Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity
Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filamen...
Uloženo v:
| Vydáno v: | Nature communications Ročník 14; číslo 1; s. 7819 - 15 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
28.11.2023
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments.
How nuclear architecture assists the replication stress response is still largely unknown. Here the authors show that nuclear actin polymerization rapidly extends upon mild DNA damage. By limiting Primpol activity, this response mediates fork slowing and reversal, protecting chromosome stability. |
|---|---|
| AbstractList | Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments. Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments.Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments. Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments.How nuclear architecture assists the replication stress response is still largely unknown. Here the authors show that nuclear actin polymerization rapidly extends upon mild DNA damage. By limiting Primpol activity, this response mediates fork slowing and reversal, protecting chromosome stability. Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments. How nuclear architecture assists the replication stress response is still largely unknown. Here the authors show that nuclear actin polymerization rapidly extends upon mild DNA damage. By limiting Primpol activity, this response mediates fork slowing and reversal, protecting chromosome stability. Abstract Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments. |
| ArticleNumber | 7819 |
| Author | González-Acosta, Daniel Stoy, Henriette Krietsch, Jana Doerdelmann, Cyril Frey, Joël von Känel, Thomas Ulferts, Svenja Sanchi, Andrea Chiolo, Irene Palumbieri, Maria Dilia Merigliano, Chiara Grosse, Robert Lopes, Massimo Kuster, Danina Welter, Bettina |
| Author_xml | – sequence: 1 givenname: Maria Dilia orcidid: 0000-0002-0462-844X surname: Palumbieri fullname: Palumbieri, Maria Dilia organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 2 givenname: Chiara surname: Merigliano fullname: Merigliano, Chiara organization: Molecular and Computational Biology Department, University of Southern California – sequence: 3 givenname: Daniel orcidid: 0000-0003-3686-2297 surname: González-Acosta fullname: González-Acosta, Daniel organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 4 givenname: Danina orcidid: 0009-0008-8694-2600 surname: Kuster fullname: Kuster, Danina organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 5 givenname: Jana orcidid: 0000-0001-6533-3058 surname: Krietsch fullname: Krietsch, Jana organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 6 givenname: Henriette orcidid: 0000-0002-2943-414X surname: Stoy fullname: Stoy, Henriette organization: Institute of Molecular Cancer Research, University of Zurich, Department of Cellular and Molecular Medicine, Copenhagen University – sequence: 7 givenname: Thomas orcidid: 0000-0003-3099-2744 surname: von Känel fullname: von Känel, Thomas organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 8 givenname: Svenja orcidid: 0000-0002-6605-8163 surname: Ulferts fullname: Ulferts, Svenja organization: Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg – sequence: 9 givenname: Bettina surname: Welter fullname: Welter, Bettina organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 10 givenname: Joël orcidid: 0009-0006-8196-8866 surname: Frey fullname: Frey, Joël organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 11 givenname: Cyril orcidid: 0000-0002-0843-866X surname: Doerdelmann fullname: Doerdelmann, Cyril organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 12 givenname: Andrea surname: Sanchi fullname: Sanchi, Andrea organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 13 givenname: Robert orcidid: 0000-0002-3380-5273 surname: Grosse fullname: Grosse, Robert organization: Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg – sequence: 14 givenname: Irene orcidid: 0000-0002-3080-550X surname: Chiolo fullname: Chiolo, Irene email: chiolo@usc.edu organization: Molecular and Computational Biology Department, University of Southern California – sequence: 15 givenname: Massimo orcidid: 0000-0003-3847-8133 surname: Lopes fullname: Lopes, Massimo email: lopes@imcr.uzh.ch organization: Institute of Molecular Cancer Research, University of Zurich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38016948$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1TAUtFARLaU_wAJFYsMmEL8Se4VQxaNSBV3A2vLz4osTB9updPl6fG9aaLuoN7bmzIzHx-c5OJriZAF4Cbu3sMPsXSaQ9EPbIdwSDBlu6RNwgjoCWzggfHTnfAzOct52dWEOGSHPwDFmHew5YScgfV10sDI1Uhc_NXMMu9Em_0cWH6cmydmbsGtGa7wsNjfJzsHrtehi-lWBMRob_LRplrmCuSSbc6N2TfCjL3v8KvnxKobDDde-7F6Ap06GbM9u9lPw49PH7-df2stvny_OP1y2mhJYWjNowpEbNOY95NiQXjPVY6VMT7khunNyUNQpomo_nHXOIIco08QpKDnj-BRcrL4myq2YawqZdiJKLw5ATBshU_H1-YJr20E2OKNN7YpTTELKlZKUckmdtdXr_eo1L6o2Q9upJBnumd6vTP6n2MRrAbueEcZYdXhz45Di78XmIkaftQ1BTjYuWSDGKaKco6FSXz-gbuOSptqrPYtQRoe-q6xXdyP9y3L7t5XAVoJOMedkndC-HL6uJvShRhP7SRLrJIk6SeIwSYJWKXogvXV_VIRXUa7kaWPT_9iPqP4CuxPeww |
| CitedBy_id | crossref_primary_10_3103_S0095452725040048 crossref_primary_10_1038_s41467_024_54141_0 crossref_primary_10_1073_pnas_2424709122 crossref_primary_10_1172_JCI188165 crossref_primary_10_1016_j_dnarep_2024_103731 crossref_primary_10_1016_j_ceb_2024_102405 crossref_primary_10_1016_j_dnarep_2024_103758 crossref_primary_10_1038_s41594_025_01644_z crossref_primary_10_1038_s41580_025_00828_1 crossref_primary_10_1016_j_celrep_2025_116083 crossref_primary_10_1242_jcs_261630 crossref_primary_10_1007_s00412_023_00813_7 crossref_primary_10_1038_s41467_024_54142_z crossref_primary_10_3390_cells13131093 crossref_primary_10_1038_s41467_025_59553_0 crossref_primary_10_3389_fcell_2024_1472906 |
| Cites_doi | 10.1016/j.molcel.2013.10.035 10.1038/ncb2364 10.15252/embj.201796585 10.1016/j.molcel.2017.11.022 10.1091/mbc.02-05-0068 10.3389/fgene.2021.773426 10.1016/j.molcel.2017.08.010 10.1007/978-1-0716-2477-7_1 10.1038/ncb2472 10.3389/fgene.2018.00398 10.1038/ncb3641 10.7554/eLife.07735 10.1038/s41467-023-39517-y 10.1038/s41586-018-0261-5 10.1101/gad.2053211 10.1016/j.molcel.2021.09.013 10.1016/j.molcel.2022.09.009 10.3390/genes8010020 10.1146/annurev-pathol-012414-040424 10.1074/jbc.M114.627166 10.1038/s41467-020-17324-z 10.1038/s41586-018-0242-8 10.1016/j.celrep.2018.08.019 10.1093/nar/gkad369 10.1038/s41556-020-00605-6 10.1007/978-1-0716-0644-5_32 10.1038/s41467-017-01164-5 10.1126/sciadv.ade7997 10.1126/science.1235038 10.1016/j.trecan.2020.10.010 10.1016/bs.mie.2017.11.033 10.1083/jcb.201106022 10.1016/j.molcel.2022.05.004 10.1038/s41467-019-13322-y 10.1038/nsmb.3387 10.1101/gad.256404.114 10.1016/j.tcb.2019.02.010 10.1126/science.add7328 10.1038/s41467-020-19570-7 10.1083/jcb.201406099 10.1007/s00418-013-1151-4 10.1083/jcb.140.6.1285 10.1038/s41467-018-05009-7 10.1242/jcs.204487 10.1101/gad.178459.111 10.1038/s41467-017-01180-5 10.1038/nature18325 10.1126/science.1162790 10.1016/bs.mie.2017.03.019 10.1016/j.cell.2014.08.030 10.1038/s41556-019-0379-1 10.1038/s41467-022-31415-z 10.1038/s41467-017-01805-9 10.1016/j.semcdb.2019.10.012 10.1038/nrm3935 10.15252/embj.2020106355 10.1038/ncb2465 10.1038/nsmb.2719 10.1016/j.molcel.2019.10.008 10.1038/ncomms15222 10.1016/j.pharmthera.2018.03.005 10.1038/s41586-018-0237-5 10.1016/j.tcb.2021.06.002 10.1038/nsmb.2501 10.1038/s41467-021-26227-6 10.1126/sciadv.abm0314 10.1038/s41556-023-01167-z 10.1093/nar/gkac583 10.1126/sciimmunol.aav1987 10.1016/j.molcel.2020.04.031 10.1038/s41579-020-0407-y 10.1038/s41586-023-05981-1 10.1016/j.chembiol.2013.03.019 10.1007/s00412-023-00813-7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-023-43183-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_9ce0187fdcd948fb8a159bba559a5fee PMC10684888 38016948 10_1038_s41467_023_43183_5 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 310030_189206 funderid: https://doi.org/10.13039/501100001711 – fundername: NIGMS NIH HHS grantid: R01 GM117376 – fundername: ; grantid: 310030_189206 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-d7c492f7c396193d46c8b63bbd659d4c0fa7b5fb4b103feffd2f258c4fb1a9893 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001137597400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:53:25 EDT 2025 Tue Nov 04 02:06:25 EST 2025 Thu Sep 04 17:00:22 EDT 2025 Tue Oct 07 07:45:36 EDT 2025 Fri May 09 01:30:32 EDT 2025 Tue Nov 18 20:58:41 EST 2025 Sat Nov 29 03:29:37 EST 2025 Fri Feb 21 02:40:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-d7c492f7c396193d46c8b63bbd659d4c0fa7b5fb4b103feffd2f258c4fb1a9893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3380-5273 0000-0002-0462-844X 0000-0002-6605-8163 0000-0001-6533-3058 0000-0003-3686-2297 0000-0002-0843-866X 0009-0006-8196-8866 0009-0008-8694-2600 0000-0002-3080-550X 0000-0002-2943-414X 0000-0003-3847-8133 0000-0003-3099-2744 |
| OpenAccessLink | https://www.proquest.com/docview/2894585760?pq-origsite=%requestingapplication% |
| PMID | 38016948 |
| PQID | 2894585760 |
| PQPubID | 546298 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9ce0187fdcd948fb8a159bba559a5fee pubmedcentral_primary_oai_pubmedcentral_nih_gov_10684888 proquest_miscellaneous_2895259927 proquest_journals_2894585760 pubmed_primary_38016948 crossref_citationtrail_10_1038_s41467_023_43183_5 crossref_primary_10_1038_s41467_023_43183_5 springer_journals_10_1038_s41467_023_43183_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-28 |
| PublicationDateYYYYMMDD | 2023-11-28 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Vujanovic (CR9) 2017; 67 Hurst, Shimada, Gasser (CR29) 2019; 29 Berti (CR65) 2020; 11 Mutreja (CR24) 2018; 24 Jacobs (CR23) 2022; 82 Lemacon (CR14) 2017; 8 CR37 Macheret, Halazonetis (CR2) 2015; 10 Plessner, Melak, Chinchilla, Baarlink, Grosse (CR35) 2015; 290 Klages-Mundt, Kumar, Zhang, Kapoor, Shen (CR27) 2018; 09 Wang (CR56) 2017; 8 González‐Acosta (CR20) 2021; 40 Mehta (CR61) 2022; 8 Han (CR45) 2022; 13 Caridi, Plessner, Grosse, Chiolo (CR32) 2019; 21 Zellweger (CR11) 2015; 208 Berti (CR57) 2013; 20 Mansilla (CR62) 2023; 9 Caridi (CR40) 2018; 559 Shi (CR47) 2023; 14 Mijic (CR13) 2017; 8 Aymard (CR41) 2017; 24 de Lanerolle, Serebryannyy (CR30) 2011; 13 Piberger (CR19) 2020; 11 Baarlink, Wang, Grosse (CR34) 2013; 340 Su, Dion, Gasser, Freudenreich (CR69) 2015; 29 Caridi (CR76) 2018; 601 Guilliam (CR64) 2017; 8 See, Arya, Lin, Chiolo (CR75) 2020; 2153 Betous (CR8) 2012; 26 Bianchi (CR18) 2013; 52 Quinet (CR22) 2020; 77 Dion, Kalck, Horigome, Towbin, Gasser (CR71) 2012; 14 Neelsen, Lopes (CR6) 2015; 16 Forment, O’Connor (CR3) 2018; 188 Quinet, Lemacon, Vindigni (CR7) 2017; 68 Oshidari (CR73) 2018; 9 Wang (CR36) 2019; 10 Wynne, Rog, Carlton, Dernburg (CR67) 2012; 196 CR10 CR54 Parisis (CR43) 2017; 36 CR53 Baillie, Stirling (CR4) 2021; 7 Mourón (CR17) 2013; 20 Tirman (CR21) 2021; 81 Saxena, Zou (CR1) 2022; 82 CR51 Kokai (CR49) 2014; 141 Kang (CR59) 2021; 12 Miné-Hattab, Rothstein (CR72) 2012; 14 Chaudhuri (CR15) 2016; 535 Quinet, Carvajal-Maldonado, Lemacon, Vindigni (CR60) 2017; 591 Lamm (CR44) 2020; 22 Melak, Plessner, Grosse (CR31) 2017; 130 Posern, Sotiropoulos, Treisman (CR48) 2002; 13 Guilliam, Doherty (CR16) 2017; 8 Kyheröinen, Vartiainen (CR74) 2020; 102 Lamm, Rogers, Cesare (CR33) 2021; 31 Wootton, Soutoglou (CR25) 2021; 12 Cho, Dilley, Lampson, Greenberg (CR70) 2014; 159 CR26 Belin, Lee, Mullins (CR39) 2015; 4 Gaggioli (CR66) 2023; 25 Liu (CR12) 2023; 380 Ulferts, Prajapati, Grosse, Vartiainen (CR28) 2021; 13 Baarlink (CR38) 2017; 19 Stoy (CR55) 2022; 2528 Maya-Mendoza (CR58) 2018; 559 CR63 Jackson, Pombo (CR52) 1998; 140 Nieminuszczy (CR46) 2023; 51 Sirbu (CR50) 2011; 25 Schrank (CR42) 2018; 559 Nagai (CR68) 2008; 322 Berti, Cortez, Lopes (CR5) 2020; 18 43183_CR26 CP Caridi (43183_CR76) 2018; 601 J Shi (43183_CR47) 2023; 14 A Quinet (43183_CR60) 2017; 591 BJ Belin (43183_CR39) 2015; 4 M Berti (43183_CR5) 2020; 18 D Lemacon (43183_CR14) 2017; 8 N Lamm (43183_CR44) 2020; 22 KPM Mehta (43183_CR61) 2022; 8 BR Schrank (43183_CR42) 2018; 559 A Quinet (43183_CR22) 2020; 77 H Stoy (43183_CR55) 2022; 2528 M Plessner (43183_CR35) 2015; 290 BM Sirbu (43183_CR50) 2011; 25 W Liu (43183_CR12) 2023; 380 P de Lanerolle (43183_CR30) 2011; 13 J Bianchi (43183_CR18) 2013; 52 JV Forment (43183_CR3) 2018; 188 S Kyheröinen (43183_CR74) 2020; 102 C Baarlink (43183_CR34) 2013; 340 43183_CR10 43183_CR54 S Saxena (43183_CR1) 2022; 82 C Baarlink (43183_CR38) 2017; 19 CP Caridi (43183_CR40) 2018; 559 N Parisis (43183_CR43) 2017; 36 KE Baillie (43183_CR4) 2021; 7 CP Caridi (43183_CR32) 2019; 21 S Mourón (43183_CR17) 2013; 20 D González‐Acosta (43183_CR20) 2021; 40 R Betous (43183_CR8) 2012; 26 F Aymard (43183_CR41) 2017; 24 Z Kang (43183_CR59) 2021; 12 S Ulferts (43183_CR28) 2021; 13 K Jacobs (43183_CR23) 2022; 82 Y Wang (43183_CR36) 2019; 10 S Tirman (43183_CR21) 2021; 81 43183_CR63 M Vujanovic (43183_CR9) 2017; 67 M Melak (43183_CR31) 2017; 130 C See (43183_CR75) 2020; 2153 S-S Han (43183_CR45) 2022; 13 M Macheret (43183_CR2) 2015; 10 M Berti (43183_CR65) 2020; 11 XA Su (43183_CR69) 2015; 29 V Hurst (43183_CR29) 2019; 29 M Berti (43183_CR57) 2013; 20 AL Piberger (43183_CR19) 2020; 11 E Kokai (43183_CR49) 2014; 141 43183_CR51 43183_CR53 R Zellweger (43183_CR11) 2015; 208 S Nagai (43183_CR68) 2008; 322 S Mijic (43183_CR13) 2017; 8 J Miné-Hattab (43183_CR72) 2012; 14 43183_CR37 R Oshidari (43183_CR73) 2018; 9 J Nieminuszczy (43183_CR46) 2023; 51 NW Cho (43183_CR70) 2014; 159 K Mutreja (43183_CR24) 2018; 24 AR Chaudhuri (43183_CR15) 2016; 535 V Dion (43183_CR71) 2012; 14 J Wootton (43183_CR25) 2021; 12 A Quinet (43183_CR7) 2017; 68 TA Guilliam (43183_CR64) 2017; 8 Y-H Wang (43183_CR56) 2017; 8 NL Klages-Mundt (43183_CR27) 2018; 09 G Posern (43183_CR48) 2002; 13 A Maya-Mendoza (43183_CR58) 2018; 559 KJ Neelsen (43183_CR6) 2015; 16 SF Mansilla (43183_CR62) 2023; 9 DJ Wynne (43183_CR67) 2012; 196 TA Guilliam (43183_CR16) 2017; 8 DA Jackson (43183_CR52) 1998; 140 N Lamm (43183_CR33) 2021; 31 V Gaggioli (43183_CR66) 2023; 25 36993227 - bioRxiv. 2023 Mar 25:2023.03.24.534097. doi: 10.1101/2023.03.24.534097. |
| References_xml | – volume: 52 start-page: 566 year: 2013 end-page: 573 ident: CR18 article-title: PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.10.035 – volume: 13 start-page: 1282 year: 2011 end-page: 1288 ident: CR30 article-title: Nuclear actin and myosins: life without filaments publication-title: Nat. Cell Biol. doi: 10.1038/ncb2364 – volume: 36 start-page: 3212 year: 2017 end-page: 3231 ident: CR43 article-title: Initiation of DNA replication requires actin dynamics and formin activity publication-title: EMBO J. doi: 10.15252/embj.201796585 – volume: 68 start-page: 830 year: 2017 end-page: 833 ident: CR7 article-title: Replication fork reversal: players and guardians publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.11.022 – volume: 18 start-page: 622 year: 2020 end-page: 19 ident: CR5 article-title: The plasticity of DNA replication forks in response to clinically relevant genotoxic stress publication-title: Nat. Rev. Mol. Cell Biol. – volume: 13 start-page: 4167 year: 2002 end-page: 4178 ident: CR48 article-title: Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor publication-title: Mol. Biol. Cell doi: 10.1091/mbc.02-05-0068 – volume: 12 start-page: 773426 year: 2021 ident: CR25 article-title: Chromatin and nuclear dynamics in the maintenance of replication fork integrity publication-title: Front. Genet. doi: 10.3389/fgene.2021.773426 – ident: CR51 – volume: 67 start-page: 882 year: 2017 end-page: 890.e5 ident: CR9 article-title: Replication fork slowing and reversal upon DNA damage require PCNA polyubiquitination and ZRANB3 DNA translocase activity publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.08.010 – volume: 2528 start-page: 1 year: 2022 end-page: 20 ident: CR55 article-title: R-Loops, methods and protocols publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-2477-7_1 – volume: 14 start-page: 510 year: 2012 end-page: 517 ident: CR72 article-title: Increased chromosome mobility facilitates homology search during recombination publication-title: Nat. Cell Biol. doi: 10.1038/ncb2472 – volume: 09 start-page: 398 year: 2018 ident: CR27 article-title: The nature of actin-family proteins in chromatin-modifying complexes publication-title: Front. Genet. doi: 10.3389/fgene.2018.00398 – volume: 19 start-page: 1389 year: 2017 end-page: 1399 ident: CR38 article-title: A transient pool of nuclear F-actin at mitotic exit controls chromatin organization publication-title: Nat. Cell Biol. doi: 10.1038/ncb3641 – volume: 4 start-page: e07735 year: 2015 ident: CR39 article-title: DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-1/2 that promotes efficient DNA repair publication-title: Elife doi: 10.7554/eLife.07735 – ident: CR54 – volume: 14 year: 2023 ident: CR47 article-title: Nuclear myosin VI maintains replication fork stability publication-title: Nat. Commun. doi: 10.1038/s41467-023-39517-y – volume: 559 start-page: 279 year: 2018 end-page: 284 ident: CR58 article-title: High speed of fork progression induces DNA replication stress and genomic instability publication-title: Nature doi: 10.1038/s41586-018-0261-5 – volume: 25 start-page: 1320 year: 2011 end-page: 1327 ident: CR50 article-title: Analysis of protein dynamics at active, stalled, and collapsed replication forks publication-title: Genes Dev. doi: 10.1101/gad.2053211 – volume: 81 start-page: 4026 year: 2021 end-page: 4040.e8 ident: CR21 article-title: Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.09.013 – volume: 82 start-page: 4176 year: 2022 end-page: 4188.e8 ident: CR23 article-title: Stress-triggered hematopoietic stem cell proliferation relies on PrimPol-mediated repriming publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.09.009 – volume: 8 start-page: 20 year: 2017 ident: CR16 article-title: PrimPol-prime time to reprime publication-title: Genes doi: 10.3390/genes8010020 – volume: 10 start-page: 425 year: 2015 end-page: 448 ident: CR2 article-title: DNA replication stress as a hallmark of cancer publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-012414-040424 – volume: 290 start-page: 11209 year: 2015 end-page: 11216 ident: CR35 article-title: Nuclear F-actin formation and reorganization upon cell spreading publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.627166 – volume: 11 year: 2020 ident: CR65 article-title: Sequential role of RAD51 paralog complexes in replication fork remodeling and restart publication-title: Nat. Commun. doi: 10.1038/s41467-020-17324-z – volume: 559 start-page: 54 year: 2018 end-page: 60 ident: CR40 article-title: Nuclear F-actin and myosins drive relocalization of heterochromatic breaks publication-title: Nature doi: 10.1038/s41586-018-0242-8 – volume: 24 start-page: 2629 year: 2018 end-page: 2642.e5 ident: CR24 article-title: ATR-mediated global fork slowing and reversal assist fork traverse and prevent chromosomal breakage at DNA interstrand cross-links publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.08.019 – volume: 51 start-page: 6337 year: 2023 end-page: 6354 ident: CR46 article-title: Actin nucleators safeguard replication forks by limiting nascent strand degradation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad369 – volume: 22 start-page: 1460 year: 2020 end-page: 1470 ident: CR44 article-title: Nuclear F-actin counteracts nuclear deformation and promotes fork repair during replication stress publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-00605-6 – volume: 2153 start-page: 459 year: 2020 end-page: 482 ident: CR75 article-title: Live cell imaging of nuclear actin filaments and heterochromatic repair foci in drosophila and mouse cells publication-title: Methods Mol. Biol. Clifton N J. doi: 10.1007/978-1-0716-0644-5_32 – volume: 8 year: 2017 ident: CR13 article-title: Replication fork reversal triggers fork degradation in BRCA2-defective cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-01164-5 – volume: 9 start-page: eade7997 year: 2023 ident: CR62 article-title: Polymerase iota (Pol ι) prevents PrimPol-mediated nascent DNA synthesis and chromosome instability publication-title: Sci. Adv. doi: 10.1126/sciadv.ade7997 – volume: 340 start-page: 864 year: 2013 end-page: 867 ident: CR34 article-title: Nuclear actin network assembly by formins regulates the SRF coactivator MAL publication-title: Science doi: 10.1126/science.1235038 – volume: 7 start-page: 430 year: 2021 end-page: 446 ident: CR4 article-title: Beyond kinases: targeting replication stress proteins in cancer Therapy publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.10.010 – ident: CR26 – volume: 601 start-page: 359 year: 2018 end-page: 389 ident: CR76 article-title: Quantitative methods to investigate the 4D dynamics of heterochromatic repair sites in Drosophila cells publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2017.11.033 – volume: 196 start-page: 47 year: 2012 end-page: 64 ident: CR67 article-title: Dynein-dependent processive chromosome motions promote homologous pairing in meiosis publication-title: J. Cell Biol. doi: 10.1083/jcb.201106022 – volume: 82 start-page: 2298 year: 2022 end-page: 2314 ident: CR1 article-title: Hallmarks of DNA replication stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.05.004 – volume: 10 year: 2019 ident: CR36 article-title: GPCR-induced calcium transients trigger nuclear actin assembly for chromatin dynamics publication-title: Nat. Commun. doi: 10.1038/s41467-019-13322-y – ident: CR37 – volume: 24 start-page: 353 year: 2017 end-page: 361 ident: CR41 article-title: Genome wide mapping of long range contacts unveils DNA Double Strand Breaks clustering at damaged active genes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3387 – ident: CR53 – volume: 29 start-page: 1006 year: 2015 end-page: 1017 ident: CR69 article-title: Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability publication-title: Gene Dev. doi: 10.1101/gad.256404.114 – volume: 29 start-page: 462 year: 2019 end-page: 476 ident: CR29 article-title: Nuclear actin and actin-binding proteins in DNA repair publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2019.02.010 – ident: CR10 – volume: 380 start-page: 382 year: 2023 end-page: 387 ident: CR12 article-title: RAD51 bypasses the CMG helicase to promote replication fork reversal publication-title: Science doi: 10.1126/science.add7328 – volume: 11 year: 2020 ident: CR19 article-title: PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts publication-title: Nat. Commun. doi: 10.1038/s41467-020-19570-7 – volume: 208 start-page: 563 year: 2015 end-page: 579 ident: CR11 article-title: Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201406099 – volume: 141 start-page: 123 year: 2014 end-page: 135 ident: CR49 article-title: Analysis of nuclear actin by overexpression of wild-type and actin mutant proteins publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-013-1151-4 – volume: 140 start-page: 1285 year: 1998 end-page: 1295 ident: CR52 article-title: Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells publication-title: J. Cell Biol. doi: 10.1083/jcb.140.6.1285 – volume: 9 year: 2018 ident: CR73 article-title: Nuclear microtubule filaments mediate non-linear directional motion of chromatin and promote DNA repair publication-title: Nat. Commun. doi: 10.1038/s41467-018-05009-7 – ident: CR63 – volume: 130 start-page: 525 year: 2017 end-page: 530 ident: CR31 article-title: Actin visualization at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.204487 – volume: 26 start-page: 151 year: 2012 end-page: 162 ident: CR8 article-title: SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication publication-title: Genes Dev. doi: 10.1101/gad.178459.111 – volume: 8 year: 2017 ident: CR14 article-title: MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-01180-5 – volume: 535 start-page: 382 year: 2016 end-page: 387 ident: CR15 article-title: Replication fork stability confers chemoresistance in BRCA-deficient cells publication-title: Nature doi: 10.1038/nature18325 – volume: 322 start-page: 597 year: 2008 end-page: 602 ident: CR68 article-title: Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase publication-title: Science doi: 10.1126/science.1162790 – volume: 13 start-page: a040121 year: 2021 ident: CR28 article-title: Emerging properties and functions of actin and actin filaments inside the nucleus publication-title: CSH Perspect. Biol. – volume: 591 start-page: 55 year: 2017 end-page: 82 ident: CR60 article-title: DNA fiber analysis: mind the gap! publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2017.03.019 – volume: 159 start-page: 108 year: 2014 end-page: 121 ident: CR70 article-title: Interchromosomal homology searches drive directional ALT telomere movement and synapsis publication-title: Cell doi: 10.1016/j.cell.2014.08.030 – volume: 21 start-page: 1068 year: 2019 end-page: 1077 ident: CR32 article-title: Nuclear actin filaments in DNA repair dynamics publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0379-1 – volume: 13 year: 2022 ident: CR45 article-title: WASp modulates RPA function on single-stranded DNA in response to replication stress and DNA damage publication-title: Nat. Commun. doi: 10.1038/s41467-022-31415-z – volume: 8 year: 2017 ident: CR56 article-title: DNA damage causes rapid accumulation of phosphoinositides for ATR signaling publication-title: Nat. Commun. doi: 10.1038/s41467-017-01805-9 – volume: 102 start-page: 105 year: 2020 end-page: 112 ident: CR74 article-title: Nuclear actin dynamics in gene expression and genome organization publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2019.10.012 – volume: 16 start-page: 207 year: 2015 end-page: 220 ident: CR6 article-title: Replication fork reversal in eukaryotes: from dead end to dynamic response publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3935 – volume: 40 start-page: e106355 year: 2021 ident: CR20 article-title: PrimPol‐mediated repriming facilitates replication traverse of DNA interstrand crosslinks publication-title: EMBO J. doi: 10.15252/embj.2020106355 – volume: 14 start-page: 502 year: 2012 end-page: 509 ident: CR71 article-title: Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery publication-title: Nat. Cell Biol. doi: 10.1038/ncb2465 – volume: 20 start-page: 1383 year: 2013 end-page: 1389 ident: CR17 article-title: Repriming of DNA synthesis at stalled replication forks by human PrimPol publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2719 – volume: 77 start-page: 461 year: 2020 end-page: 474.e9 ident: CR22 article-title: PRIMPOL-mediated adaptive response suppresses replication fork reversal in BRCA-deficient cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.10.008 – volume: 8 start-page: 15222 year: 2017 end-page: 14 ident: CR64 article-title: Molecular basis for PrimPol recruitment to replication forks by RPA publication-title: Nat. Commun. doi: 10.1038/ncomms15222 – volume: 188 start-page: 155 year: 2018 end-page: 167 ident: CR3 article-title: Targeting the replication stress response in cancer publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2018.03.005 – volume: 559 start-page: 61 year: 2018 end-page: 66 ident: CR42 article-title: Nuclear Arp2/3 drives DNA break clustering for homology-directed repair publication-title: Nature doi: 10.1038/s41586-018-0237-5 – volume: 31 start-page: 843 year: 2021 end-page: 855 ident: CR33 article-title: Chromatin mobility and relocation in DNA repair publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2021.06.002 – volume: 20 start-page: 347 year: 2013 end-page: 354 ident: CR57 article-title: Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2501 – volume: 12 year: 2021 ident: CR59 article-title: BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage publication-title: Nat. Commun. doi: 10.1038/s41467-021-26227-6 – volume: 8 start-page: eabm0314 year: 2022 ident: CR61 article-title: CHK1 phosphorylates PRIMPOL to promote replication stress tolerance publication-title: Sci. Adv. doi: 10.1126/sciadv.abm0314 – volume: 25 start-page: 1017 year: 2023 end-page: 1032 ident: CR66 article-title: Dynamic de novo heterochromatin assembly and disassembly at replication forks ensures fork stability publication-title: Nat. Cell Biol. doi: 10.1038/s41556-023-01167-z – volume: 9 year: 2018 ident: 43183_CR73 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05009-7 – ident: 43183_CR54 doi: 10.1093/nar/gkac583 – volume: 29 start-page: 1006 year: 2015 ident: 43183_CR69 publication-title: Gene Dev. doi: 10.1101/gad.256404.114 – volume: 77 start-page: 461 year: 2020 ident: 43183_CR22 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.10.008 – volume: 22 start-page: 1460 year: 2020 ident: 43183_CR44 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-00605-6 – volume: 67 start-page: 882 year: 2017 ident: 43183_CR9 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.08.010 – ident: 43183_CR37 doi: 10.1126/sciimmunol.aav1987 – volume: 559 start-page: 61 year: 2018 ident: 43183_CR42 publication-title: Nature doi: 10.1038/s41586-018-0237-5 – volume: 559 start-page: 279 year: 2018 ident: 43183_CR58 publication-title: Nature doi: 10.1038/s41586-018-0261-5 – volume: 51 start-page: 6337 year: 2023 ident: 43183_CR46 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad369 – volume: 2528 start-page: 1 year: 2022 ident: 43183_CR55 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-2477-7_1 – volume: 14 start-page: 502 year: 2012 ident: 43183_CR71 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2465 – volume: 8 year: 2017 ident: 43183_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01805-9 – volume: 82 start-page: 4176 year: 2022 ident: 43183_CR23 publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.09.009 – volume: 2153 start-page: 459 year: 2020 ident: 43183_CR75 publication-title: Methods Mol. Biol. Clifton N J. doi: 10.1007/978-1-0716-0644-5_32 – volume: 188 start-page: 155 year: 2018 ident: 43183_CR3 publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2018.03.005 – volume: 7 start-page: 430 year: 2021 ident: 43183_CR4 publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.10.010 – volume: 11 year: 2020 ident: 43183_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19570-7 – volume: 21 start-page: 1068 year: 2019 ident: 43183_CR32 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0379-1 – volume: 20 start-page: 1383 year: 2013 ident: 43183_CR17 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2719 – volume: 31 start-page: 843 year: 2021 ident: 43183_CR33 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2021.06.002 – volume: 12 year: 2021 ident: 43183_CR59 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26227-6 – volume: 24 start-page: 2629 year: 2018 ident: 43183_CR24 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.08.019 – ident: 43183_CR10 doi: 10.1016/j.molcel.2020.04.031 – volume: 591 start-page: 55 year: 2017 ident: 43183_CR60 publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2017.03.019 – volume: 14 start-page: 510 year: 2012 ident: 43183_CR72 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2472 – volume: 535 start-page: 382 year: 2016 ident: 43183_CR15 publication-title: Nature doi: 10.1038/nature18325 – volume: 18 start-page: 622 year: 2020 ident: 43183_CR5 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41579-020-0407-y – volume: 196 start-page: 47 year: 2012 ident: 43183_CR67 publication-title: J. Cell Biol. doi: 10.1083/jcb.201106022 – volume: 13 start-page: 4167 year: 2002 ident: 43183_CR48 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.02-05-0068 – volume: 68 start-page: 830 year: 2017 ident: 43183_CR7 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.11.022 – volume: 208 start-page: 563 year: 2015 ident: 43183_CR11 publication-title: J. Cell Biol. doi: 10.1083/jcb.201406099 – volume: 140 start-page: 1285 year: 1998 ident: 43183_CR52 publication-title: J. Cell Biol. doi: 10.1083/jcb.140.6.1285 – volume: 25 start-page: 1320 year: 2011 ident: 43183_CR50 publication-title: Genes Dev. doi: 10.1101/gad.2053211 – volume: 81 start-page: 4026 year: 2021 ident: 43183_CR21 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.09.013 – ident: 43183_CR63 doi: 10.1038/s41586-023-05981-1 – volume: 322 start-page: 597 year: 2008 ident: 43183_CR68 publication-title: Science doi: 10.1126/science.1162790 – volume: 25 start-page: 1017 year: 2023 ident: 43183_CR66 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-023-01167-z – volume: 8 year: 2017 ident: 43183_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01180-5 – volume: 09 start-page: 398 year: 2018 ident: 43183_CR27 publication-title: Front. Genet. doi: 10.3389/fgene.2018.00398 – volume: 8 start-page: 20 year: 2017 ident: 43183_CR16 publication-title: Genes doi: 10.3390/genes8010020 – volume: 559 start-page: 54 year: 2018 ident: 43183_CR40 publication-title: Nature doi: 10.1038/s41586-018-0242-8 – volume: 141 start-page: 123 year: 2014 ident: 43183_CR49 publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-013-1151-4 – volume: 380 start-page: 382 year: 2023 ident: 43183_CR12 publication-title: Science doi: 10.1126/science.add7328 – volume: 10 year: 2019 ident: 43183_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13322-y – volume: 8 start-page: eabm0314 year: 2022 ident: 43183_CR61 publication-title: Sci. Adv. doi: 10.1126/sciadv.abm0314 – volume: 4 start-page: e07735 year: 2015 ident: 43183_CR39 publication-title: Elife doi: 10.7554/eLife.07735 – volume: 36 start-page: 3212 year: 2017 ident: 43183_CR43 publication-title: EMBO J. doi: 10.15252/embj.201796585 – ident: 43183_CR53 – volume: 102 start-page: 105 year: 2020 ident: 43183_CR74 publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2019.10.012 – volume: 52 start-page: 566 year: 2013 ident: 43183_CR18 publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.10.035 – ident: 43183_CR51 doi: 10.1016/j.chembiol.2013.03.019 – volume: 20 start-page: 347 year: 2013 ident: 43183_CR57 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2501 – volume: 8 start-page: 15222 year: 2017 ident: 43183_CR64 publication-title: Nat. Commun. doi: 10.1038/ncomms15222 – volume: 13 year: 2022 ident: 43183_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31415-z – volume: 40 start-page: e106355 year: 2021 ident: 43183_CR20 publication-title: EMBO J. doi: 10.15252/embj.2020106355 – volume: 130 start-page: 525 year: 2017 ident: 43183_CR31 publication-title: J. Cell Sci. doi: 10.1242/jcs.204487 – volume: 26 start-page: 151 year: 2012 ident: 43183_CR8 publication-title: Genes Dev. doi: 10.1101/gad.178459.111 – volume: 10 start-page: 425 year: 2015 ident: 43183_CR2 publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-012414-040424 – volume: 8 year: 2017 ident: 43183_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01164-5 – volume: 13 start-page: a040121 year: 2021 ident: 43183_CR28 publication-title: CSH Perspect. Biol. – volume: 16 start-page: 207 year: 2015 ident: 43183_CR6 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3935 – volume: 19 start-page: 1389 year: 2017 ident: 43183_CR38 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3641 – volume: 159 start-page: 108 year: 2014 ident: 43183_CR70 publication-title: Cell doi: 10.1016/j.cell.2014.08.030 – volume: 601 start-page: 359 year: 2018 ident: 43183_CR76 publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2017.11.033 – ident: 43183_CR26 doi: 10.1007/s00412-023-00813-7 – volume: 24 start-page: 353 year: 2017 ident: 43183_CR41 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3387 – volume: 340 start-page: 864 year: 2013 ident: 43183_CR34 publication-title: Science doi: 10.1126/science.1235038 – volume: 290 start-page: 11209 year: 2015 ident: 43183_CR35 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.627166 – volume: 82 start-page: 2298 year: 2022 ident: 43183_CR1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.05.004 – volume: 12 start-page: 773426 year: 2021 ident: 43183_CR25 publication-title: Front. Genet. doi: 10.3389/fgene.2021.773426 – volume: 29 start-page: 462 year: 2019 ident: 43183_CR29 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2019.02.010 – volume: 9 start-page: eade7997 year: 2023 ident: 43183_CR62 publication-title: Sci. Adv. doi: 10.1126/sciadv.ade7997 – volume: 13 start-page: 1282 year: 2011 ident: 43183_CR30 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2364 – volume: 11 year: 2020 ident: 43183_CR65 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17324-z – volume: 14 year: 2023 ident: 43183_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39517-y – reference: 36993227 - bioRxiv. 2023 Mar 25:2023.03.24.534097. doi: 10.1101/2023.03.24.534097. |
| SSID | ssj0000391844 |
| Score | 2.5262127 |
| Snippet | Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the... Abstract Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7819 |
| SubjectTerms | 13 14 14/1 14/19 14/28 631/337/1427/2566 631/337/151/2356 Actin Actins - genetics Cell Line, Tumor Chromatin Chromosomes Constraining Deoxyribonucleic acid Deregulation DNA DNA - genetics DNA biosynthesis DNA damage DNA probes DNA Replication Filaments Genomic instability Genotoxicity Humanities and Social Sciences multidisciplinary Plastic foam Plastic properties Plasticity Polymerization Replication S phase Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LihQxMMii4EV827pKBG_abHce3clxFRdPwxwU9hZSeeDg2DP0zCzM31tJ9_Tu-Lx4rSQk1LuoVBUhbxoPLjjJSm2hKjHesKgHNS8VMKgEODQ7Kg-baGczdXmp5zdGfaU_YUN74AFxZ9qFNDcueue1UBGURQMMYNETtjKGkLQvej03gqmsg7nG0EWMVTIVV2cbkXUCmqhSJD4u5ZElyg37f-dl_vpZ8qeMaTZEF_fJvdGDpOfDyx-QW6F7SO4MMyX3j0g_Sx2KbU9TxUJH16vlPiVlhmpL2tv1wi_3NBeMoJdJ-zAlsCn6r98QkIfj4NV0t0bgUExCYU-XqRYqwef94vt8tcw3pNETj8mXi4-fP3wqx8EKpZOi3pa-dUKz2DquMX7iXjROQcMBfCO1F66KtgUZQQCiLoYYPYtMKici1Fajh_OEnHSrLjwjNLSeSeBKKJ5yitaGKjSsbqDBhWChIPUBycaNXcfT8IulydlvrsxAGIOEMZkwRhbk7XRmPfTc-Ovu94l2087ULzsDkIvMyEXmX1xUkNMD5c0oxBuDsajAaKptqoK8npZR_FJOxXZhtct7JEaQmrUFeTowyvQSrlKrG6EKoo5Y6Oipxyvd4mtu8Y2BOqJU4dF3B267ftefcfH8f-DiBbnLkpjUdcnUKTnZ9rvwktx2V9vFpn-V5ewHcJIvpg priority: 102 providerName: Directory of Open Access Journals |
| Title | Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity |
| URI | https://link.springer.com/article/10.1038/s41467-023-43183-5 https://www.ncbi.nlm.nih.gov/pubmed/38016948 https://www.proquest.com/docview/2894585760 https://www.proquest.com/docview/2895259927 https://pubmed.ncbi.nlm.nih.gov/PMC10684888 https://doaj.org/article/9ce0187fdcd948fb8a159bba559a5fee |
| Volume | 14 |
| WOSCitedRecordID | wos001137597400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuyBx4f0ILJWRuEG0ediJc0Is2hUcqCIEUuES-QkVIQlpi9R_z9hJsyqPvXDJwQ_F9ozHMx7PfADPMi2VUSwJCyGjEO0NgXKwSEMuExlRqfDY4R5sIp_P-WJRlOOF22p8VrmTiV5Q61a5O_ITNAwoqrZ5Fr3sfoQONcp5V0cIjQM4clkSUv90r5zuWFz2c07pGCsTpfxkRb1kwIMqpI6bQ7Z3Hvm0_X_TNf98Mvmb39QfR-c3_3cit-DGqIiSVwPn3IYrprkD1wZoyu1d6Ocu0bHoiQt8aEjX1lvn2xmCNkkvuqWut8THnaCySnoz-cEJqsHfsMBj7ODYyabDwiEmhcgtqV1IlSsv--X3sq39HxyCxT34eH724fWbcMRnCBWj8TrUuaJFYnOVFmiGpZpmissslVJnrNBURVbkkllJJa69NdbqxCaMK2plLApUlO7DYdM25iEQk-uEyZRTnjrXpBAmMlkSZzLDCiNkAPGOSpUak5c7DI268k70lFcDZSukbOUpW7EAnk99uiF1x6WtTx3xp5Yu7bYvaPsv1biLq0IZB2JotdIF5VZygdqglALNMsGsMQEc72hejbJgVV0QPICnUzXuYueaEY1pN74NQ0O0SPIAHgycNo0k5S5jDuUB8D0e3Bvqfk2z_OozhaO9j0vKseuLHbtejOvfa_Ho8mk8huuJ20FxHCb8GA7X_cY8gavq53q56mdwkC9y_-UzODo9m5fvZ_6mY-Y3J35L9hlryrfvyk-_AEl7QzU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAqIX3i2BAkaCE0RNHCdxDgjxqlq1rPZQpN6Mn7AiJCG7C9o_xW9k7Dyq5dFbD1xtR3Gcb8YzHs98CD3JtFRGpSQshIxC8DcE6MEiCZkkMqJSwbbDPNlEPpmw09NiuoF-Drkw7lrloBO9ota1cmfke-AYUDBt8yx62XwLHWuUi64OFBodLI7M6ge4bPMXh2_h_z4lZP_dyZuDsGcVCFVK40Woc0ULYnOVFOA8JJpmiskskVJnaaGpiqzIZWollXGUWGOtJpakTFErY1EwV3wJVP4lMCMI81cFp-OZjqu2zijtc3OihO3NqddEsDGG1ElPmK7tf54m4G-27Z9XNH-L0_rtb__6_7ZwN9C13tDGrzrJuIk2THULXemoN1e3UTtxhZxFi11iR4Wbuly52FWXlIpb0cx0ucI-rwaMcdyaMc6Pwcz_Ag2eQwjWCi8baOxybrBc4dKljLn2aTv7Oq1L_wbH0HEHfbiQD95Gm1VdmbsIm1yTVCaMssSFXoUwkclInMkMOoyQAYoHVHDVF2d3HCEl95cEEsY7JHFAEvdI4mmAno3PNF1pknNHv3ZgG0e6suK-oW4_8V5L8UIZR9JotdIFZVYyAdaulALcTpFaYwK0O2CM97puzs8AFqDHYzdoKRd6EpWpl35MCo52QfIA7XTIHmeSMFcRiLIAsTXMr011vaeaffaV0OMogyVl8OjzQTzO5vXvtbh3_mc8QlcPTt4f8-PDydF9tEWc9MZxSNgu2ly0S_MAXVbfF7N5-9CLP0YfL1psfgFkmZtB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLZGw6K5sC-BAYwEJ4iaOE7iHBAChorRoKoHkOYWvEI1JSlpC-pf49fxnrOMyjK3OXC1HdVxv_f8Xt7yEfIkM0pbnbKwkCoKwd-QoAeLJBSKqYgrDdeO8GQT-WQijo-L6Q752dfCYFplrxO9oja1xm_kI3AMOJi2eRaNXJcWMT0Yv1x8C5FBCiOtPZ1GC5Eju_kB7tvyxeEB_NdPGRu__fDmXdgxDIQ65fEqNLnmBXO5TgpwJBLDMy1UlihlsrQwXEdO5ip1iqs4Spx1zjDHUqG5U7EsBDZiAvV_Icem5T5tcDp838HO64Lzrk4nSsRoyb1Wgksy5ChJYbp1F3rKgL_ZuX-ma_4Ws_VX4fjq_3yI18iVzgCnr1qJuU52bHWDXGopOTc3STPBBs-yoVjwUdFFPd9gTKstVqWNXMzMfEN9vQ0Y6bSxQ_yfgvl_AgOeWwjOja4XMNjW4lC1oXMsJcPxaTP7Oq3n_heQueMW-XguL3yb7FZ1Ze8SanPDUpUILhIMyUppI5uxOFMZTFipAhL3CCl117QduUPmpU8eSETZoqoEVJUeVWUakGfDM4u2ZcmZq18j8IaV2G7cD9TN57LTXmWhLZI3OqNNwYVTQoIVrJQEd1SmztqA7Pd4KzsduCxPwRaQx8M0aC8MScnK1mu_JgUHvGB5QO60KB92kgjsFMRFQMQW_re2uj1Tzb74DulxlMGRCnj0eS8qp_v691ncO_s1HpHLIC3l-8PJ0X2yx1CQ4zhkYp_srpq1fUAu6u-r2bJ56DUBJZ_OW2p-AVYoo_4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+actin+polymerization+rapidly+mediates+replication+fork+remodeling+upon+stress+by+limiting+PrimPol+activity&rft.jtitle=Nature+communications&rft.au=Palumbieri%2C+Maria+Dilia&rft.au=Merigliano%2C+Chiara&rft.au=Gonz%C3%A1lez-Acosta%2C+Daniel&rft.au=Kuster%2C+Danina&rft.date=2023-11-28&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=7819&rft_id=info:doi/10.1038%2Fs41467-023-43183-5&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |