Research on intelligent semi-active control algorithms and seismic reliability based on machine learning
Aiming to address the shortcomings of existing semi-active control algorithms with poor robustness and the limited generalization ability of current evaluation methods based on deterministic analysis, a novel approach based on probability density evolution is proposed. This method is designed to ass...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 14; H. 1; S. 29487 - 27 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
27.11.2024
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Aiming to address the shortcomings of existing semi-active control algorithms with poor robustness and the limited generalization ability of current evaluation methods based on deterministic analysis, a novel approach based on probability density evolution is proposed. This method is designed to assess the seismic reliability, enabling a more comprehensive evaluation of the control effectiveness of aqueduct structures. Building upon this, an intelligent semi-active control algorithm leveraging machine learning is introduced. The algorithm is further validated through engineering case studies to investigate semi-active control strategies in response to random seismic events. The results show that the seismic reliability of the machine learning-based semi-active control algorithm is significantly higher than that of the uncontrolled state for the same failure threshold under random seismic effects. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-024-74457-7 |