Application of deep learning technology for temporal analysis of videofluoroscopic swallowing studies
Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning...
Saved in:
| Published in: | Scientific reports Vol. 13; no. 1; pp. 17522 - 12 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
16.10.2023
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning has been attempted. We aimed to develop a model for the automatic measurement of various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were included. Seven temporal parameters were manually measured by two physiatrists as ground-truth data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal sphincter opening duration. ResNet3D was selected as the base model for the deep learning of temporal parameters. The performances of ResNet3D variants were compared with those of the VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of accuracy, F1 score, and average precision values. Through the clinical application of this automatic model, temporal analysis of VFSS will be easier and more accurate. |
|---|---|
| AbstractList | Abstract Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning has been attempted. We aimed to develop a model for the automatic measurement of various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were included. Seven temporal parameters were manually measured by two physiatrists as ground-truth data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal sphincter opening duration. ResNet3D was selected as the base model for the deep learning of temporal parameters. The performances of ResNet3D variants were compared with those of the VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of accuracy, F1 score, and average precision values. Through the clinical application of this automatic model, temporal analysis of VFSS will be easier and more accurate. Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning has been attempted. We aimed to develop a model for the automatic measurement of various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were included. Seven temporal parameters were manually measured by two physiatrists as ground-truth data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal sphincter opening duration. ResNet3D was selected as the base model for the deep learning of temporal parameters. The performances of ResNet3D variants were compared with those of the VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of accuracy, F1 score, and average precision values. Through the clinical application of this automatic model, temporal analysis of VFSS will be easier and more accurate.Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning has been attempted. We aimed to develop a model for the automatic measurement of various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were included. Seven temporal parameters were manually measured by two physiatrists as ground-truth data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal sphincter opening duration. ResNet3D was selected as the base model for the deep learning of temporal parameters. The performances of ResNet3D variants were compared with those of the VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of accuracy, F1 score, and average precision values. Through the clinical application of this automatic model, temporal analysis of VFSS will be easier and more accurate. Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning has been attempted. We aimed to develop a model for the automatic measurement of various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were included. Seven temporal parameters were manually measured by two physiatrists as ground-truth data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal sphincter opening duration. ResNet3D was selected as the base model for the deep learning of temporal parameters. The performances of ResNet3D variants were compared with those of the VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of accuracy, F1 score, and average precision values. Through the clinical application of this automatic model, temporal analysis of VFSS will be easier and more accurate. |
| ArticleNumber | 17522 |
| Author | Park, Ji Eun Jeong, Seong Yun Yang, Seung Nam Kim, Jeong Min Baek, Seung Jun |
| Author_xml | – sequence: 1 givenname: Seong Yun surname: Jeong fullname: Jeong, Seong Yun organization: Department of Computer Science and Engineering, Korea University – sequence: 2 givenname: Jeong Min surname: Kim fullname: Kim, Jeong Min organization: Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Korea University College of Medicine – sequence: 3 givenname: Ji Eun surname: Park fullname: Park, Ji Eun organization: Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Korea University College of Medicine – sequence: 4 givenname: Seung Jun surname: Baek fullname: Baek, Seung Jun email: sjbaek@korea.ac.kr organization: Department of Computer Science and Engineering, Korea University – sequence: 5 givenname: Seung Nam surname: Yang fullname: Yang, Seung Nam email: snamyang@korea.ac.kr organization: Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Korea University College of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37845272$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktP3DAUhaOKqlDKH-iiitRNN2n9jO1VhVAfSEjdtGvLcW6CRx47tRPQ_Hs8E2iBBd74dc6nY9_7tjoKMUBVvcfoM0ZUfskMcyUbRGjDmESkoa-qE4IYbwgl5OjR-rg6y3mDyuBEMazeVMdUSMaJICcVnE-Td9bMLoY6DnUPMNUeTAoujPUM9jpEH8ddPcRUttspJuNrE4zfZZf3jhvXQxz8ElPMNk7O1vnWeB9v94A8L72D_K56PRif4ex-Pq3-fP_2--Jnc_Xrx-XF-VVjOcNz03ddh7kYhIJeUtK1iCvWEdIRqQTBktEeWgSdYAJkxwgSFuzAzYCAshYxelpdrtw-mo2ektuatNPROH04iGnUJs3OetBUCGuFkK2SihELqjMMG6Nay3hfrgrr68qalm4LvYUwl6c_gT69Ce5aj_FGY8SFIlgVwqd7Qop_F8iz3rpswXsTIC5ZEykkUZjKtkg_PpNu4pLKLx9UgivSCl5UHx5H-pfloZxFIFeBLcXICQZt3XyobUnofImm982j1-bRpXn0oXk0LVbyzPpAf9FEV1Mu4jBC-h_7Bdcd137YJA |
| CitedBy_id | crossref_primary_10_1016_j_anl_2025_05_002 crossref_primary_10_3390_brainsci14060546 crossref_primary_10_1007_s15036_025_3870_5 crossref_primary_10_3390_diagnostics14131444 crossref_primary_10_1016_j_cmpb_2024_108505 crossref_primary_10_1097_MOO_0000000000000948 crossref_primary_10_1016_j_otc_2024_04_002 crossref_primary_10_1002_smll_202503969 crossref_primary_10_1109_ACCESS_2025_3573282 crossref_primary_10_1016_j_compbiomed_2025_109759 |
| Cites_doi | 10.1001/archotol.127.10.1224 10.2147/cia.S23404 10.1007/pl00009576 10.1044/2019_jslhr-s-18-0448 10.1007/s00455-008-9185-9 10.5535/arm.2012.36.3.347 10.1097/00004424-198411000-00009 10.1007/bf00262751 10.1007/bf00417897 10.1007/pl00009559 10.1007/s00455-018-9904-9 10.1109/78.650093 10.1016/j.otc.2013.08.008 10.4321/s1130-01082004000200005 10.1016/j.neucli.2015.12.007 10.1038/nrgastro.2015.199 10.5535/arm.2017.41.4.564 10.1007/s00455-020-10174-3 10.1016/j.cmpb.2022.107058 10.1007/s11910-020-01081-z 10.1016/j.ejrad.2013.05.009 10.1038/s41598-018-30182-6 10.1159/000274517 10.1038/s41598-020-71713-4 10.3390/app10186179 10.3390/s19183873 10.1177/0194599817691276 10.3390/diagnostics11020300 10.1016/j.gerinurse.2007.12.001 10.2307/3001913 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023. corrected publication 2024 2023. Springer Nature Limited. The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Springer Nature Limited 2023 |
| Copyright_xml | – notice: The Author(s) 2023. corrected publication 2024 – notice: 2023. Springer Nature Limited. – notice: The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Springer Nature Limited 2023 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-44802-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_377cc778698942ce9ba41aa96c45d7cc PMC10579219 37845272 10_1038_s41598_023_44802_3 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ministry of Science and ICT, South Korea grantid: IITP-2022-2020-0-01819; IITP-2022-2020-0-01819 – fundername: ; grantid: IITP-2022-2020-0-01819; IITP-2022-2020-0-01819 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-dbbb157f79ed832b60594b22b289721843de60eb747e8b4207cecf5af0e346043 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001087127100076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:26:20 EDT 2025 Tue Nov 04 02:06:10 EST 2025 Wed Oct 01 17:23:25 EDT 2025 Tue Oct 07 09:19:52 EDT 2025 Thu Apr 03 06:57:06 EDT 2025 Tue Nov 18 21:44:21 EST 2025 Sat Nov 29 06:05:27 EST 2025 Fri Feb 21 02:37:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. Springer Nature Limited. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-dbbb157f79ed832b60594b22b289721843de60eb747e8b4207cecf5af0e346043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2877592675?pq-origsite=%requestingapplication% |
| PMID | 37845272 |
| PQID | 2877592675 |
| PQPubID | 2041939 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_377cc778698942ce9ba41aa96c45d7cc pubmedcentral_primary_oai_pubmedcentral_nih_gov_10579219 proquest_miscellaneous_2878291386 proquest_journals_2877592675 pubmed_primary_37845272 crossref_citationtrail_10_1038_s41598_023_44802_3 crossref_primary_10_1038_s41598_023_44802_3 springer_journals_10_1038_s41598_023_44802_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-16 |
| PublicationDateYYYYMMDD | 2023-10-16 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Sura, Madhavan, Carnaby, Crary (CR2) 2012; 7 Scott, Perry, Bench (CR12) 1998; 13 Langmore (CR4) 1998; 13 Lee, Ko, Kim, Choi (CR26) 2020; 10 Martin-Harris (CR29) 2008; 23 Clavé, Terré, de Kraa, Serra (CR11) 2004; 96 CR39 CR38 CR37 Lee, Park, Hwang, Jung, Park (CR25) 2020; 10 CR36 CR35 CR34 Kendall, Leonard (CR18) 2001; 127 CR33 CR10 CR32 Swan, Cordier, Brown, Speyer (CR8) 2021; 36 CR30 Curtis, Cruess, Dachman, Maso (CR17) 1984; 19 Rommel, Hamdy (CR7) 2016; 13 Schuster, Paliwal (CR31) 1997; 45 Jo, Hwang, Pyun (CR21) 2017; 41 Lee, Lee, Choi, Pyun (CR24) 2021; 11 Waito, Steele, Peladeau-Pigeon, Genge, Argov (CR15) 2018; 33 Bandini, Smaoui, Steele (CR27) 2022; 225 Jones, Colletti, Ding (CR6) 2020; 20 Wieseke, Bantz, Siktberg, Dillard (CR3) 2008; 29 Martin (CR5) 1994; 9 Steele (CR14) 2019; 62 Moon, Pyun, Kwon (CR20) 2012; 36 Rosenbek, Robbins, Roecker, Coyle, Wood (CR28) 1996; 11 Seçil (CR19) 2016; 46 Zhang, Coyle, Sejdić (CR22) 2018; 8 Baijens, Barikroo, Pilz (CR13) 2013; 82 Roden, Altman (CR1) 2013; 46 Lee, Randall, Evangelista, Kuhn, Belafsky (CR9) 2017; 156 Lee, Park, Jung (CR23) 2019; 19 Kang (CR16) 2010; 56 CA Jones (44802_CR6) 2020; 20 P Clavé (44802_CR11) 2004; 96 JT Lee (44802_CR23) 2019; 19 A Wieseke (44802_CR3) 2008; 29 BS Kang (44802_CR16) 2010; 56 AA Waito (44802_CR15) 2018; 33 44802_CR39 44802_CR38 44802_CR37 SE Langmore (44802_CR4) 1998; 13 A Scott (44802_CR12) 1998; 13 HI Moon (44802_CR20) 2012; 36 44802_CR10 44802_CR32 L Baijens (44802_CR13) 2013; 82 DF Roden (44802_CR1) 2013; 46 44802_CR30 K Swan (44802_CR8) 2021; 36 44802_CR36 Z Zhang (44802_CR22) 2018; 8 SJ Lee (44802_CR26) 2020; 10 44802_CR35 44802_CR34 L Sura (44802_CR2) 2012; 7 BJ Martin (44802_CR5) 1994; 9 A Bandini (44802_CR27) 2022; 225 JC Rosenbek (44802_CR28) 1996; 11 44802_CR33 Y Seçil (44802_CR19) 2016; 46 B Martin-Harris (44802_CR29) 2008; 23 N Rommel (44802_CR7) 2016; 13 M Schuster (44802_CR31) 1997; 45 KA Kendall (44802_CR18) 2001; 127 JW Lee (44802_CR9) 2017; 156 DJ Curtis (44802_CR17) 1984; 19 KS Lee (44802_CR24) 2021; 11 SY Jo (44802_CR21) 2017; 41 CM Steele (44802_CR14) 2019; 62 JT Lee (44802_CR25) 2020; 10 38291119 - Sci Rep. 2024 Jan 30;14(1):2526 |
| References_xml | – volume: 127 start-page: 1224 year: 2001 end-page: 1229 ident: CR18 article-title: Hyoid movement during swallowing in older patients with dysphagia publication-title: Arch. Otolaryngol. Head Neck Surg. doi: 10.1001/archotol.127.10.1224 – volume: 7 start-page: 287 year: 2012 end-page: 298 ident: CR2 article-title: Dysphagia in the elderly: Management and nutritional considerations publication-title: Clin. Interv. Aging. doi: 10.2147/cia.S23404 – volume: 13 start-page: 223 year: 1998 end-page: 227 ident: CR12 article-title: A study of interrater reliability when using videofluoroscopy as an assessment of swallowing publication-title: Dysphagia doi: 10.1007/pl00009576 – volume: 62 start-page: 1338 year: 2019 end-page: 1363 ident: CR14 article-title: Reference values for healthy swallowing across the range from thin to extremely thick liquids publication-title: J. Speech Lang. Hear. Res. doi: 10.1044/2019_jslhr-s-18-0448 – volume: 23 start-page: 392 year: 2008 end-page: 405 ident: CR29 article-title: MBS measurement tool for swallow impairment–MBSImp: Establishing a standard publication-title: Dysphagia doi: 10.1007/s00455-008-9185-9 – ident: CR39 – volume: 36 start-page: 347 year: 2012 end-page: 355 ident: CR20 article-title: Correlation between location of brain lesion and cognitive function and findings of videofluoroscopic swallowing study publication-title: Ann. Rehabil. Med. doi: 10.5535/arm.2012.36.3.347 – ident: CR37 – volume: 19 start-page: 523 year: 1984 end-page: 529 ident: CR17 article-title: Timing in the normal pharyngeal swallow. Prospective selection and evaluation of 16 normal asymptomatic patients publication-title: Invest. Radiol. doi: 10.1097/00004424-198411000-00009 – volume: 9 start-page: 1 year: 1994 end-page: 6 ident: CR5 article-title: The association of swallowing dysfunction and aspiration pneumonia publication-title: Dysphagia doi: 10.1007/bf00262751 – volume: 11 start-page: 93 year: 1996 end-page: 98 ident: CR28 article-title: A penetration-aspiration scale publication-title: Dysphagia doi: 10.1007/bf00417897 – ident: CR30 – volume: 13 start-page: 69 year: 1998 end-page: 81 ident: CR4 article-title: Predictors of aspiration pneumonia: How important is dysphagia? publication-title: Dysphagia doi: 10.1007/pl00009559 – volume: 33 start-page: 789 year: 2018 end-page: 802 ident: CR15 article-title: A preliminary videofluoroscopic investigation of swallowing physiology and function in individuals with oculopharyngeal muscular dystrophy (OPMD) publication-title: Dysphagia doi: 10.1007/s00455-018-9904-9 – ident: CR10 – volume: 45 start-page: 2673 year: 1997 end-page: 2681 ident: CR31 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Proc. doi: 10.1109/78.650093 – ident: CR33 – volume: 46 start-page: 965 year: 2013 end-page: 987 ident: CR1 article-title: Causes of dysphagia among different age groups: A systematic review of the literature publication-title: Otolaryngol. Clin. North Am. doi: 10.1016/j.otc.2013.08.008 – volume: 96 start-page: 119 year: 2004 end-page: 131 ident: CR11 article-title: Approaching oropharyngeal dysphagia publication-title: Rev. Esp. Enferm. Dig. doi: 10.4321/s1130-01082004000200005 – volume: 46 start-page: 171 year: 2016 end-page: 178 ident: CR19 article-title: Dysphagia in Alzheimer's disease publication-title: Neurophysiol. Clin. doi: 10.1016/j.neucli.2015.12.007 – ident: CR35 – volume: 13 start-page: 49 year: 2016 end-page: 59 ident: CR7 article-title: Oropharyngeal dysphagia: Manifestations and diagnosis publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2015.199 – volume: 41 start-page: 564 year: 2017 end-page: 572 ident: CR21 article-title: Relationship between cognitive function and dysphagia after stroke publication-title: Ann. Rehabil. Med. doi: 10.5535/arm.2017.41.4.564 – volume: 36 start-page: 595 year: 2021 end-page: 613 ident: CR8 article-title: Visuoperceptual analysis of the videofluoroscopic study of swallowing: An international Delphi study publication-title: Dysphagia doi: 10.1007/s00455-020-10174-3 – volume: 225 start-page: 107058 year: 2022 ident: CR27 article-title: Automated pharyngeal phase detection and bolus localization in videofluoroscopic swallowing study: Killing two birds with one stone? publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2022.107058 – volume: 20 start-page: 61 year: 2020 ident: CR6 article-title: Post-stroke dysphagia: Recent insights and unanswered questions publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-020-01081-z – volume: 82 start-page: 1683 year: 2013 end-page: 1695 ident: CR13 article-title: Intrarater and interrater reliability for measurements in videofluoroscopy of swallowing publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2013.05.009 – volume: 8 start-page: 12310 year: 2018 ident: CR22 article-title: Automatic hyoid bone detection in fluoroscopic images using deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-018-30182-6 – volume: 56 start-page: 474 year: 2010 end-page: 482 ident: CR16 article-title: Influence of aging on movement of the hyoid bone and epiglottis during normal swallowing: A motion analysis publication-title: Gerontology doi: 10.1159/000274517 – ident: CR38 – volume: 10 start-page: 14735 year: 2020 ident: CR25 article-title: Machine learning analysis to automatically measure response time of pharyngeal swallowing reflex in videofluoroscopic swallowing study publication-title: Sci. Rep. doi: 10.1038/s41598-020-71713-4 – volume: 10 start-page: 6179 year: 2020 ident: CR26 article-title: Automatic detection of airway invasion from videofluoroscopy via deep learning technology publication-title: Appl. Sci. doi: 10.3390/app10186179 – volume: 19 start-page: 3873 year: 2019 ident: CR23 article-title: Automatic detection of the pharyngeal phase in raw videos for the videofluoroscopic swallowing study using efficient data collection and 3D convolutional networks (†) publication-title: Sensors (Basel) doi: 10.3390/s19183873 – volume: 156 start-page: 901 year: 2017 end-page: 905 ident: CR9 article-title: Subjective assessment of videofluoroscopic swallow studies publication-title: Otolaryngol. Head Neck Surg. doi: 10.1177/0194599817691276 – ident: CR32 – ident: CR34 – ident: CR36 – volume: 11 start-page: 300 year: 2021 ident: CR24 article-title: Automatic pharyngeal phase recognition in untrimmed videofluoroscopic swallowing study using transfer learning with deep convolutional neural networks publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics11020300 – volume: 29 start-page: 376 year: 2008 end-page: 383 ident: CR3 article-title: Assessment and early diagnosis of dysphagia publication-title: Geriatr. Nurs. doi: 10.1016/j.gerinurse.2007.12.001 – volume: 62 start-page: 1338 year: 2019 ident: 44802_CR14 publication-title: J. Speech Lang. Hear. Res. doi: 10.1044/2019_jslhr-s-18-0448 – volume: 7 start-page: 287 year: 2012 ident: 44802_CR2 publication-title: Clin. Interv. Aging. doi: 10.2147/cia.S23404 – ident: 44802_CR30 – volume: 19 start-page: 523 year: 1984 ident: 44802_CR17 publication-title: Invest. Radiol. doi: 10.1097/00004424-198411000-00009 – volume: 11 start-page: 93 year: 1996 ident: 44802_CR28 publication-title: Dysphagia doi: 10.1007/bf00417897 – volume: 127 start-page: 1224 year: 2001 ident: 44802_CR18 publication-title: Arch. Otolaryngol. Head Neck Surg. doi: 10.1001/archotol.127.10.1224 – ident: 44802_CR32 – volume: 41 start-page: 564 year: 2017 ident: 44802_CR21 publication-title: Ann. Rehabil. Med. doi: 10.5535/arm.2017.41.4.564 – volume: 45 start-page: 2673 year: 1997 ident: 44802_CR31 publication-title: IEEE Trans. Signal Proc. doi: 10.1109/78.650093 – volume: 36 start-page: 595 year: 2021 ident: 44802_CR8 publication-title: Dysphagia doi: 10.1007/s00455-020-10174-3 – volume: 10 start-page: 14735 year: 2020 ident: 44802_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-020-71713-4 – volume: 10 start-page: 6179 year: 2020 ident: 44802_CR26 publication-title: Appl. Sci. doi: 10.3390/app10186179 – volume: 36 start-page: 347 year: 2012 ident: 44802_CR20 publication-title: Ann. Rehabil. Med. doi: 10.5535/arm.2012.36.3.347 – volume: 13 start-page: 49 year: 2016 ident: 44802_CR7 publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2015.199 – volume: 19 start-page: 3873 year: 2019 ident: 44802_CR23 publication-title: Sensors (Basel) doi: 10.3390/s19183873 – volume: 46 start-page: 965 year: 2013 ident: 44802_CR1 publication-title: Otolaryngol. Clin. North Am. doi: 10.1016/j.otc.2013.08.008 – ident: 44802_CR39 doi: 10.2307/3001913 – ident: 44802_CR37 – volume: 56 start-page: 474 year: 2010 ident: 44802_CR16 publication-title: Gerontology doi: 10.1159/000274517 – ident: 44802_CR35 – ident: 44802_CR10 – volume: 29 start-page: 376 year: 2008 ident: 44802_CR3 publication-title: Geriatr. Nurs. doi: 10.1016/j.gerinurse.2007.12.001 – volume: 20 start-page: 61 year: 2020 ident: 44802_CR6 publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-020-01081-z – volume: 23 start-page: 392 year: 2008 ident: 44802_CR29 publication-title: Dysphagia doi: 10.1007/s00455-008-9185-9 – volume: 33 start-page: 789 year: 2018 ident: 44802_CR15 publication-title: Dysphagia doi: 10.1007/s00455-018-9904-9 – volume: 225 start-page: 107058 year: 2022 ident: 44802_CR27 publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2022.107058 – ident: 44802_CR33 – volume: 13 start-page: 223 year: 1998 ident: 44802_CR12 publication-title: Dysphagia doi: 10.1007/pl00009576 – volume: 82 start-page: 1683 year: 2013 ident: 44802_CR13 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2013.05.009 – volume: 11 start-page: 300 year: 2021 ident: 44802_CR24 publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics11020300 – volume: 46 start-page: 171 year: 2016 ident: 44802_CR19 publication-title: Neurophysiol. Clin. doi: 10.1016/j.neucli.2015.12.007 – volume: 9 start-page: 1 year: 1994 ident: 44802_CR5 publication-title: Dysphagia doi: 10.1007/bf00262751 – volume: 13 start-page: 69 year: 1998 ident: 44802_CR4 publication-title: Dysphagia doi: 10.1007/pl00009559 – ident: 44802_CR38 – ident: 44802_CR36 – ident: 44802_CR34 – volume: 8 start-page: 12310 year: 2018 ident: 44802_CR22 publication-title: Sci. Rep. doi: 10.1038/s41598-018-30182-6 – volume: 156 start-page: 901 year: 2017 ident: 44802_CR9 publication-title: Otolaryngol. Head Neck Surg. doi: 10.1177/0194599817691276 – volume: 96 start-page: 119 year: 2004 ident: 44802_CR11 publication-title: Rev. Esp. Enferm. Dig. doi: 10.4321/s1130-01082004000200005 – reference: 38291119 - Sci Rep. 2024 Jan 30;14(1):2526 |
| SSID | ssj0000529419 |
| Score | 2.4656675 |
| Snippet | Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by... Abstract Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 17522 |
| SubjectTerms | 639/166 692/308 Deep Learning Deglutition - physiology Deglutition Disorders - diagnostic imaging Deglutition Disorders - etiology Esophageal sphincter Esophageal Sphincter, Upper Fluoroscopy - methods Humanities and Social Sciences Humans multidisciplinary Pharynx Science Science (multidisciplinary) Sphincter Swallowing |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkhcUMszUJCRuEHU-JHYPhZExQFVHAD1ZtmOAyutklWzS9V_j8fOpl2eF66xHY3mkZnJjL8BeCmUazyrXUm5bEsRmC9tbX2pWt7V2tuWptEJXz7IszN1fq4_3hj1hT1hGR44M-6YS-k9gpwhUjjzQTsrqLW68aJu4xJ-fWPUcyOZyqjeTAuqp1syFVfHY_RUeJuM8TJmJPEzwHc8UQLs_12U-Wuz5E8V0-SITg_g7hRBkpNM-SHcCv09uJ1nSl7dh3ByXZImQ0faEFZkmg3xlaznP-kkRqtkAqZaEjthk-AJvJk3dMvNgECXw2rhyXiJ5flLfMGY-w4fwOfTd5_evi-nWQqlrwVdl61zjtaykzq00YhdgzgtjjEXEy6JaR5vQ1MFF7OLoJxglfTBd7XtqsBFUwn-EPb6oQ-PgQRhuQ1V3EW9oCrKE7NcZm3rlbBNVQDd8tX4CWgc510sTSp4c2WyLEyUhUmyMLyAV_OZVYbZ-OvuNyiueSdCZKcHUXHMpDjmX4pTwNFW2Gay29HE_FHWmsUsqoAX83K0OCyj2D4Mm7RHMU25agp4lHVjpoRLJWomWQFqR2t2SN1d6RffEqo3DlzW0X8U8HqrYNd0_ZkXT_4HL57CHYaWgZ06zRHsrS824Rns--_rxXjxPJnWD3NVKEY priority: 102 providerName: Directory of Open Access Journals |
| Title | Application of deep learning technology for temporal analysis of videofluoroscopic swallowing studies |
| URI | https://link.springer.com/article/10.1038/s41598-023-44802-3 https://www.ncbi.nlm.nih.gov/pubmed/37845272 https://www.proquest.com/docview/2877592675 https://www.proquest.com/docview/2878291386 https://pubmed.ncbi.nlm.nih.gov/PMC10579219 https://doaj.org/article/377cc778698942ce9ba41aa96c45d7cc |
| Volume | 13 |
| WOSCitedRecordID | wos001087127100076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xLUhceC8ElipI3CDaxHZi54R20a5AYqsIASqnyHacpVKVlKZlxb_H47ipymMvXHyIncjOjMfz8jcAL5lQmSapihLKq4gZoiOZSh2JitZprmWVuNIJXz7w6VTMZnnhHW6dT6vcykQnqKtWo4_82Gr2PM2J1W_fLL9HWDUKo6u-hMYBjBGpjI1gfHo2LT4OXhaMY7Ek97dlYiqOO3ti4a0yQiNrmVhxQPdOJAfc_zdt88-kyd8ip-5AOr_7v0u5B3e8Khqe9LxzH26Y5gHc6otT_nwI5mQX2w7bOqyMWYa-yMRluB5c8qFVe0OPcLUIpQc5wTfwil9bLzYtIma2y7kOuyuM81_hB7o-gfERfD4_-_T2XeSLMkQ6Zck6qpRSScprnpvKSgOVIeCLIkRZy42jvUgrk8VGWTPFCMVIzLXRdSrr2FCWxYwewqhpG_MEQsMklSa2oxLNEmEZA81lImWlBZNZHECyJUypPWI5Fs5YlC5yTkXZE7O0xCwdMUsawKvhnWWP13Ht6FOk9zASsbbdg3Z1WfqtW1LOtUaYPcSqJ9rkSrJEyjzTLK1sVwBHWzKXXgB05Y7GAbwYuu3WxXiMbEy7cWMEyRMqsgAe98w1zIRywVLCSQBij-32prrf08y_OXhwrNyc24MogNdbDt3N69__4un1y3gGtwluGkzmyY5gtF5tzHO4qX-s591qAgd8xl0rJn4PTpx7w7YXpMCW23ZcvL8ovv4Cir098Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET24mdA0LlUbXqsuJQ0N5c23HKSqvNstll1T_Fb8ST12p59NYD19iJnOSb8dgz_j6AF1ya1NLEhDETecgdtaFOtA1lzookszqPa-mErwMxHMrRKPu8BT-7szBYVtn5xNpR56XFPfJdH9mLJKM-vn07-x6iahRmVzsJjQYWR-5s5Zds1ZvDD_7_vqR0_-Px-4OwVRUIbcLjRZgbY-JEFCJzuYezSZGxxFBq_NJD4IKH5S6NnPFxtpOG00hYZ4tEF5FjPI0488-9BJe9HxdYQiZGot_TwawZj7P2bE7E5G7l50c8w0ZZ6NdB3vmwjfmvlgn4W2z7Z4nmb3naevrbv_m_fbhbcKMNtMleYxm3YctN78DVRnrz7C64vXXmnpQFyZ2bkVZC45Qs-oQD8UE9afm7JkS3FC54Bx5gLIvJskQ-0HI2tqRaYRXDCh9QNeWZ9-DLhbzjfdiellP3EIjjmmkX-V6x5bH0sMfNAKp1biXXaRRA3AFB2ZaPHWVBJqquC2BSNeBRHjyqBo9iAbzq75k1bCTn9n6H-Op7IpN4faGcn6rWMSkmhLVIIohM_NS6zGgea52llie5bwpgp4OVat1bpdaYCuB53-wdE2ab9NSVy7qPpFnMZBrAgwbM_UiYkDyhggYgN2C-MdTNlun4W01-jrrUmZ9mA3jdWcR6XP_-Fo_Of41ncO3g-NNADQ6HR4_hOkWDxbKldAe2F_OlewJX7I_FuJo_rS2ewMlFW8ovZRKSSQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AgSDBCaJN_IidA0KFUlG1rPYAqDfXdpyy0mqzbHZZ9a_x6_DktVoevfXANXYiJ_lmPPaMvw_gBZMmtYSbKKEij5gjNtJc20jmtOCZ1XlSSyd8PRLDoTw-zkZb8LM7C4NllZ1PrB11XlrcIx_4yF7wjPj4dlC0ZRGjvf23s-8RKkhhprWT02ggcujOVn75Vr052PP_-iUh-x8-v_8YtQoDkeUsWUS5MSbhohCZyz20TYrsJYYQ45chAhc_NHdp7IyPuZ00jMTCOltwXcSOsjRm1D_3ElwWjHO0rk9k1O_vYAaNJVl7TiemclD5uRLPsxEa-TWRd0R0Yy6sJQP-Fuf-Wa75W862ngr3b_7PH_EW3GgD8HC3sZjbsOWmd-BqI8l5dhfc7jqjH5ZFmDs3C1tpjdNw0SciQh_shy2v1yTULbUL3oEHG8tisiyRJ7ScjW1YrbC6YYUPqJqyzXvw5ULe8T5sT8upewihY5pqF_teiWWJ9OaAmwRE69xKptM4gKQDhbItTzvKhUxUXS9ApWqApDyQVA0kRQN41d8za1hKzu39DrHW90SG8fpCOT9VrcNSVAhrkVwQGfqJdZnRLNE6Sy3juW8KYKeDmGrdXqXW-Arged_sHRZmofTUlcu6jyRZQmUawIMG2P1IqJCME0ECkBuQ3xjqZst0_K0mRUe96sxPvwG87qxjPa5_f4tH57_GM7jmDUQdHQwPH8N1graL1UzpDmwv5kv3BK7YH4txNX9aG38IJxdtKL8ACEGbFg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+learning+technology+for+temporal+analysis+of+videofluoroscopic+swallowing+studies&rft.jtitle=Scientific+reports&rft.au=Jeong%2C+Seong+Yun&rft.au=Kim%2C+Jeong+Min&rft.au=Park%2C+Ji+Eun&rft.au=Baek%2C+Seung+Jun&rft.date=2023-10-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-44802-3&rft.externalDocID=10_1038_s41598_023_44802_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |