Raman spectroscopy combined with a support vector machine algorithm as a diagnostic technique for primary Sjögren’s syndrome

The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and stand...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 13; číslo 1; s. 5137 - 6
Hlavní autori: Chen, Xiaomei, Wu, Xue, Chen, Chen, Luo, Cainan, Shi, Yamei, Li, Zhengfang, Lv, Xiaoyi, Chen, Cheng, Su, Jinmei, Wu, Lijun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 29.03.2023
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value.
AbstractList The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value.
Abstract The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value.
The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value.The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value.
ArticleNumber 5137
Author Luo, Cainan
Chen, Chen
Chen, Xiaomei
Wu, Xue
Chen, Cheng
Shi, Yamei
Su, Jinmei
Wu, Lijun
Li, Zhengfang
Lv, Xiaoyi
Author_xml – sequence: 1
  givenname: Xiaomei
  surname: Chen
  fullname: Chen, Xiaomei
  organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis
– sequence: 2
  givenname: Xue
  surname: Wu
  fullname: Wu, Xue
  organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis
– sequence: 3
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: College of Software, Xinjiang University
– sequence: 4
  givenname: Cainan
  surname: Luo
  fullname: Luo, Cainan
  organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis
– sequence: 5
  givenname: Yamei
  surname: Shi
  fullname: Shi, Yamei
  organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis
– sequence: 6
  givenname: Zhengfang
  surname: Li
  fullname: Li, Zhengfang
  organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis
– sequence: 7
  givenname: Xiaoyi
  surname: Lv
  fullname: Lv, Xiaoyi
  organization: College of Software, Key Laboratory of Signal Detection and Processing, Xinjiang University
– sequence: 8
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: College of Software, Xinjiang University
– sequence: 9
  givenname: Jinmei
  surname: Su
  fullname: Su, Jinmei
  email: sujm@pumch.cn
  organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
– sequence: 10
  givenname: Lijun
  surname: Wu
  fullname: Wu, Lijun
  email: wwlj330@126.com
  organization: Department of Rheumatology and Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Rheumatoid Arthritis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36991016$$D View this record in MEDLINE/PubMed
BookMark eNp9kktuFDEURUsoiISQDTBAlpgwKfC32h4hFPGJFAmJz9jyr6rdqrILuzpRj5JtsBE2wE5YCe6uDiQZxLJkyz736uq997Q6CDG4qnqO4GsECX-TKWKC1xCTGgtBSS0eVUcYUlZjgvHBrfthdZLzCpbFsKBIPKkOSSMEgqg5qq6-qEEFkEdnphSzieMGmDhoH5wFl35aAgXyehxjmsBFYWICgzLL8g1U38VUiAGoXCjrVRdinrwBkzPL4H-sHWgLPyY_qLQBX1e_f3XJhT_XPzPIm2BTHNyz6nGr-uxO9udx9f3D-2-nn-rzzx_PTt-d14ZRNNXGCoUtZdqRpmwIneXQIgeRYUpYgQksNdB2YahWomGCtoSyheGcQtdqRI6rs9nXRrWS-0gyKi93DzF1UqWSvXdSc40XzFijWkhbqEXTcso5Z0xjrfDW6-3sNa714KxxYUqqv2N69yf4pezihUQQNhAjWhxe7R1SLGXKkxx8Nq7vVXBxnSVeCCxKf0hT0Jf30FVcp1BqtaMwY2SxpV7cjvQvy02jC8BnwJQu5-RaafykJh-3CX1fosntWMl5rGQZK7kbKymKFN-T3rg_KCKzKBc4dC79j_2A6i_mu-NY
CitedBy_id crossref_primary_10_1038_s41598_024_59850_6
crossref_primary_10_1177_00037028231209053
crossref_primary_10_3389_fimmu_2025_1467027
crossref_primary_10_3390_biomedicines12010133
crossref_primary_10_1002_advs_202501793
crossref_primary_10_1002_jbio_202300510
crossref_primary_10_1016_j_microc_2025_112692
crossref_primary_10_1016_j_bios_2024_116199
crossref_primary_10_1016_j_dajour_2025_100595
crossref_primary_10_1002_jrs_70002
Cites_doi 10.1109/JPHOT.2018.2876686
10.1016/j.trac.2019.115796
10.1136/ard.61.6.554
10.1016/j.jpba.2019.112999
10.1080/05704920701551530
10.1038/s41598-019-56308-y
10.1016/j.icte.2020.06.007
10.1016/j.chemolab.2020.104029
10.31782/IJCRR.2021.13127
10.1016/j.nano.2020.102328
10.1002/jrs.4924
10.1038/nrrheum.2013.110
10.1039/C8AN00224J
10.3390/s18051393
10.1016/j.ejrad.2012.01.004
10.3389/fmed.2021.676885
10.1007/s10103-013-1398-y
10.1158/0008-5472.CAN-21-1438
10.1021/acsnano.9b09119
10.1016/j.measurement.2019.05.083
10.1080/00387010.2022.2027988
10.1002/mnfr.201801045
10.1177/1759720X17746319
10.1039/c3an00308f
10.1016/S0022-2143(97)90175-X
10.3389/fonc.2021.665176
10.1016/j.nano.2016.07.014
10.1038/nprot.2016.036
10.3390/s16091408
10.1016/j.sab.2020.105849
10.1038/s41598-022-22197-x
10.1002/jbio.201400060
10.1016/j.vibspec.2013.06.002
10.1186/s13287-022-02912-1
10.1016/j.saa.2021.119732
10.1364/BOE.7.002249
10.1002/jbio.201960176
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-29943-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 6
ExternalDocumentID oai_doaj_org_article_b8b275cdcaf04f0b96f8488855b2ba21
PMC10060214
36991016
10_1038_s41598_023_29943_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The Key Research and Development Project of Xinjiang Uygur Autonomous Region
  grantid: 2022B03002-1
– fundername: ;
  grantid: 2022B03002-1
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c541t-cd9a2d45be36e3600ed80d1e01c5a9d9230943bd7c4ba96594f3457c8840efb13
IEDL.DBID DOA
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003614500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:50:55 EDT 2025
Tue Nov 04 02:06:50 EST 2025
Sun Nov 09 11:08:50 EST 2025
Tue Oct 07 09:05:41 EDT 2025
Thu Jan 02 22:52:26 EST 2025
Sat Nov 29 06:33:48 EST 2025
Tue Nov 18 22:18:32 EST 2025
Fri Feb 21 02:37:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-cd9a2d45be36e3600ed80d1e01c5a9d9230943bd7c4ba96594f3457c8840efb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b8b275cdcaf04f0b96f8488855b2ba21
PMID 36991016
PQID 2792255376
PQPubID 2041939
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_b8b275cdcaf04f0b96f8488855b2ba21
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10060214
proquest_miscellaneous_2792901636
proquest_journals_2792255376
pubmed_primary_36991016
crossref_citationtrail_10_1038_s41598_023_29943_9
crossref_primary_10_1038_s41598_023_29943_9
springer_journals_10_1038_s41598_023_29943_9
PublicationCentury 2000
PublicationDate 2023-03-29
PublicationDateYYYYMMDD 2023-03-29
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Paidi, Rodriguez Troncoso, Raj, Monterroso Diaz, Ivers, Lee (CR7) 2021; 81
Vrábel, Pořízka, Kaiser (CR34) 2020; 167
Meléndez-Martínez (CR36) 2019; 63
Khan, Ullah, Khan, Wahab, Bilal, Ahmed (CR5) 2016; 7
Movasaghi, Rehman, Rehman (CR21) 2007; 42
Fernandes (CR37) 1997; 129
Fernández-Ochoa, Borrás-Linares, Quirantes-Piné, Alarcón-Riquelme, Beretta, Segura-Carretero (CR35) 2020; 179
Butler, Ashton, Bird, Cinque, Curtis, Dorney (CR6) 2016; 11
Li, Yang, Li, Wang, Song, Yu (CR19) 2016; 47
Vijayarajeswari, Parthasarathy, Vivekanandan, Basha (CR14) 2019; 146
Mehta, Atak, Sahu, Srivastava (CR9) 2018; 143
Hong, Li, Huang, He, Wang, Wang (CR27) 2020; 13
Del Papa, Vitali (CR2) 2018; 10
Lussier, Thibault, Charron, Wallace, Masson (CR25) 2020; 124
Rubina, Amita, Bharat, Krishna (CR10) 2013; 68
Sahu, Sawant, Mamgain, Krishna (CR11) 2013; 138
Xue, Sun, Ou, Chen, Chen, Yan (CR31) 2014; 29
Zhao, An, Zhu, Yang, Gao, Niu (CR22) 2022; 13
Long, Du, Wang, Zhao, Xu, He (CR12) 2016; 16
Ryzhikova, Kazakov, Halamkova, Celmins, Malone, Molho (CR8) 2015; 8
Shen, Huang, Fan (CR16) 2018; 18
Nanglia, Kumar, Mahajan, Singh, Rathee (CR15) 2021; 7
Vitali, Bombardieri, Jonsson, Moutsopoulos, Alexander, Carsons (CR23) 2002; 61
Vitali, Minniti, Pignataro, Maglione, Del Papa (CR1) 2021; 8
Zheng, Lv, Du, Zhai, Mo, Lv (CR4) 2018; 10
Koster, Guillen-Perez, Gomez-Diaz, Navas-Moreno, Birkeland, Carney (CR28) 2022; 12
Parlatan, Inanc, Ozgor, Oral, Bastu, Unlu (CR3) 2019; 9
Nocturne, Mariette (CR38) 2013; 9
Martyna, Menżyk, Damin, Michalska, Martra, Alladio (CR18) 2020; 202
Xia, Lu, Chen, Cui, Chen, Pei (CR32) 2021; 32
Xiao, Zhang, Rong, Xiu, Yang, Wang (CR20) 2016; 12
Thaiyalnayaki (CR13) 2021; 13
Zhao, Zhao (CR17) 2021; 2021
Shin, Oh, Hong, Kang, Kang, Ji (CR30) 2020; 14
Knopf, Mansour, Chaker, Bas, Stock (CR24) 2012; 81
Ma, Shang, Tang, Bao, Fu, Yin (CR26) 2021; 256
Li, He, Huang, Lin, Tian, Xia (CR29) 2021; 11
Meng, Li, Chen, Wu, Gao, Lai (CR33) 2022; 55
R Xiao (29943_CR20) 2016; 12
H Shin (29943_CR30) 2020; 14
SK Paidi (29943_CR7) 2021; 81
X Zheng (29943_CR4) 2018; 10
K Thaiyalnayaki (29943_CR13) 2021; 13
C Meng (29943_CR33) 2022; 55
A Knopf (29943_CR24) 2012; 81
P Nanglia (29943_CR15) 2021; 7
L Xia (29943_CR32) 2021; 32
Á Fernández-Ochoa (29943_CR35) 2020; 179
E Ryzhikova (29943_CR8) 2015; 8
Z Movasaghi (29943_CR21) 2007; 42
L Xue (29943_CR31) 2014; 29
J Vrábel (29943_CR34) 2020; 167
N Del Papa (29943_CR2) 2018; 10
R Vijayarajeswari (29943_CR14) 2019; 146
M Li (29943_CR29) 2021; 11
J Zhao (29943_CR22) 2022; 13
G Fernandes (29943_CR37) 1997; 129
Y Hong (29943_CR27) 2020; 13
HJ Koster (29943_CR28) 2022; 12
K Mehta (29943_CR9) 2018; 143
D Ma (29943_CR26) 2021; 256
S Zhao (29943_CR17) 2021; 2021
A Martyna (29943_CR18) 2020; 202
Y Long (29943_CR12) 2016; 16
X Li (29943_CR19) 2016; 47
AJ Meléndez-Martínez (29943_CR36) 2019; 63
G Nocturne (29943_CR38) 2013; 9
U Parlatan (29943_CR3) 2019; 9
C Vitali (29943_CR23) 2002; 61
F Lussier (29943_CR25) 2020; 124
S Rubina (29943_CR10) 2013; 68
C Vitali (29943_CR1) 2021; 8
HJ Butler (29943_CR6) 2016; 11
S Khan (29943_CR5) 2016; 7
A Sahu (29943_CR11) 2013; 138
L Shen (29943_CR16) 2018; 18
References_xml – volume: 10
  start-page: 1
  issue: 6
  year: 2018
  end-page: 12
  ident: CR4
  article-title: Rapid and low-cost detection of thyroid dysfunction using Raman spectroscopy and an improved support vector machine
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2018.2876686
– volume: 124
  year: 2020
  ident: CR25
  article-title: Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.115796
– volume: 61
  start-page: 554
  issue: 6
  year: 2002
  end-page: 558
  ident: CR23
  article-title: Classification criteria for Sjögren's syndrome: A revised version of the European criteria proposed by the American-European Consensus Group
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.61.6.554
– volume: 179
  year: 2020
  ident: CR35
  article-title: Discovering new metabolite alterations in primary Sjögren’s syndrome in urinary and plasma samples using an HPLC-ESI-QTOF-MS methodology
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2019.112999
– volume: 42
  start-page: 493
  issue: 5
  year: 2007
  end-page: 541
  ident: CR21
  article-title: Raman spectroscopy of biological tissues
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704920701551530
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 7
  ident: CR3
  article-title: Raman spectroscopy as a non-invasive diagnostic technique for endometriosis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56308-y
– volume: 7
  start-page: 335
  issue: 3
  year: 2021
  end-page: 341
  ident: CR15
  article-title: A hybrid algorithm for lung cancer classification using SVM and neural networks
  publication-title: ICT Express
  doi: 10.1016/j.icte.2020.06.007
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR17
  article-title: A comparative study of landslide susceptibility mapping using SVM and PSO-SVM models based on Grid and Slope Units
  publication-title: Math. Probl. Eng.
– volume: 202
  year: 2020
  ident: CR18
  article-title: Improving discrimination of Raman spectra by optimising preprocessing strategies on the basis of the ability to refine the relationship between variance components
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104029
– volume: 13
  start-page: 146
  issue: 01
  year: 2021
  ident: CR13
  article-title: Classification of diabetes using deep learning and SVM techniques
  publication-title: Int. J. Curr. Res. Rev.
  doi: 10.31782/IJCRR.2021.13127
– volume: 32
  year: 2021
  ident: CR32
  article-title: Identifying benign and malignant thyroid nodules based on blood serum surface-enhanced Raman spectroscopy
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2020.102328
– volume: 47
  start-page: 917
  issue: 8
  year: 2016
  end-page: 925
  ident: CR19
  article-title: Different classification algorithms and serum surface enhanced Raman spectroscopy for noninvasive discrimination of gastric diseases
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4924
– volume: 9
  start-page: 544
  issue: 9
  year: 2013
  end-page: 556
  ident: CR38
  article-title: Advances in understanding the pathogenesis of primary Sjögren's syndrome
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2013.110
– volume: 143
  start-page: 1916
  issue: 8
  year: 2018
  end-page: 1923
  ident: CR9
  article-title: An early investigative serum Raman spectroscopy study of meningioma
  publication-title: Analyst
  doi: 10.1039/C8AN00224J
– volume: 18
  start-page: 1393
  issue: 5
  year: 2018
  ident: CR16
  article-title: Double-group particle swarm optimization and its application in remote sensing image segmentation
  publication-title: Sensors
  doi: 10.3390/s18051393
– volume: 81
  start-page: 3300
  issue: 11
  year: 2012
  end-page: 3305
  ident: CR24
  article-title: Multimodal ultrasonographic characterisation of parotid gland lesions—A pilot study
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2012.01.004
– volume: 8
  year: 2021
  ident: CR1
  article-title: Management of Sjögren's syndrome: Present issues and future perspectives
  publication-title: Front. Med.
  doi: 10.3389/fmed.2021.676885
– volume: 29
  start-page: 723
  year: 2014
  end-page: 728
  ident: CR31
  article-title: Diagnosis of pathological minor salivary glands in primary Sjogren’s syndrome by using Raman spectroscopy
  publication-title: Lasers Med. Sci.
  doi: 10.1007/s10103-013-1398-y
– volume: 81
  start-page: 5745
  issue: 22
  year: 2021
  end-page: 5755
  ident: CR7
  article-title: Raman spectroscopy and machine learning reveals early tumor microenvironmental changes induced by immunotherapy
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-21-1438
– volume: 14
  start-page: 5435
  issue: 5
  year: 2020
  end-page: 5444
  ident: CR30
  article-title: Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09119
– volume: 146
  start-page: 800
  year: 2019
  end-page: 805
  ident: CR14
  article-title: Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.083
– volume: 55
  start-page: 79
  issue: 2
  year: 2022
  end-page: 90
  ident: CR33
  article-title: Serum Raman spectroscopy combined with Gaussian—Convolutional neural network models to quickly detect liver cancer patients
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387010.2022.2027988
– volume: 63
  issue: 15
  year: 2019
  ident: CR36
  article-title: An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201801045
– volume: 10
  start-page: 39
  issue: 2
  year: 2018
  ident: CR2
  article-title: Management of primary Sjögren’s syndrome: Recent developments and new classification criteria
  publication-title: Ther. Adv. Musculoskelet. Dis.
  doi: 10.1177/1759720X17746319
– volume: 138
  start-page: 4161
  issue: 14
  year: 2013
  end-page: 4174
  ident: CR11
  article-title: Raman spectroscopy of serum: An exploratory study for detection of oral cancers
  publication-title: Analyst
  doi: 10.1039/c3an00308f
– volume: 129
  start-page: 285
  issue: 3
  year: 1997
  end-page: 287
  ident: CR37
  article-title: Beta-carotene supplementation: Friend or foe?
  publication-title: J. Lab. Clin. Med.
  doi: 10.1016/S0022-2143(97)90175-X
– volume: 11
  year: 2021
  ident: CR29
  article-title: A novel and rapid serum detection technology for non-invasive screening of gastric cancer based on Raman spectroscopy combined with different machine learning methods
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.665176
– volume: 12
  start-page: 2475
  issue: 8
  year: 2016
  end-page: 2484
  ident: CR20
  article-title: Non-invasive detection of hepatocellular carcinoma serum metabolic profile through surface-enhanced Raman spectroscopy
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2016.07.014
– volume: 11
  start-page: 664
  issue: 4
  year: 2016
  end-page: 687
  ident: CR6
  article-title: Using Raman spectroscopy to characterize biological materials
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.036
– volume: 16
  start-page: 1408
  issue: 9
  year: 2016
  ident: CR12
  article-title: PSO-SVM-based online locomotion mode identification for rehabilitation robotic exoskeletons
  publication-title: Sensors
  doi: 10.3390/s16091408
– volume: 167
  year: 2020
  ident: CR34
  article-title: Restricted Boltzmann machine method for dimensionality reduction of large spectroscopic data
  publication-title: Spectrochim. Acta Part B
  doi: 10.1016/j.sab.2020.105849
– volume: 12
  start-page: 18464
  issue: 1
  year: 2022
  ident: CR28
  article-title: Fused Raman spectroscopic analysis of blood and saliva delivers high accuracy for head and neck cancer diagnostics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-22197-x
– volume: 8
  start-page: 584
  issue: 7
  year: 2015
  end-page: 596
  ident: CR8
  article-title: Raman spectroscopy of blood serum for Alzheimer's disease diagnostics: Specificity relative to other types of dementia
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201400060
– volume: 68
  start-page: 115
  year: 2013
  end-page: 121
  ident: CR10
  article-title: Raman spectroscopic study on classification of cervical cell specimens
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2013.06.002
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  end-page: 11
  ident: CR22
  article-title: Research status and future prospects of extracellular vesicles in primary Sjögren’s syndrome
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-022-02912-1
– volume: 256
  year: 2021
  ident: CR26
  article-title: Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2021.119732
– volume: 7
  start-page: 2249
  issue: 6
  year: 2016
  end-page: 2256
  ident: CR5
  article-title: Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.7.002249
– volume: 13
  issue: 4
  year: 2020
  ident: CR27
  article-title: Label-free diagnosis for colorectal cancer through coffee ring-assisted surface-enhanced Raman spectroscopy on blood serum
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201960176
– volume: 55
  start-page: 79
  issue: 2
  year: 2022
  ident: 29943_CR33
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387010.2022.2027988
– volume: 9
  start-page: 544
  issue: 9
  year: 2013
  ident: 29943_CR38
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2013.110
– volume: 10
  start-page: 1
  issue: 6
  year: 2018
  ident: 29943_CR4
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2018.2876686
– volume: 12
  start-page: 18464
  issue: 1
  year: 2022
  ident: 29943_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-22197-x
– volume: 32
  year: 2021
  ident: 29943_CR32
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2020.102328
– volume: 13
  start-page: 146
  issue: 01
  year: 2021
  ident: 29943_CR13
  publication-title: Int. J. Curr. Res. Rev.
  doi: 10.31782/IJCRR.2021.13127
– volume: 167
  year: 2020
  ident: 29943_CR34
  publication-title: Spectrochim. Acta Part B
  doi: 10.1016/j.sab.2020.105849
– volume: 81
  start-page: 5745
  issue: 22
  year: 2021
  ident: 29943_CR7
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-21-1438
– volume: 81
  start-page: 3300
  issue: 11
  year: 2012
  ident: 29943_CR24
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2012.01.004
– volume: 146
  start-page: 800
  year: 2019
  ident: 29943_CR14
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.083
– volume: 29
  start-page: 723
  year: 2014
  ident: 29943_CR31
  publication-title: Lasers Med. Sci.
  doi: 10.1007/s10103-013-1398-y
– volume: 63
  issue: 15
  year: 2019
  ident: 29943_CR36
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201801045
– volume: 8
  start-page: 584
  issue: 7
  year: 2015
  ident: 29943_CR8
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201400060
– volume: 7
  start-page: 335
  issue: 3
  year: 2021
  ident: 29943_CR15
  publication-title: ICT Express
  doi: 10.1016/j.icte.2020.06.007
– volume: 12
  start-page: 2475
  issue: 8
  year: 2016
  ident: 29943_CR20
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2016.07.014
– volume: 256
  year: 2021
  ident: 29943_CR26
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2021.119732
– volume: 68
  start-page: 115
  year: 2013
  ident: 29943_CR10
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2013.06.002
– volume: 10
  start-page: 39
  issue: 2
  year: 2018
  ident: 29943_CR2
  publication-title: Ther. Adv. Musculoskelet. Dis.
  doi: 10.1177/1759720X17746319
– volume: 2021
  start-page: 1
  year: 2021
  ident: 29943_CR17
  publication-title: Math. Probl. Eng.
– volume: 124
  year: 2020
  ident: 29943_CR25
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.115796
– volume: 7
  start-page: 2249
  issue: 6
  year: 2016
  ident: 29943_CR5
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.7.002249
– volume: 11
  year: 2021
  ident: 29943_CR29
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.665176
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 29943_CR22
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-022-02912-1
– volume: 13
  issue: 4
  year: 2020
  ident: 29943_CR27
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201960176
– volume: 179
  year: 2020
  ident: 29943_CR35
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2019.112999
– volume: 11
  start-page: 664
  issue: 4
  year: 2016
  ident: 29943_CR6
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.036
– volume: 202
  year: 2020
  ident: 29943_CR18
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104029
– volume: 42
  start-page: 493
  issue: 5
  year: 2007
  ident: 29943_CR21
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704920701551530
– volume: 138
  start-page: 4161
  issue: 14
  year: 2013
  ident: 29943_CR11
  publication-title: Analyst
  doi: 10.1039/c3an00308f
– volume: 8
  year: 2021
  ident: 29943_CR1
  publication-title: Front. Med.
  doi: 10.3389/fmed.2021.676885
– volume: 18
  start-page: 1393
  issue: 5
  year: 2018
  ident: 29943_CR16
  publication-title: Sensors
  doi: 10.3390/s18051393
– volume: 47
  start-page: 917
  issue: 8
  year: 2016
  ident: 29943_CR19
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4924
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 29943_CR3
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56308-y
– volume: 143
  start-page: 1916
  issue: 8
  year: 2018
  ident: 29943_CR9
  publication-title: Analyst
  doi: 10.1039/C8AN00224J
– volume: 14
  start-page: 5435
  issue: 5
  year: 2020
  ident: 29943_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09119
– volume: 129
  start-page: 285
  issue: 3
  year: 1997
  ident: 29943_CR37
  publication-title: J. Lab. Clin. Med.
  doi: 10.1016/S0022-2143(97)90175-X
– volume: 61
  start-page: 554
  issue: 6
  year: 2002
  ident: 29943_CR23
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.61.6.554
– volume: 16
  start-page: 1408
  issue: 9
  year: 2016
  ident: 29943_CR12
  publication-title: Sensors
  doi: 10.3390/s16091408
SSID ssj0000529419
Score 2.4798312
Snippet The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome...
Abstract The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5137
SubjectTerms 631/114/1305
631/114/1314
631/114/1386
639/638/11/872
692/699/249/1313
Algorithms
Diagnosis
Humanities and Social Sciences
Humans
multidisciplinary
Optimization
Principal Component Analysis
Principal components analysis
Raman spectroscopy
Science
Science (multidisciplinary)
Sjogren's syndrome
Sjogren's Syndrome - diagnosis
Spectroscopy
Spectrum analysis
Spectrum Analysis, Raman - methods
Support Vector Machine
Support vector machines
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaggMSl_JYGCjISN4gaJ47jnBAgKg6oQvxpb5b_0hZ1k2WzW6kneA1ehBfgTXgSZhxvquWnF6Q9rWc348yMPZ4Zf0PII90IU4pKpNwZOKBw7mEd5E3qwH3OjC8bFtD5P76u9vflZFK_iQG3PpZVrtbEsFC7zmKMfBeB7sD9BXt4OvucYtcozK7GFhoXySVsm40dDKpJNcZYMIvFWR3vymSF3O1hv8I7ZTk2MKsx8by2HwXY_r_5mn-WTP6WNw3b0d61_53IdbIZHVH6bNCcG-SCb2-SK0NrytNb5MtbPdUtDRcxEfCym51S-H84R3tHMXhLNe2XM_Te6UmI_NNpqMv0VB8fwPMWh1Oqe6ByQzEfPIaOgLEUXGU6G4Au6LtPP77Dqb_9-fVbT1cICrfJh72X71-8SmOzhtSWnC1S62qdO14aXwj4ZJl3MnPMZ8yWunbgR2INo3GV5UYjiiFvCl5WVsIJ0zeGFVtko-1av02oxFRoZVhtuOGykCbPtGGmlkL4yguWELYSmbIRyRwbahyrkFEvpBrErEDMKohZ1Ql5PP4mTu9c6ueoCSMlYnCHL7r5gYomrQwwVpXWWd2AdmemFo2E5VCWpcmNzoHNnZUCqLgw9OpM-gl5OA6DSWOeRre-Ww404KaJAmjuDGo3clIIcOhhLCFyTSHXWF0faY8OA2w4Q-ydnPGEPFnp7hlf_34Xd8-fxj1yNUdzytCidsjGYr7098lle7I46ucPgj3-AkoFP_g
  priority: 102
  providerName: ProQuest
Title Raman spectroscopy combined with a support vector machine algorithm as a diagnostic technique for primary Sjögren’s syndrome
URI https://link.springer.com/article/10.1038/s41598-023-29943-9
https://www.ncbi.nlm.nih.gov/pubmed/36991016
https://www.proquest.com/docview/2792255376
https://www.proquest.com/docview/2792901636
https://pubmed.ncbi.nlm.nih.gov/PMC10060214
https://doaj.org/article/b8b275cdcaf04f0b96f8488855b2ba21
Volume 13
WOSCitedRecordID wos001003614500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagBakXxD8pZWUkbrCqnTj-OVLUCiS6isqPlpNlx04p6mZXm91KPcFr8CK8AG_CkzB2sqHL7wUp8iGeJI5nJp7JjL9B6JGpuM254EPmLDgojHn4DrJq6MB8JtbnFY3o_G9fitFIjsequFDqK-SEtfDA7cTtWmlTkZeuNBXcg1jFKwlCJ_PcptbELeQpEeqCM9WieqeKUdXtkiGZ3G1gpQq7ydJQukyFkPPaShQB-39nZf6aLPlTxDQuRAfX0bXOgsRP25HfQJd8fRNdbWtKnt9CH4_MxNQ47qAMSJXT2TkGqQIH2Dsc_rpig5vlLJjd-Cz-sseTmFDpsTk9ns6BYoJNA1SuzcKDx-Ae6RWDjYtnLUIFfvXh6xdw1-tvnz43eAV9cBu9Odh__ez5sKuyMCxzRhfD0imTOpZbn3E4CPFOEkc9oWVulAMDMCQfWidKZk2AH2RVxnJRSnANfWVpdgdt1NPa30NYhhimsFRZZpnMgHPEWGqV5NwLz2mC6GrGddlBkIdKGKc6hsIzqVsuaeCSjlzSKkGP-2u61_sr9V5gZE8ZwLPjCRAp3YmU_pdIJWhnJQa60-hGB6BFcL_ge5ygh3036GIIsJjaT5ctDdhXPAOau63U9CPJOFji0JcguSZPa0Nd76lP3ke8bxpAc1LKEvRkJXo_xvXnudj-H3NxH22lQWdIUJsdtLGYL_0DdKU8W5w08wG6LMYitnKANvf2R8XRICoitIdpEVoB7Wbx4rB49x0TrDlm
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VAoIL70egwCLBCax67bW9PiDEq2rVNKqgoN6WXe86LWrsECdFOcHf4E9w5A_wT_glzKwfVXj01gNSTtlJMuPMzM7szH5DyAOVxzqKk9jjRkOCwrkFP8hzz0D47Gsb5cyh87_rJ4OB2N1Nt5fIt_YuDLZVtj7ROWpTZnhGvopAdxD-gj08HX_0cGoUVlfbERq1Wmza-SdI2aonGy_h_30YBGuvdl6se81UAS-LOJt6mUlVYHikbRjDy_etEb5h1mdZpFIDAQ8222mTZFwrhNvjecijJBOQCtlcsxC-9xQ5jbh62EK2FWx3ZzpYNeMsbe7m-KFYrWB_xDtsAQ5MS7HQvbD_uTEBf4tt_2zR_K1O67a_tYv_24O7RC40gTZ9VlvGZbJkiyvkbD16c36VfH6tRqqg7qIpAnqW4zkFeTQE3Ybi4TRVtJqNMTuhh66yQUeu79RSdTAE-aZ7I6oqoDJ1syL8DO0AcSmkAnRcA3nQNx9-fB9ObPHzy9eKtggR18jbE5H-OlkuysLeJFRgqTfRLNVccxEKHfhKM52KOLaJjVmPsFZFZNYgtePAkAPpOgZCIWu1kqBW0qmVTHvkUfeZRrxjqZ-j5nWUiDHu3ignQ9m4LKmBsSTKTKZysF5fp3EuwN2LKNKBVgGwudIqnGwcXyWPtK1H7nfL4LKwDqUKW85qGghD4xBobtRq3nESxpCwwFqPiAUDWGB1caXY33Ow6AyxhQLGe-RxaytHfP37Wdw6Xox75Nz6zlZf9jcGm7fJ-QBN2UdrXiHL08nM3iFnssPpfjW563wBJe9P2oZ-AZgAnJs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKCogL70eggJHgRFexd7273gNClDaiahVF5aHejL32pkXNbsgmRTnB3-CPcODKP-GXMPY-qvDorQeknOJJMrOZGc94xt8g9FhmkQqjOPKYVpCgMGbAD7LM0xA-E2XCjDp0_ne78WDA9_eT4Qr63tyFsW2VjU90jloXqT0j71mgOwh_wR56Wd0WMdzsP5989OwEKVtpbcZpVCqyYxafIH0rn21vwn_9xPf7W29evvLqCQNeGjI681KdSF-zUJkgghchRnOiqSE0DWWiIfixjXdKxylT0kLvsSxgYZxySItMpmgA33sOrcZBQkgHrW5sDYZ77QmPraExmtQ3dUjAeyXslvZGm2_HpyW27L20G7qhAX-LdP9s2Pytaus2w_6V__kxXkWX6xAcv6hs5hpaMfl1dKEayrm4gT7vybHMsbuCaqE-i8kCg2wKwnGN7bE1lricT2zego9dzQOPXUeqwfJoBPLNDsZYlkClqzZG-BncQuViSBLwpIL4wK8__Pg2mpr855evJW6wI26it2ci_S3UyYvc3EGY2yJwrGiimGI84MonUlGV8CgysYloF9FGXURaY7jbUSJHwvUSBFxUKiZAxYRTMZF00dP2M7V4p1JvWC1sKS36uHujmI5E7cyEAsbiMNWpzMCuiUqijMNGwMNQ-Ur6wOZao3yidomlONG8LnrULoMzsxUqmZtiXtFAgBoFQHO7UvmWkyCCVAbWuogvGcMSq8sr-eGBA0ynFnXIp6yL1hu7OeHr38_i7uliPEQXwXTE7vZg5x665FurJtaw11BnNp2b--h8ejw7LKcPaseA0fuzNqJf2A2mrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raman+spectroscopy+combined+with+a+support+vector+machine+algorithm+as+a+diagnostic+technique+for+primary+Sj%C3%B6gren%E2%80%99s+syndrome&rft.jtitle=Scientific+reports&rft.au=Chen%2C+Xiaomei&rft.au=Wu%2C+Xue&rft.au=Chen%2C+Chen&rft.au=Luo%2C+Cainan&rft.date=2023-03-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-29943-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_29943_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon