Raman spectroscopy combined with a support vector machine algorithm as a diagnostic technique for primary Sjögren’s syndrome
The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and stand...
Uložené v:
| Vydané v: | Scientific reports Ročník 13; číslo 1; s. 5137 - 6 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
29.03.2023
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value. |
|---|---|
| AbstractList | The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value. Abstract The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value. The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value.The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value. |
| ArticleNumber | 5137 |
| Author | Luo, Cainan Chen, Chen Chen, Xiaomei Wu, Xue Chen, Cheng Shi, Yamei Su, Jinmei Wu, Lijun Li, Zhengfang Lv, Xiaoyi |
| Author_xml | – sequence: 1 givenname: Xiaomei surname: Chen fullname: Chen, Xiaomei organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis – sequence: 2 givenname: Xue surname: Wu fullname: Wu, Xue organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis – sequence: 3 givenname: Chen surname: Chen fullname: Chen, Chen organization: College of Software, Xinjiang University – sequence: 4 givenname: Cainan surname: Luo fullname: Luo, Cainan organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis – sequence: 5 givenname: Yamei surname: Shi fullname: Shi, Yamei organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis – sequence: 6 givenname: Zhengfang surname: Li fullname: Li, Zhengfang organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis – sequence: 7 givenname: Xiaoyi surname: Lv fullname: Lv, Xiaoyi organization: College of Software, Key Laboratory of Signal Detection and Processing, Xinjiang University – sequence: 8 givenname: Cheng surname: Chen fullname: Chen, Cheng organization: College of Software, Xinjiang University – sequence: 9 givenname: Jinmei surname: Su fullname: Su, Jinmei email: sujm@pumch.cn organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College – sequence: 10 givenname: Lijun surname: Wu fullname: Wu, Lijun email: wwlj330@126.com organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36991016$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktuFDEURUsoiISQDTBAlpgwKfC32h4hFPGJFAmJz9jyr6rdqrILuzpRj5JtsBE2wE5YCe6uDiQZxLJkyz736uq997Q6CDG4qnqO4GsECX-TKWKC1xCTGgtBSS0eVUcYUlZjgvHBrfthdZLzCpbFsKBIPKkOSSMEgqg5qq6-qEEFkEdnphSzieMGmDhoH5wFl35aAgXyehxjmsBFYWICgzLL8g1U38VUiAGoXCjrVRdinrwBkzPL4H-sHWgLPyY_qLQBX1e_f3XJhT_XPzPIm2BTHNyz6nGr-uxO9udx9f3D-2-nn-rzzx_PTt-d14ZRNNXGCoUtZdqRpmwIneXQIgeRYUpYgQksNdB2YahWomGCtoSyheGcQtdqRI6rs9nXRrWS-0gyKi93DzF1UqWSvXdSc40XzFijWkhbqEXTcso5Z0xjrfDW6-3sNa714KxxYUqqv2N69yf4pezihUQQNhAjWhxe7R1SLGXKkxx8Nq7vVXBxnSVeCCxKf0hT0Jf30FVcp1BqtaMwY2SxpV7cjvQvy02jC8BnwJQu5-RaafykJh-3CX1fosntWMl5rGQZK7kbKymKFN-T3rg_KCKzKBc4dC79j_2A6i_mu-NY |
| CitedBy_id | crossref_primary_10_1038_s41598_024_59850_6 crossref_primary_10_1177_00037028231209053 crossref_primary_10_3389_fimmu_2025_1467027 crossref_primary_10_3390_biomedicines12010133 crossref_primary_10_1002_advs_202501793 crossref_primary_10_1002_jbio_202300510 crossref_primary_10_1016_j_microc_2025_112692 crossref_primary_10_1016_j_bios_2024_116199 crossref_primary_10_1016_j_dajour_2025_100595 crossref_primary_10_1002_jrs_70002 |
| Cites_doi | 10.1109/JPHOT.2018.2876686 10.1016/j.trac.2019.115796 10.1136/ard.61.6.554 10.1016/j.jpba.2019.112999 10.1080/05704920701551530 10.1038/s41598-019-56308-y 10.1016/j.icte.2020.06.007 10.1016/j.chemolab.2020.104029 10.31782/IJCRR.2021.13127 10.1016/j.nano.2020.102328 10.1002/jrs.4924 10.1038/nrrheum.2013.110 10.1039/C8AN00224J 10.3390/s18051393 10.1016/j.ejrad.2012.01.004 10.3389/fmed.2021.676885 10.1007/s10103-013-1398-y 10.1158/0008-5472.CAN-21-1438 10.1021/acsnano.9b09119 10.1016/j.measurement.2019.05.083 10.1080/00387010.2022.2027988 10.1002/mnfr.201801045 10.1177/1759720X17746319 10.1039/c3an00308f 10.1016/S0022-2143(97)90175-X 10.3389/fonc.2021.665176 10.1016/j.nano.2016.07.014 10.1038/nprot.2016.036 10.3390/s16091408 10.1016/j.sab.2020.105849 10.1038/s41598-022-22197-x 10.1002/jbio.201400060 10.1016/j.vibspec.2013.06.002 10.1186/s13287-022-02912-1 10.1016/j.saa.2021.119732 10.1364/BOE.7.002249 10.1002/jbio.201960176 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-29943-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 6 |
| ExternalDocumentID | oai_doaj_org_article_b8b275cdcaf04f0b96f8488855b2ba21 PMC10060214 36991016 10_1038_s41598_023_29943_9 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: The Key Research and Development Project of Xinjiang Uygur Autonomous Region grantid: 2022B03002-1 – fundername: ; grantid: 2022B03002-1 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c541t-cd9a2d45be36e3600ed80d1e01c5a9d9230943bd7c4ba96594f3457c8840efb13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003614500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:50:55 EDT 2025 Tue Nov 04 02:06:50 EST 2025 Sun Nov 09 11:08:50 EST 2025 Tue Oct 07 09:05:41 EDT 2025 Thu Jan 02 22:52:26 EST 2025 Sat Nov 29 06:33:48 EST 2025 Tue Nov 18 22:18:32 EST 2025 Fri Feb 21 02:37:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-cd9a2d45be36e3600ed80d1e01c5a9d9230943bd7c4ba96594f3457c8840efb13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/b8b275cdcaf04f0b96f8488855b2ba21 |
| PMID | 36991016 |
| PQID | 2792255376 |
| PQPubID | 2041939 |
| PageCount | 6 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b8b275cdcaf04f0b96f8488855b2ba21 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10060214 proquest_miscellaneous_2792901636 proquest_journals_2792255376 pubmed_primary_36991016 crossref_citationtrail_10_1038_s41598_023_29943_9 crossref_primary_10_1038_s41598_023_29943_9 springer_journals_10_1038_s41598_023_29943_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-29 |
| PublicationDateYYYYMMDD | 2023-03-29 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Paidi, Rodriguez Troncoso, Raj, Monterroso Diaz, Ivers, Lee (CR7) 2021; 81 Vrábel, Pořízka, Kaiser (CR34) 2020; 167 Meléndez-Martínez (CR36) 2019; 63 Khan, Ullah, Khan, Wahab, Bilal, Ahmed (CR5) 2016; 7 Movasaghi, Rehman, Rehman (CR21) 2007; 42 Fernandes (CR37) 1997; 129 Fernández-Ochoa, Borrás-Linares, Quirantes-Piné, Alarcón-Riquelme, Beretta, Segura-Carretero (CR35) 2020; 179 Butler, Ashton, Bird, Cinque, Curtis, Dorney (CR6) 2016; 11 Li, Yang, Li, Wang, Song, Yu (CR19) 2016; 47 Vijayarajeswari, Parthasarathy, Vivekanandan, Basha (CR14) 2019; 146 Mehta, Atak, Sahu, Srivastava (CR9) 2018; 143 Hong, Li, Huang, He, Wang, Wang (CR27) 2020; 13 Del Papa, Vitali (CR2) 2018; 10 Lussier, Thibault, Charron, Wallace, Masson (CR25) 2020; 124 Rubina, Amita, Bharat, Krishna (CR10) 2013; 68 Sahu, Sawant, Mamgain, Krishna (CR11) 2013; 138 Xue, Sun, Ou, Chen, Chen, Yan (CR31) 2014; 29 Zhao, An, Zhu, Yang, Gao, Niu (CR22) 2022; 13 Long, Du, Wang, Zhao, Xu, He (CR12) 2016; 16 Ryzhikova, Kazakov, Halamkova, Celmins, Malone, Molho (CR8) 2015; 8 Shen, Huang, Fan (CR16) 2018; 18 Nanglia, Kumar, Mahajan, Singh, Rathee (CR15) 2021; 7 Vitali, Bombardieri, Jonsson, Moutsopoulos, Alexander, Carsons (CR23) 2002; 61 Vitali, Minniti, Pignataro, Maglione, Del Papa (CR1) 2021; 8 Zheng, Lv, Du, Zhai, Mo, Lv (CR4) 2018; 10 Koster, Guillen-Perez, Gomez-Diaz, Navas-Moreno, Birkeland, Carney (CR28) 2022; 12 Parlatan, Inanc, Ozgor, Oral, Bastu, Unlu (CR3) 2019; 9 Nocturne, Mariette (CR38) 2013; 9 Martyna, Menżyk, Damin, Michalska, Martra, Alladio (CR18) 2020; 202 Xia, Lu, Chen, Cui, Chen, Pei (CR32) 2021; 32 Xiao, Zhang, Rong, Xiu, Yang, Wang (CR20) 2016; 12 Thaiyalnayaki (CR13) 2021; 13 Zhao, Zhao (CR17) 2021; 2021 Shin, Oh, Hong, Kang, Kang, Ji (CR30) 2020; 14 Knopf, Mansour, Chaker, Bas, Stock (CR24) 2012; 81 Ma, Shang, Tang, Bao, Fu, Yin (CR26) 2021; 256 Li, He, Huang, Lin, Tian, Xia (CR29) 2021; 11 Meng, Li, Chen, Wu, Gao, Lai (CR33) 2022; 55 R Xiao (29943_CR20) 2016; 12 H Shin (29943_CR30) 2020; 14 SK Paidi (29943_CR7) 2021; 81 X Zheng (29943_CR4) 2018; 10 K Thaiyalnayaki (29943_CR13) 2021; 13 C Meng (29943_CR33) 2022; 55 A Knopf (29943_CR24) 2012; 81 P Nanglia (29943_CR15) 2021; 7 L Xia (29943_CR32) 2021; 32 Á Fernández-Ochoa (29943_CR35) 2020; 179 E Ryzhikova (29943_CR8) 2015; 8 Z Movasaghi (29943_CR21) 2007; 42 L Xue (29943_CR31) 2014; 29 J Vrábel (29943_CR34) 2020; 167 N Del Papa (29943_CR2) 2018; 10 R Vijayarajeswari (29943_CR14) 2019; 146 M Li (29943_CR29) 2021; 11 J Zhao (29943_CR22) 2022; 13 G Fernandes (29943_CR37) 1997; 129 Y Hong (29943_CR27) 2020; 13 HJ Koster (29943_CR28) 2022; 12 K Mehta (29943_CR9) 2018; 143 D Ma (29943_CR26) 2021; 256 S Zhao (29943_CR17) 2021; 2021 A Martyna (29943_CR18) 2020; 202 Y Long (29943_CR12) 2016; 16 X Li (29943_CR19) 2016; 47 AJ Meléndez-Martínez (29943_CR36) 2019; 63 G Nocturne (29943_CR38) 2013; 9 U Parlatan (29943_CR3) 2019; 9 C Vitali (29943_CR23) 2002; 61 F Lussier (29943_CR25) 2020; 124 S Rubina (29943_CR10) 2013; 68 C Vitali (29943_CR1) 2021; 8 HJ Butler (29943_CR6) 2016; 11 S Khan (29943_CR5) 2016; 7 A Sahu (29943_CR11) 2013; 138 L Shen (29943_CR16) 2018; 18 |
| References_xml | – volume: 10 start-page: 1 issue: 6 year: 2018 end-page: 12 ident: CR4 article-title: Rapid and low-cost detection of thyroid dysfunction using Raman spectroscopy and an improved support vector machine publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2018.2876686 – volume: 124 year: 2020 ident: CR25 article-title: Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2019.115796 – volume: 61 start-page: 554 issue: 6 year: 2002 end-page: 558 ident: CR23 article-title: Classification criteria for Sjögren's syndrome: A revised version of the European criteria proposed by the American-European Consensus Group publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.61.6.554 – volume: 179 year: 2020 ident: CR35 article-title: Discovering new metabolite alterations in primary Sjögren’s syndrome in urinary and plasma samples using an HPLC-ESI-QTOF-MS methodology publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2019.112999 – volume: 42 start-page: 493 issue: 5 year: 2007 end-page: 541 ident: CR21 article-title: Raman spectroscopy of biological tissues publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704920701551530 – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 7 ident: CR3 article-title: Raman spectroscopy as a non-invasive diagnostic technique for endometriosis publication-title: Sci. Rep. doi: 10.1038/s41598-019-56308-y – volume: 7 start-page: 335 issue: 3 year: 2021 end-page: 341 ident: CR15 article-title: A hybrid algorithm for lung cancer classification using SVM and neural networks publication-title: ICT Express doi: 10.1016/j.icte.2020.06.007 – volume: 2021 start-page: 1 year: 2021 end-page: 15 ident: CR17 article-title: A comparative study of landslide susceptibility mapping using SVM and PSO-SVM models based on Grid and Slope Units publication-title: Math. Probl. Eng. – volume: 202 year: 2020 ident: CR18 article-title: Improving discrimination of Raman spectra by optimising preprocessing strategies on the basis of the ability to refine the relationship between variance components publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104029 – volume: 13 start-page: 146 issue: 01 year: 2021 ident: CR13 article-title: Classification of diabetes using deep learning and SVM techniques publication-title: Int. J. Curr. Res. Rev. doi: 10.31782/IJCRR.2021.13127 – volume: 32 year: 2021 ident: CR32 article-title: Identifying benign and malignant thyroid nodules based on blood serum surface-enhanced Raman spectroscopy publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2020.102328 – volume: 47 start-page: 917 issue: 8 year: 2016 end-page: 925 ident: CR19 article-title: Different classification algorithms and serum surface enhanced Raman spectroscopy for noninvasive discrimination of gastric diseases publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4924 – volume: 9 start-page: 544 issue: 9 year: 2013 end-page: 556 ident: CR38 article-title: Advances in understanding the pathogenesis of primary Sjögren's syndrome publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2013.110 – volume: 143 start-page: 1916 issue: 8 year: 2018 end-page: 1923 ident: CR9 article-title: An early investigative serum Raman spectroscopy study of meningioma publication-title: Analyst doi: 10.1039/C8AN00224J – volume: 18 start-page: 1393 issue: 5 year: 2018 ident: CR16 article-title: Double-group particle swarm optimization and its application in remote sensing image segmentation publication-title: Sensors doi: 10.3390/s18051393 – volume: 81 start-page: 3300 issue: 11 year: 2012 end-page: 3305 ident: CR24 article-title: Multimodal ultrasonographic characterisation of parotid gland lesions—A pilot study publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2012.01.004 – volume: 8 year: 2021 ident: CR1 article-title: Management of Sjögren's syndrome: Present issues and future perspectives publication-title: Front. Med. doi: 10.3389/fmed.2021.676885 – volume: 29 start-page: 723 year: 2014 end-page: 728 ident: CR31 article-title: Diagnosis of pathological minor salivary glands in primary Sjogren’s syndrome by using Raman spectroscopy publication-title: Lasers Med. Sci. doi: 10.1007/s10103-013-1398-y – volume: 81 start-page: 5745 issue: 22 year: 2021 end-page: 5755 ident: CR7 article-title: Raman spectroscopy and machine learning reveals early tumor microenvironmental changes induced by immunotherapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-1438 – volume: 14 start-page: 5435 issue: 5 year: 2020 end-page: 5444 ident: CR30 article-title: Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes publication-title: ACS Nano doi: 10.1021/acsnano.9b09119 – volume: 146 start-page: 800 year: 2019 end-page: 805 ident: CR14 article-title: Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform publication-title: Measurement doi: 10.1016/j.measurement.2019.05.083 – volume: 55 start-page: 79 issue: 2 year: 2022 end-page: 90 ident: CR33 article-title: Serum Raman spectroscopy combined with Gaussian—Convolutional neural network models to quickly detect liver cancer patients publication-title: Spectrosc. Lett. doi: 10.1080/00387010.2022.2027988 – volume: 63 issue: 15 year: 2019 ident: CR36 article-title: An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201801045 – volume: 10 start-page: 39 issue: 2 year: 2018 ident: CR2 article-title: Management of primary Sjögren’s syndrome: Recent developments and new classification criteria publication-title: Ther. Adv. Musculoskelet. Dis. doi: 10.1177/1759720X17746319 – volume: 138 start-page: 4161 issue: 14 year: 2013 end-page: 4174 ident: CR11 article-title: Raman spectroscopy of serum: An exploratory study for detection of oral cancers publication-title: Analyst doi: 10.1039/c3an00308f – volume: 129 start-page: 285 issue: 3 year: 1997 end-page: 287 ident: CR37 article-title: Beta-carotene supplementation: Friend or foe? publication-title: J. Lab. Clin. Med. doi: 10.1016/S0022-2143(97)90175-X – volume: 11 year: 2021 ident: CR29 article-title: A novel and rapid serum detection technology for non-invasive screening of gastric cancer based on Raman spectroscopy combined with different machine learning methods publication-title: Front. Oncol. doi: 10.3389/fonc.2021.665176 – volume: 12 start-page: 2475 issue: 8 year: 2016 end-page: 2484 ident: CR20 article-title: Non-invasive detection of hepatocellular carcinoma serum metabolic profile through surface-enhanced Raman spectroscopy publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2016.07.014 – volume: 11 start-page: 664 issue: 4 year: 2016 end-page: 687 ident: CR6 article-title: Using Raman spectroscopy to characterize biological materials publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.036 – volume: 16 start-page: 1408 issue: 9 year: 2016 ident: CR12 article-title: PSO-SVM-based online locomotion mode identification for rehabilitation robotic exoskeletons publication-title: Sensors doi: 10.3390/s16091408 – volume: 167 year: 2020 ident: CR34 article-title: Restricted Boltzmann machine method for dimensionality reduction of large spectroscopic data publication-title: Spectrochim. Acta Part B doi: 10.1016/j.sab.2020.105849 – volume: 12 start-page: 18464 issue: 1 year: 2022 ident: CR28 article-title: Fused Raman spectroscopic analysis of blood and saliva delivers high accuracy for head and neck cancer diagnostics publication-title: Sci. Rep. doi: 10.1038/s41598-022-22197-x – volume: 8 start-page: 584 issue: 7 year: 2015 end-page: 596 ident: CR8 article-title: Raman spectroscopy of blood serum for Alzheimer's disease diagnostics: Specificity relative to other types of dementia publication-title: J. Biophotonics doi: 10.1002/jbio.201400060 – volume: 68 start-page: 115 year: 2013 end-page: 121 ident: CR10 article-title: Raman spectroscopic study on classification of cervical cell specimens publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2013.06.002 – volume: 13 start-page: 1 issue: 1 year: 2022 end-page: 11 ident: CR22 article-title: Research status and future prospects of extracellular vesicles in primary Sjögren’s syndrome publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-022-02912-1 – volume: 256 year: 2021 ident: CR26 article-title: Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2021.119732 – volume: 7 start-page: 2249 issue: 6 year: 2016 end-page: 2256 ident: CR5 article-title: Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM) publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.002249 – volume: 13 issue: 4 year: 2020 ident: CR27 article-title: Label-free diagnosis for colorectal cancer through coffee ring-assisted surface-enhanced Raman spectroscopy on blood serum publication-title: J. Biophotonics doi: 10.1002/jbio.201960176 – volume: 55 start-page: 79 issue: 2 year: 2022 ident: 29943_CR33 publication-title: Spectrosc. Lett. doi: 10.1080/00387010.2022.2027988 – volume: 9 start-page: 544 issue: 9 year: 2013 ident: 29943_CR38 publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2013.110 – volume: 10 start-page: 1 issue: 6 year: 2018 ident: 29943_CR4 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2018.2876686 – volume: 12 start-page: 18464 issue: 1 year: 2022 ident: 29943_CR28 publication-title: Sci. Rep. doi: 10.1038/s41598-022-22197-x – volume: 32 year: 2021 ident: 29943_CR32 publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2020.102328 – volume: 13 start-page: 146 issue: 01 year: 2021 ident: 29943_CR13 publication-title: Int. J. Curr. Res. Rev. doi: 10.31782/IJCRR.2021.13127 – volume: 167 year: 2020 ident: 29943_CR34 publication-title: Spectrochim. Acta Part B doi: 10.1016/j.sab.2020.105849 – volume: 81 start-page: 5745 issue: 22 year: 2021 ident: 29943_CR7 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-1438 – volume: 81 start-page: 3300 issue: 11 year: 2012 ident: 29943_CR24 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2012.01.004 – volume: 146 start-page: 800 year: 2019 ident: 29943_CR14 publication-title: Measurement doi: 10.1016/j.measurement.2019.05.083 – volume: 29 start-page: 723 year: 2014 ident: 29943_CR31 publication-title: Lasers Med. Sci. doi: 10.1007/s10103-013-1398-y – volume: 63 issue: 15 year: 2019 ident: 29943_CR36 publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201801045 – volume: 8 start-page: 584 issue: 7 year: 2015 ident: 29943_CR8 publication-title: J. Biophotonics doi: 10.1002/jbio.201400060 – volume: 7 start-page: 335 issue: 3 year: 2021 ident: 29943_CR15 publication-title: ICT Express doi: 10.1016/j.icte.2020.06.007 – volume: 12 start-page: 2475 issue: 8 year: 2016 ident: 29943_CR20 publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2016.07.014 – volume: 256 year: 2021 ident: 29943_CR26 publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2021.119732 – volume: 68 start-page: 115 year: 2013 ident: 29943_CR10 publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2013.06.002 – volume: 10 start-page: 39 issue: 2 year: 2018 ident: 29943_CR2 publication-title: Ther. Adv. Musculoskelet. Dis. doi: 10.1177/1759720X17746319 – volume: 2021 start-page: 1 year: 2021 ident: 29943_CR17 publication-title: Math. Probl. Eng. – volume: 124 year: 2020 ident: 29943_CR25 publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2019.115796 – volume: 7 start-page: 2249 issue: 6 year: 2016 ident: 29943_CR5 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.002249 – volume: 11 year: 2021 ident: 29943_CR29 publication-title: Front. Oncol. doi: 10.3389/fonc.2021.665176 – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 29943_CR22 publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-022-02912-1 – volume: 13 issue: 4 year: 2020 ident: 29943_CR27 publication-title: J. Biophotonics doi: 10.1002/jbio.201960176 – volume: 179 year: 2020 ident: 29943_CR35 publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2019.112999 – volume: 11 start-page: 664 issue: 4 year: 2016 ident: 29943_CR6 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.036 – volume: 202 year: 2020 ident: 29943_CR18 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104029 – volume: 42 start-page: 493 issue: 5 year: 2007 ident: 29943_CR21 publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704920701551530 – volume: 138 start-page: 4161 issue: 14 year: 2013 ident: 29943_CR11 publication-title: Analyst doi: 10.1039/c3an00308f – volume: 8 year: 2021 ident: 29943_CR1 publication-title: Front. Med. doi: 10.3389/fmed.2021.676885 – volume: 18 start-page: 1393 issue: 5 year: 2018 ident: 29943_CR16 publication-title: Sensors doi: 10.3390/s18051393 – volume: 47 start-page: 917 issue: 8 year: 2016 ident: 29943_CR19 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4924 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 29943_CR3 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56308-y – volume: 143 start-page: 1916 issue: 8 year: 2018 ident: 29943_CR9 publication-title: Analyst doi: 10.1039/C8AN00224J – volume: 14 start-page: 5435 issue: 5 year: 2020 ident: 29943_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.9b09119 – volume: 129 start-page: 285 issue: 3 year: 1997 ident: 29943_CR37 publication-title: J. Lab. Clin. Med. doi: 10.1016/S0022-2143(97)90175-X – volume: 61 start-page: 554 issue: 6 year: 2002 ident: 29943_CR23 publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.61.6.554 – volume: 16 start-page: 1408 issue: 9 year: 2016 ident: 29943_CR12 publication-title: Sensors doi: 10.3390/s16091408 |
| SSID | ssj0000529419 |
| Score | 2.4798312 |
| Snippet | The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome... Abstract The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5137 |
| SubjectTerms | 631/114/1305 631/114/1314 631/114/1386 639/638/11/872 692/699/249/1313 Algorithms Diagnosis Humanities and Social Sciences Humans multidisciplinary Optimization Principal Component Analysis Principal components analysis Raman spectroscopy Science Science (multidisciplinary) Sjogren's syndrome Sjogren's Syndrome - diagnosis Spectroscopy Spectrum analysis Spectrum Analysis, Raman - methods Support Vector Machine Support vector machines |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaggMSl_JYGCjISN4gaJ47jnBAgKg6oQvxpb5b_0hZ1k2WzW6kneA1ehBfgTXgSZhxvquWnF6Q9rWc348yMPZ4Zf0PII90IU4pKpNwZOKBw7mEd5E3qwH3OjC8bFtD5P76u9vflZFK_iQG3PpZVrtbEsFC7zmKMfBeB7sD9BXt4OvucYtcozK7GFhoXySVsm40dDKpJNcZYMIvFWR3vymSF3O1hv8I7ZTk2MKsx8by2HwXY_r_5mn-WTP6WNw3b0d61_53IdbIZHVH6bNCcG-SCb2-SK0NrytNb5MtbPdUtDRcxEfCym51S-H84R3tHMXhLNe2XM_Te6UmI_NNpqMv0VB8fwPMWh1Oqe6ByQzEfPIaOgLEUXGU6G4Au6LtPP77Dqb_9-fVbT1cICrfJh72X71-8SmOzhtSWnC1S62qdO14aXwj4ZJl3MnPMZ8yWunbgR2INo3GV5UYjiiFvCl5WVsIJ0zeGFVtko-1av02oxFRoZVhtuOGykCbPtGGmlkL4yguWELYSmbIRyRwbahyrkFEvpBrErEDMKohZ1Ql5PP4mTu9c6ueoCSMlYnCHL7r5gYomrQwwVpXWWd2AdmemFo2E5VCWpcmNzoHNnZUCqLgw9OpM-gl5OA6DSWOeRre-Ww404KaJAmjuDGo3clIIcOhhLCFyTSHXWF0faY8OA2w4Q-ydnPGEPFnp7hlf_34Xd8-fxj1yNUdzytCidsjGYr7098lle7I46ucPgj3-AkoFP_g priority: 102 providerName: ProQuest |
| Title | Raman spectroscopy combined with a support vector machine algorithm as a diagnostic technique for primary Sjögren’s syndrome |
| URI | https://link.springer.com/article/10.1038/s41598-023-29943-9 https://www.ncbi.nlm.nih.gov/pubmed/36991016 https://www.proquest.com/docview/2792255376 https://www.proquest.com/docview/2792901636 https://pubmed.ncbi.nlm.nih.gov/PMC10060214 https://doaj.org/article/b8b275cdcaf04f0b96f8488855b2ba21 |
| Volume | 13 |
| WOSCitedRecordID | wos001003614500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagBakXxD8pZWUkbrCqnTj-OVLUCiS6isqPlpNlx04p6mZXm91KPcFr8CK8AG_CkzB2sqHL7wUp8iGeJI5nJp7JjL9B6JGpuM254EPmLDgojHn4DrJq6MB8JtbnFY3o_G9fitFIjsequFDqK-SEtfDA7cTtWmlTkZeuNBXcg1jFKwlCJ_PcptbELeQpEeqCM9WieqeKUdXtkiGZ3G1gpQq7ydJQukyFkPPaShQB-39nZf6aLPlTxDQuRAfX0bXOgsRP25HfQJd8fRNdbWtKnt9CH4_MxNQ47qAMSJXT2TkGqQIH2Dsc_rpig5vlLJjd-Cz-sseTmFDpsTk9ns6BYoJNA1SuzcKDx-Ae6RWDjYtnLUIFfvXh6xdw1-tvnz43eAV9cBu9Odh__ez5sKuyMCxzRhfD0imTOpZbn3E4CPFOEkc9oWVulAMDMCQfWidKZk2AH2RVxnJRSnANfWVpdgdt1NPa30NYhhimsFRZZpnMgHPEWGqV5NwLz2mC6GrGddlBkIdKGKc6hsIzqVsuaeCSjlzSKkGP-2u61_sr9V5gZE8ZwLPjCRAp3YmU_pdIJWhnJQa60-hGB6BFcL_ge5ygh3036GIIsJjaT5ctDdhXPAOau63U9CPJOFji0JcguSZPa0Nd76lP3ke8bxpAc1LKEvRkJXo_xvXnudj-H3NxH22lQWdIUJsdtLGYL_0DdKU8W5w08wG6LMYitnKANvf2R8XRICoitIdpEVoB7Wbx4rB49x0TrDlm |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VAoIL70egwCLBCax67bW9PiDEq2rVNKqgoN6WXe86LWrsECdFOcHf4E9w5A_wT_glzKwfVXj01gNSTtlJMuPMzM7szH5DyAOVxzqKk9jjRkOCwrkFP8hzz0D47Gsb5cyh87_rJ4OB2N1Nt5fIt_YuDLZVtj7ROWpTZnhGvopAdxD-gj08HX_0cGoUVlfbERq1Wmza-SdI2aonGy_h_30YBGuvdl6se81UAS-LOJt6mUlVYHikbRjDy_etEb5h1mdZpFIDAQ8222mTZFwrhNvjecijJBOQCtlcsxC-9xQ5jbh62EK2FWx3ZzpYNeMsbe7m-KFYrWB_xDtsAQ5MS7HQvbD_uTEBf4tt_2zR_K1O67a_tYv_24O7RC40gTZ9VlvGZbJkiyvkbD16c36VfH6tRqqg7qIpAnqW4zkFeTQE3Ybi4TRVtJqNMTuhh66yQUeu79RSdTAE-aZ7I6oqoDJ1syL8DO0AcSmkAnRcA3nQNx9-fB9ObPHzy9eKtggR18jbE5H-OlkuysLeJFRgqTfRLNVccxEKHfhKM52KOLaJjVmPsFZFZNYgtePAkAPpOgZCIWu1kqBW0qmVTHvkUfeZRrxjqZ-j5nWUiDHu3ignQ9m4LKmBsSTKTKZysF5fp3EuwN2LKNKBVgGwudIqnGwcXyWPtK1H7nfL4LKwDqUKW85qGghD4xBobtRq3nESxpCwwFqPiAUDWGB1caXY33Ow6AyxhQLGe-RxaytHfP37Wdw6Xox75Nz6zlZf9jcGm7fJ-QBN2UdrXiHL08nM3iFnssPpfjW563wBJe9P2oZ-AZgAnJs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKCogL70eggJHgRFexd7273gNClDaiahVF5aHejL32pkXNbsgmRTnB3-CPcODKP-GXMPY-qvDorQeknOJJMrOZGc94xt8g9FhmkQqjOPKYVpCgMGbAD7LM0xA-E2XCjDp0_ne78WDA9_eT4Qr63tyFsW2VjU90jloXqT0j71mgOwh_wR56Wd0WMdzsP5989OwEKVtpbcZpVCqyYxafIH0rn21vwn_9xPf7W29evvLqCQNeGjI681KdSF-zUJkgghchRnOiqSE0DWWiIfixjXdKxylT0kLvsSxgYZxySItMpmgA33sOrcZBQkgHrW5sDYZ77QmPraExmtQ3dUjAeyXslvZGm2_HpyW27L20G7qhAX-LdP9s2Pytaus2w_6V__kxXkWX6xAcv6hs5hpaMfl1dKEayrm4gT7vybHMsbuCaqE-i8kCg2wKwnGN7bE1lricT2zego9dzQOPXUeqwfJoBPLNDsZYlkClqzZG-BncQuViSBLwpIL4wK8__Pg2mpr855evJW6wI26it2ci_S3UyYvc3EGY2yJwrGiimGI84MonUlGV8CgysYloF9FGXURaY7jbUSJHwvUSBFxUKiZAxYRTMZF00dP2M7V4p1JvWC1sKS36uHujmI5E7cyEAsbiMNWpzMCuiUqijMNGwMNQ-Ur6wOZao3yidomlONG8LnrULoMzsxUqmZtiXtFAgBoFQHO7UvmWkyCCVAbWuogvGcMSq8sr-eGBA0ynFnXIp6yL1hu7OeHr38_i7uliPEQXwXTE7vZg5x665FurJtaw11BnNp2b--h8ejw7LKcPaseA0fuzNqJf2A2mrA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raman+spectroscopy+combined+with+a+support+vector+machine+algorithm+as+a+diagnostic+technique+for+primary+Sj%C3%B6gren%E2%80%99s+syndrome&rft.jtitle=Scientific+reports&rft.au=Chen%2C+Xiaomei&rft.au=Wu%2C+Xue&rft.au=Chen%2C+Chen&rft.au=Luo%2C+Cainan&rft.date=2023-03-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-29943-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_29943_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |