Snyder, S. H., Vignaux, P. A., Ozalp, M. K., Gerlach, J., Puhl, A. C., Lane, T. R., . . . Ekins, S. (2024). The Goldilocks paradigm: Comparing classical machine learning, large language models, and few-shot learning for drug discovery applications. Communications chemistry, 7(1), 134-11. https://doi.org/10.1038/s42004-024-01220-4
Chicago Style (17th ed.) CitationSnyder, Scott H., Patricia A. Vignaux, Mustafa Kemal Ozalp, Jacob Gerlach, Ana C. Puhl, Thomas R. Lane, John Corbett, Fabio Urbina, and Sean Ekins. "The Goldilocks Paradigm: Comparing Classical Machine Learning, Large Language Models, and Few-shot Learning for Drug Discovery Applications." Communications Chemistry 7, no. 1 (2024): 134-11. https://doi.org/10.1038/s42004-024-01220-4.
MLA (9th ed.) CitationSnyder, Scott H., et al. "The Goldilocks Paradigm: Comparing Classical Machine Learning, Large Language Models, and Few-shot Learning for Drug Discovery Applications." Communications Chemistry, vol. 7, no. 1, 2024, pp. 134-11, https://doi.org/10.1038/s42004-024-01220-4.