Prediction of cold region dew volume based on an ECOA-BiTCN-BiLSTM hybrid model

This paper presents a hybrid prediction model, ECOA-BiTCN-BiLSTM, for predicting dew in cold areas. The model integrates BiTCN and BiLSTM neural networks to enhance performance. An enhanced Crayfish optimization algorithm (ECOA) with four mixed strategies was employed to optimize the model’s hyperpa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 4265 - 14
Hauptverfasser: Zhang, Yi, Liu, Pengtao, Xu, Yingying, Zhang, Meng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 04.02.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a hybrid prediction model, ECOA-BiTCN-BiLSTM, for predicting dew in cold areas. The model integrates BiTCN and BiLSTM neural networks to enhance performance. An enhanced Crayfish optimization algorithm (ECOA) with four mixed strategies was employed to optimize the model’s hyperparameters and reduce the impact of arbitrary selection. The proposed ECOA-BiTCN-BiLSTM model was validated using dew data from farmland in a northeastern Chinese city. Comparative experiments were conducted against the BiTCN model, the BiLSTM model, the original BiTCN-BiLSTM model, and other models optimized with advanced swarm intelligence algorithms. The experimental results demonstrate that the proposed model achieved a mean absolute error (MAE) of 0.002424, a root mean square error (RMSE) of 0.003984, and a mean absolute percentage error (MAPE) of 0.123050, with a coefficient of determination R 2 of 0.999840. These results indicate that the ECOA-BiTCN-BiLSTM model outperforms the other prediction models across all evaluated metrics, offering higher prediction accuracy and highly effective prediction models.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-74097-x