Zhang (44802_CR22) 2018; 8
SJ Lee (44802_CR26) 2020; 10
44802_CR35
44802_CR34
L Sura (44802_CR2) 2012; 7
BJ Martin (44802_CR5) 1994; 9
A Bandini (44802_CR27) 2022; 225
JC Rosenbek (44802_CR28) 1996; 11
44802_CR33
Y Seçil (44802_CR19) 2016; 46
B Martin-Harris (44802_CR29) 2008; 23
N Rommel (44802_CR7) 2016; 13
M Schuster (44802_CR31) 1997; 45
KA Kendall (44802_CR18) 2001; 127
JW Lee (44802_CR9) 2017; 156
DJ Curtis (44802_CR17) 1984; 19
KS Lee (44802_CR24) 2021; 11
SY Jo (44802_CR21) 2017; 41
CM Steele (44802_CR14) 2019; 62
JT Lee (44802_CR25) 2020; 10
38291119 - Sci Rep. 2024 Jan 30;14(1):2526
References_xml – volume: 127
  start-page: 1224
  year: 2001
  end-page: 1229
  ident: CR18
  article-title: Hyoid movement during swallowing in older patients with dysphagia
  publication-title: Arch. Otolaryngol. Head Neck Surg.
  doi: 10.1001/archotol.127.10.1224
– volume: 7
  start-page: 287
  year: 2012
  end-page: 298
  ident: CR2
  article-title: Dysphagia in the elderly: Management and nutritional considerations
  publication-title: Clin. Interv. Aging.
  doi: 10.2147/cia.S23404
– volume: 13
  start-page: 223
  year: 1998
  end-page: 227
  ident: CR12
  article-title: A study of interrater reliability when using videofluoroscopy as an assessment of swallowing
  publication-title: Dysphagia
  doi: 10.1007/pl00009576
– volume: 62
  start-page: 1338
  year: 2019
  end-page: 1363
  ident: CR14
  article-title: Reference values for healthy swallowing across the range from thin to extremely thick liquids
  publication-title: J. Speech Lang. Hear. Res.
  doi: 10.1044/2019_jslhr-s-18-0448
– volume: 23
  start-page: 392
  year: 2008
  end-page: 405
  ident: CR29
  article-title: MBS measurement tool for swallow impairment–MBSImp: Establishing a standard
  publication-title: Dysphagia
  doi: 10.1007/s00455-008-9185-9
– ident: CR39
– volume: 36
  start-page: 347
  year: 2012
  end-page: 355
  ident: CR20
  article-title: Correlation between location of brain lesion and cognitive function and findings of videofluoroscopic swallowing study
  publication-title: Ann. Rehabil. Med.
  doi: 10.5535/arm.2012.36.3.347
– ident: CR37
– volume: 19
  start-page: 523
  year: 1984
  end-page: 529
  ident: CR17
  article-title: Timing in the normal pharyngeal swallow. Prospective selection and evaluation of 16 normal asymptomatic patients
  publication-title: Invest. Radiol.
  doi: 10.1097/00004424-198411000-00009
– volume: 9
  start-page: 1
  year: 1994
  end-page: 6
  ident: CR5
  article-title: The association of swallowing dysfunction and aspiration pneumonia
  publication-title: Dysphagia
  doi: 10.1007/bf00262751
– volume: 11
  start-page: 93
  year: 1996
  end-page: 98
  ident: CR28
  article-title: A penetration-aspiration scale
  publication-title: Dysphagia
  doi: 10.1007/bf00417897
– ident: CR30
– volume: 13
  start-page: 69
  year: 1998
  end-page: 81
  ident: CR4
  article-title: Predictors of aspiration pneumonia: How important is dysphagia?
  publication-title: Dysphagia
  doi: 10.1007/pl00009559
– volume: 33
  start-page: 789
  year: 2018
  end-page: 802
  ident: CR15
  article-title: A preliminary videofluoroscopic investigation of swallowing physiology and function in individuals with oculopharyngeal muscular dystrophy (OPMD)
  publication-title: Dysphagia
  doi: 10.1007/s00455-018-9904-9
– ident: CR10
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: CR31
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Proc.
  doi: 10.1109/78.650093
– ident: CR33
– volume: 46
  start-page: 965
  year: 2013
  end-page: 987
  ident: CR1
  article-title: Causes of dysphagia among different age groups: A systematic review of the literature
  publication-title: Otolaryngol. Clin. North Am.
  doi: 10.1016/j.otc.2013.08.008
– volume: 96
  start-page: 119
  year: 2004
  end-page: 131
  ident: CR11
  article-title: Approaching oropharyngeal dysphagia
  publication-title: Rev. Esp. Enferm. Dig.
  doi: 10.4321/s1130-01082004000200005
– volume: 46
  start-page: 171
  year: 2016
  end-page: 178
  ident: CR19
  article-title: Dysphagia in Alzheimer's disease
  publication-title: Neurophysiol. Clin.
  doi: 10.1016/j.neucli.2015.12.007
– ident: CR35
– volume: 13
  start-page: 49
  year: 2016
  end-page: 59
  ident: CR7
  article-title: Oropharyngeal dysphagia: Manifestations and diagnosis
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2015.199
– volume: 41
  start-page: 564
  year: 2017
  end-page: 572
  ident: CR21
  article-title: Relationship between cognitive function and dysphagia after stroke
  publication-title: Ann. Rehabil. Med.
  doi: 10.5535/arm.2017.41.4.564
– volume: 36
  start-page: 595
  year: 2021
  end-page: 613
  ident: CR8
  article-title: Visuoperceptual analysis of the videofluoroscopic study of swallowing: An international Delphi study
  publication-title: Dysphagia
  doi: 10.1007/s00455-020-10174-3
– volume: 225
  start-page: 107058
  year: 2022
  ident: CR27
  article-title: Automated pharyngeal phase detection and bolus localization in videofluoroscopic swallowing study: Killing two birds with one stone?
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2022.107058
– volume: 20
  start-page: 61
  year: 2020
  ident: CR6
  article-title: Post-stroke dysphagia: Recent insights and unanswered questions
  publication-title: Curr. Neurol. Neurosci. Rep.
  doi: 10.1007/s11910-020-01081-z
– volume: 82
  start-page: 1683
  year: 2013
  end-page: 1695
  ident: CR13
  article-title: Intrarater and interrater reliability for measurements in videofluoroscopy of swallowing
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2013.05.009
– volume: 8
  start-page: 12310
  year: 2018
  ident: CR22
  article-title: Automatic hyoid bone detection in fluoroscopic images using deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30182-6
– volume: 56
  start-page: 474
  year: 2010
  end-page: 482
  ident: CR16
  article-title: Influence of aging on movement of the hyoid bone and epiglottis during normal swallowing: A motion analysis
  publication-title: Gerontology
  doi: 10.1159/000274517
– ident: CR38
– volume: 10
  start-page: 14735
  year: 2020
  ident: CR25
  article-title: Machine learning analysis to automatically measure response time of pharyngeal swallowing reflex in videofluoroscopic swallowing study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71713-4
– volume: 10
  start-page: 6179
  year: 2020
  ident: CR26
  article-title: Automatic detection of airway invasion from videofluoroscopy via deep learning technology
  publication-title: Appl. Sci.
  doi: 10.3390/app10186179
– volume: 19
  start-page: 3873
  year: 2019
  ident: CR23
  article-title: Automatic detection of the pharyngeal phase in raw videos for the videofluoroscopic swallowing study using efficient data collection and 3D convolutional networks (†)
  publication-title: Sensors (Basel)
  doi: 10.3390/s19183873
– volume: 156
  start-page: 901
  year: 2017
  end-page: 905
  ident: CR9
  article-title: Subjective assessment of videofluoroscopic swallow studies
  publication-title: Otolaryngol. Head Neck Surg.
  doi: 10.1177/0194599817691276
– ident: CR32
– ident: CR34
– ident: CR36
– volume: 11
  start-page: 300
  year: 2021
  ident: CR24
  article-title: Automatic pharyngeal phase recognition in untrimmed videofluoroscopic swallowing study using transfer learning with deep convolutional neural networks
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics11020300
– volume: 29
  start-page: 376
  year: 2008
  end-page: 383
  ident: CR3
  article-title: Assessment and early diagnosis of dysphagia
  publication-title: Geriatr. Nurs.
  doi: 10.1016/j.gerinurse.2007.12.001
– volume: 62
  start-page: 1338
  year: 2019
  ident: 44802_CR14
  publication-title: J. Speech Lang. Hear. Res.
  doi: 10.1044/2019_jslhr-s-18-0448
– volume: 7
  start-page: 287
  year: 2012
  ident: 44802_CR2
  publication-title: Clin. Interv. Aging.
  doi: 10.2147/cia.S23404
– ident: 44802_CR30
– volume: 19
  start-page: 523
  year: 1984
  ident: 44802_CR17
  publication-title: Invest. Radiol.
  doi: 10.1097/00004424-198411000-00009
– volume: 11
  start-page: 93
  year: 1996
  ident: 44802_CR28
  publication-title: Dysphagia
  doi: 10.1007/bf00417897
– volume: 127
  start-page: 1224
  year: 2001
  ident: 44802_CR18
  publication-title: Arch. Otolaryngol. Head Neck Surg.
  doi: 10.1001/archotol.127.10.1224
– ident: 44802_CR32
– volume: 41
  start-page: 564
  year: 2017
  ident: 44802_CR21
  publication-title: Ann. Rehabil. Med.
  doi: 10.5535/arm.2017.41.4.564
– volume: 45
  start-page: 2673
  year: 1997
  ident: 44802_CR31
  publication-title: IEEE Trans. Signal Proc.
  doi: 10.1109/78.650093
– volume: 36
  start-page: 595
  year: 2021
  ident: 44802_CR8
  publication-title: Dysphagia
  doi: 10.1007/s00455-020-10174-3
– volume: 10
  start-page: 14735
  year: 2020
  ident: 44802_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71713-4
– volume: 10
  start-page: 6179
  year: 2020
  ident: 44802_CR26
  publication-title: Appl. Sci.
  doi: 10.3390/app10186179
– volume: 36
  start-page: 347
  year: 2012
  ident: 44802_CR20
  publication-title: Ann. Rehabil. Med.
  doi: 10.5535/arm.2012.36.3.347
– volume: 13
  start-page: 49
  year: 2016
  ident: 44802_CR7
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2015.199
– volume: 19
  start-page: 3873
  year: 2019
  ident: 44802_CR23
  publication-title: Sensors (Basel)
  doi: 10.3390/s19183873
– volume: 46
  start-page: 965
  year: 2013
  ident: 44802_CR1
  publication-title: Otolaryngol. Clin. North Am.
  doi: 10.1016/j.otc.2013.08.008
– ident: 44802_CR39
  doi: 10.2307/3001913
– ident: 44802_CR37
– volume: 56
  start-page: 474
  year: 2010
  ident: 44802_CR16
  publication-title: Gerontology
  doi: 10.1159/000274517
– ident: 44802_CR35
– ident: 44802_CR10
– volume: 29
  start-page: 376
  year: 2008
  ident: 44802_CR3
  publication-title: Geriatr. Nurs.
  doi: 10.1016/j.gerinurse.2007.12.001
– volume: 20
  start-page: 61
  year: 2020
  ident: 44802_CR6
  publication-title: Curr. Neurol. Neurosci. Rep.
  doi: 10.1007/s11910-020-01081-z
– volume: 23
  start-page: 392
  year: 2008
  ident: 44802_CR29
  publication-title: Dysphagia
  doi: 10.1007/s00455-008-9185-9
– volume: 33
  start-page: 789
  year: 2018
  ident: 44802_CR15
  publication-title: Dysphagia
  doi: 10.1007/s00455-018-9904-9
– volume: 225
  start-page: 107058
  year: 2022
  ident: 44802_CR27
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2022.107058
– ident: 44802_CR33
– volume: 13
  start-page: 223
  year: 1998
  ident: 44802_CR12
  publication-title: Dysphagia
  doi: 10.1007/pl00009576
– volume: 82
  start-page: 1683
  year: 2013
  ident: 44802_CR13
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2013.05.009
– volume: 11
  start-page: 300
  year: 2021
  ident: 44802_CR24
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics11020300
– volume: 46
  start-page: 171
  year: 2016
  ident: 44802_CR19
  publication-title: Neurophysiol. Clin.
  doi: 10.1016/j.neucli.2015.12.007
– volume: 9
  start-page: 1
  year: 1994
  ident: 44802_CR5
  publication-title: Dysphagia
  doi: 10.1007/bf00262751
– volume: 13
  start-page: 69
  year: 1998
  ident: 44802_CR4
  publication-title: Dysphagia
  doi: 10.1007/pl00009559
– ident: 44802_CR38
– ident: 44802_CR36
– ident: 44802_CR34
– volume: 8
  start-page: 12310
  year: 2018
  ident: 44802_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30182-6
– volume: 156
  start-page: 901
  year: 2017
  ident: 44802_CR9
  publication-title: Otolaryngol. Head Neck Surg.
  doi: 10.1177/0194599817691276
– volume: 96
  start-page: 119
  year: 2004
  ident: 44802_CR11
  publication-title: Rev. Esp. Enferm. Dig.
  doi: 10.4321/s1130-01082004000200005
– reference: 38291119 - Sci Rep. 2024 Jan 30;14(1):2526
SSID ssj0000529419
Score 2.4656675
Snippet Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by...
Abstract Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17522
SubjectTerms 639/166
692/308
Deep Learning
Deglutition - physiology
Deglutition Disorders - diagnostic imaging
Deglutition Disorders - etiology
Esophageal sphincter
Esophageal Sphincter, Upper
Fluoroscopy - methods
Humanities and Social Sciences
Humans
multidisciplinary
Pharynx
Science
Science (multidisciplinary)
Sphincter
Swallowing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkhcUMszUJCRuEHU-JHYPhZExQFVHAD1ZtmOAyutklWzS9V_j8fOpl2eF66xHY3mkZnJjL8BeCmUazyrXUm5bEsRmC9tbX2pWt7V2tuWptEJXz7IszN1fq4_3hj1hT1hGR44M-6YS-k9gpwhUjjzQTsrqLW68aJu4xJ-fWPUcyOZyqjeTAuqp1syFVfHY_RUeJuM8TJmJPEzwHc8UQLs_12U-Wuz5E8V0-SITg_g7hRBkpNM-SHcCv09uJ1nSl7dh3ByXZImQ0faEFZkmg3xlaznP-kkRqtkAqZaEjthk-AJvJk3dMvNgECXw2rhyXiJ5flLfMGY-w4fwOfTd5_evi-nWQqlrwVdl61zjtaykzq00YhdgzgtjjEXEy6JaR5vQ1MFF7OLoJxglfTBd7XtqsBFUwn-EPb6oQ-PgQRhuQ1V3EW9oCrKE7NcZm3rlbBNVQDd8tX4CWgc510sTSp4c2WyLEyUhUmyMLyAV_OZVYbZ-OvuNyiueSdCZKcHUXHMpDjmX4pTwNFW2Gay29HE_FHWmsUsqoAX83K0OCyj2D4Mm7RHMU25agp4lHVjpoRLJWomWQFqR2t2SN1d6RffEqo3DlzW0X8U8HqrYNd0_ZkXT_4HL57CHYaWgZ06zRHsrS824Rns--_rxXjxPJnWD3NVKEY
  priority: 102
  providerName: Directory of Open Access Journals
Title Application of deep learning technology for temporal analysis of videofluoroscopic swallowing studies
URI https://link.springer.com/article/10.1038/s41598-023-44802-3
https://www.ncbi.nlm.nih.gov/pubmed/37845272
https://www.proquest.com/docview/2877592675
https://www.proquest.com/docview/2878291386
https://pubmed.ncbi.nlm.nih.gov/PMC10579219
https://doaj.org/article/377cc778698942ce9ba41aa96c45d7cc
Volume 13
WOSCitedRecordID wos001087127100076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xLUhceC8ElipI3CDaxHZi54R20a5AYqsIASqnyHacpVKVlKZlxb_H47ipymMvXHyIncjOjMfz8jcAL5lQmSapihLKq4gZoiOZSh2JitZprmWVuNIJXz7w6VTMZnnhHW6dT6vcykQnqKtWo4_82Gr2PM2J1W_fLL9HWDUKo6u-hMYBjBGpjI1gfHo2LT4OXhaMY7Ek97dlYiqOO3ti4a0yQiNrmVhxQPdOJAfc_zdt88-kyd8ip-5AOr_7v0u5B3e8Khqe9LxzH26Y5gHc6otT_nwI5mQX2w7bOqyMWYa-yMRluB5c8qFVe0OPcLUIpQc5wTfwil9bLzYtIma2y7kOuyuM81_hB7o-gfERfD4_-_T2XeSLMkQ6Zck6qpRSScprnpvKSgOVIeCLIkRZy42jvUgrk8VGWTPFCMVIzLXRdSrr2FCWxYwewqhpG_MEQsMklSa2oxLNEmEZA81lImWlBZNZHECyJUypPWI5Fs5YlC5yTkXZE7O0xCwdMUsawKvhnWWP13Ht6FOk9zASsbbdg3Z1WfqtW1LOtUaYPcSqJ9rkSrJEyjzTLK1sVwBHWzKXXgB05Y7GAbwYuu3WxXiMbEy7cWMEyRMqsgAe98w1zIRywVLCSQBij-32prrf08y_OXhwrNyc24MogNdbDt3N69__4un1y3gGtwluGkzmyY5gtF5tzHO4qX-s591qAgd8xl0rJn4PTpx7w7YXpMCW23ZcvL8ovv4Cir098Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET24mdA0LlUbXqsuJQ0N5c23HKSqvNstll1T_Fb8ST12p59NYD19iJnOSb8dgz_j6AF1ya1NLEhDETecgdtaFOtA1lzookszqPa-mErwMxHMrRKPu8BT-7szBYVtn5xNpR56XFPfJdH9mLJKM-vn07-x6iahRmVzsJjQYWR-5s5Zds1ZvDD_7_vqR0_-Px-4OwVRUIbcLjRZgbY-JEFCJzuYezSZGxxFBq_NJD4IKH5S6NnPFxtpOG00hYZ4tEF5FjPI0488-9BJe9HxdYQiZGot_TwawZj7P2bE7E5G7l50c8w0ZZ6NdB3vmwjfmvlgn4W2z7Z4nmb3naevrbv_m_fbhbcKMNtMleYxm3YctN78DVRnrz7C64vXXmnpQFyZ2bkVZC45Qs-oQD8UE9afm7JkS3FC54Bx5gLIvJskQ-0HI2tqRaYRXDCh9QNeWZ9-DLhbzjfdiellP3EIjjmmkX-V6x5bH0sMfNAKp1biXXaRRA3AFB2ZaPHWVBJqquC2BSNeBRHjyqBo9iAbzq75k1bCTn9n6H-Op7IpN4faGcn6rWMSkmhLVIIohM_NS6zGgea52llie5bwpgp4OVat1bpdaYCuB53-wdE2ab9NSVy7qPpFnMZBrAgwbM_UiYkDyhggYgN2C-MdTNlun4W01-jrrUmZ9mA3jdWcR6XP_-Fo_Of41ncO3g-NNADQ6HR4_hOkWDxbKldAe2F_OlewJX7I_FuJo_rS2ewMlFW8ovZRKSSQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AgSDBCaJN_IidA0KFUlG1rPYAqDfXdpyy0mqzbHZZ9a_x6_DktVoevfXANXYiJ_lmPPaMvw_gBZMmtYSbKKEij5gjNtJc20jmtOCZ1XlSSyd8PRLDoTw-zkZb8LM7C4NllZ1PrB11XlrcIx_4yF7wjPj4dlC0ZRGjvf23s-8RKkhhprWT02ggcujOVn75Vr052PP_-iUh-x8-v_8YtQoDkeUsWUS5MSbhohCZyz20TYrsJYYQ45chAhc_NHdp7IyPuZ00jMTCOltwXcSOsjRm1D_3ElwWjHO0rk9k1O_vYAaNJVl7TiemclD5uRLPsxEa-TWRd0R0Yy6sJQP-Fuf-Wa75W862ngr3b_7PH_EW3GgD8HC3sZjbsOWmd-BqI8l5dhfc7jqjH5ZFmDs3C1tpjdNw0SciQh_shy2v1yTULbUL3oEHG8tisiyRJ7ScjW1YrbC6YYUPqJqyzXvw5ULe8T5sT8upewihY5pqF_teiWWJ9OaAmwRE69xKptM4gKQDhbItTzvKhUxUXS9ApWqApDyQVA0kRQN41d8za1hKzu39DrHW90SG8fpCOT9VrcNSVAhrkVwQGfqJdZnRLNE6Sy3juW8KYKeDmGrdXqXW-Arged_sHRZmofTUlcu6jyRZQmUawIMG2P1IqJCME0ECkBuQ3xjqZst0_K0mRUe96sxPvwG87qxjPa5_f4tH57_GM7jmDUQdHQwPH8N1graL1UzpDmwv5kv3BK7YH4txNX9aG38IJxdtKL8ACEGbFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+learning+technology+for+temporal+analysis+of+videofluoroscopic+swallowing+studies&rft.jtitle=Scientific+reports&rft.au=Jeong%2C+Seong+Yun&rft.au=Kim%2C+Jeong+Min&rft.au=Park%2C+Ji+Eun&rft.au=Baek%2C+Seung+Jun&rft.date=2023-10-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-44802-3&rft.externalDocID=10_1038_s41598_023_44802_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon