Research on intelligent semi-active control algorithms and seismic reliability based on machine learning

Aiming to address the shortcomings of existing semi-active control algorithms with poor robustness and the limited generalization ability of current evaluation methods based on deterministic analysis, a novel approach based on probability density evolution is proposed. This method is designed to ass...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 29487 - 27
Hlavní autoři: Xiao, Zhongyuan, Xu, Jianguo, Wang, Li, Huang, Liang
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 27.11.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Aiming to address the shortcomings of existing semi-active control algorithms with poor robustness and the limited generalization ability of current evaluation methods based on deterministic analysis, a novel approach based on probability density evolution is proposed. This method is designed to assess the seismic reliability, enabling a more comprehensive evaluation of the control effectiveness of aqueduct structures. Building upon this, an intelligent semi-active control algorithm leveraging machine learning is introduced. The algorithm is further validated through engineering case studies to investigate semi-active control strategies in response to random seismic events. The results show that the seismic reliability of the machine learning-based semi-active control algorithm is significantly higher than that of the uncontrolled state for the same failure threshold under random seismic effects.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-74457-7