Hybrid Prairie Dog and Dwarf Mongoose optimization algorithm-based application placement and resource scheduling technique for fog computing environment
The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient re...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 1240 - 25 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
07.01.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches. |
|---|---|
| AbstractList | The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches. Abstract The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches. The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches.The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches. |
| ArticleNumber | 1240 |
| Author | Baskar, R. Mohanraj, E. Saradha, M. Monika, R. |
| Author_xml | – sequence: 1 givenname: R. surname: Baskar fullname: Baskar, R. email: rbaskar@ksrct.ac.in organization: Department of Computer Science and Engineering, K. S. Rangasamy College of Technology – sequence: 2 givenname: E. surname: Mohanraj fullname: Mohanraj, E. organization: Department of Artificial Intelligence and Data Science, K. S. Rangasamy College of Technology – sequence: 3 givenname: M. surname: Saradha fullname: Saradha, M. organization: Department of Computer Science and Engineering, K. S. Rangasamy College of Technology – sequence: 4 givenname: R. surname: Monika fullname: Monika, R. organization: Department of Computer Science and Engineering, K. S. Rangasamy College of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39774989$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1TAUtFARLZf-AAtkiQ2bgO3YSbxCqAVaqQgWsLYc-yTXVWIHOykqX8Ln4nvTQttFLfkhn5nR-HieowMfPCD0kpK3lJTNu8SpkE1BmCgaQTkrmifoiBEuClYydnDnfIiOU7okeQgmOZXP0GEp65rLRh6hP2fXbXQWf4vaRQf4NPRYe4tPf-nY4S_B9yEkwGGa3eh-69kFj_XQh-jm7Vi0OoHFepoGZ9baNGgDI_h5rxIhhSUawMlswS6D8z2ewWy9-7kA7kLMs8cmjNMy72rgr1wMfsd_gZ52ekhwfLNv0I9PH7-fnBUXXz-fn3y4KIzgdM6rbGuugZHSdlwaZurStpxxKTV0TX6jYZRWHDSBShIwxIJpK4DKalkzWm7Q-aprg75UU3SjjtcqaKf2FyH2SsfZmQGUrDitGlFxAYQT0K3J51ZI2eraihay1vtVa1raEazJz4h6uCd6v-LdVvXhSlFak5rkf92gNzcKMeQWpVmNLhkYBu0hLEmVVJRNXdO98dcPoJe51z73aodinAkpmox6ddfSPy-3CciAZgWYGFKK0Cnj5v1fZoduUJSoXd7UmjeV86b2eVM7bfaAeqv-KKlcSSmDfQ_xv-1HWH8Bb6frnw |
| CitedBy_id | crossref_primary_10_1038_s41598_025_00597_z crossref_primary_10_1007_s11227_025_07814_6 crossref_primary_10_1038_s41598_025_00796_8 |
| Cites_doi | 10.1109/JIOT.2024.3360110 10.1007/s11227-023-05586-5 10.1007/978-981-99-0609-3_19 10.1109/TPWRS.2022.3155750 10.1016/j.future.2020.12.019 10.1109/COMST.2023.3338015 10.1016/j.eswa.2023.119895 10.1109/TII.2020.3042872 10.1016/j.comcom.2024.01.002 10.53907/enpesj.v2i1.76 10.1016/j.jnca.2024.103891 10.1109/TCAD.2024.3437344 10.1007/s11036-020-01563-x 10.1007/BF01096763 10.1109/ACCESS.2020.3003249 10.1016/j.jnca.2021.103078 10.1016/j.cosrev.2023.100616 10.1016/j.cma.2022.114570 10.1007/s42835-024-01933-5 10.1016/j.jpdc.2018.03.004 10.1109/JIOT.2024.3468443 10.1016/j.eswa.2022.117012 10.1109/JIOT.2019.2937110 10.1016/j.dajour.2023.100379 10.1109/JIOT.2024.3427642 10.1007/s10586-021-03406-0 10.1109/JIOT.2020.2971323 10.1109/TNNLS.2022.3165627 10.1007/s12083-024-01642-w 10.1109/TMC.2021.3123165 10.1007/s10723-024-09781-3 10.1007/978-981-16-3448-2_2 10.1007/s12652-021-03354-y 10.1007/s10462-024-10925-w 10.1007/s00521-022-07530-9 10.1016/j.iot.2023.101049 10.1109/TSUSC.2024.3381841 10.1007/s11277-024-11510-8 10.1109/TCE.2023.3320673 10.1007/s11042-023-16008-2 10.1016/j.future.2024.04.029 10.1109/TSC.2024.3478730 10.1109/TITS.2024.3467269 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-85142-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 25 |
| ExternalDocumentID | oai_doaj_org_article_9641685645e040eabc564b599ba7d5be PMC11707010 39774989 10_1038_s41598_025_85142_8 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-c59b74ae203df49c2c73db42499aef8989c21164ea0e690ec0decb6ee6da97213 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001398316700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:06:09 EDT 2025 Tue Nov 04 02:04:03 EST 2025 Fri Sep 05 09:25:43 EDT 2025 Tue Oct 07 08:01:25 EDT 2025 Mon Jul 21 05:47:03 EDT 2025 Tue Nov 18 22:32:54 EST 2025 Sat Nov 29 03:22:16 EST 2025 Fri Feb 21 02:35:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Fog computing Resource scheduling Prairie Dog optimization algorithm (PDOA) Dwarf Mongoose optimization algorithm (DMOA) Internet of things (IoT) |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-c59b74ae203df49c2c73db42499aef8989c21164ea0e690ec0decb6ee6da97213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3152425958?pq-origsite=%requestingapplication% |
| PMID | 39774989 |
| PQID | 3152425958 |
| PQPubID | 2041939 |
| PageCount | 25 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9641685645e040eabc564b599ba7d5be pubmedcentral_primary_oai_pubmedcentral_nih_gov_11707010 proquest_miscellaneous_3153877121 proquest_journals_3152425958 pubmed_primary_39774989 crossref_citationtrail_10_1038_s41598_025_85142_8 crossref_primary_10_1038_s41598_025_85142_8 springer_journals_10_1038_s41598_025_85142_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-07 |
| PublicationDateYYYYMMDD | 2025-01-07 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | G Goel (85142_CR30) 2024; 17 H Zhang (85142_CR41) 2022; 38 85142_CR28 R Mahmud (85142_CR32) 2019; 132 P Pabitha (85142_CR6) 2024; 41 M Zolghadri (85142_CR1) 2024; 227 S Mangalampalli (85142_CR29) 2024; 83 A Daghayeghi (85142_CR15) 2024; 138 85142_CR27 S Subbaraj (85142_CR24) 2023; 14 G Goel (85142_CR31) 2022; 2 JY Xia (85142_CR40) 2022; 34 P Pabitha (85142_CR13) 2022 M Ghobaei-Arani (85142_CR23) 2022; 200 L Lin (85142_CR42) 2024; 19 M Afzali (85142_CR7) 2024; 80 CG Wu (85142_CR18) 2021; 117 HK Apat (85142_CR4) 2024; 10 TA Feo (85142_CR36) 1995; 6 R Ghafari (85142_CR8) 2024; 22 85142_CR14 85142_CR12 85142_CR10 S Lin (85142_CR3) 2024; 25 M Goudarzi (85142_CR19) 2021; 22 G Sun (85142_CR47) 2020; 17 JO Agushaka (85142_CR38) 2022; 391 85142_CR39 H Nashaat (85142_CR16) 2020; 8 H Sabireen (85142_CR25) 2023; 223 J Taghizadeh (85142_CR22) 2022; 52 M Kumar (85142_CR26) 2024; 9 M Salimian (85142_CR17) 2021; 51 ZM Nayeri (85142_CR34) 2021; 185 G Sun (85142_CR46) 2019; 7 A Asghari (85142_CR9) 2024; 51 Q Tang (85142_CR35) 2020; 7 P Ntumba (85142_CR2) 2024; 158 N Devi (85142_CR5) 2024; 57 LT Oliveira (85142_CR11) 2024; 216 F Tavousi (85142_CR20) 2022; 25 G Baranwal (85142_CR33) 2020; 25 AE Ezugwu (85142_CR37) 2022; 34 85142_CR44 85142_CR45 85142_CR21 85142_CR43 |
| References_xml | – ident: 85142_CR44 doi: 10.1109/JIOT.2024.3360110 – volume: 80 start-page: 4600 issue: 4 year: 2024 ident: 85142_CR7 publication-title: J. Supercomputing doi: 10.1007/s11227-023-05586-5 – ident: 85142_CR10 doi: 10.1007/978-981-99-0609-3_19 – start-page: 527 volume-title: Workshop on Mining Data for Financial Applications year: 2022 ident: 85142_CR13 – volume: 38 start-page: 488 issue: 1 year: 2022 ident: 85142_CR41 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2022.3155750 – volume: 117 start-page: 498 year: 2021 ident: 85142_CR18 publication-title: Future Generation Comput. Syst. doi: 10.1016/j.future.2020.12.019 – volume: 51 start-page: 1745 issue: 8 year: 2021 ident: 85142_CR17 publication-title: Software: Pract. Experience – ident: 85142_CR27 doi: 10.1109/COMST.2023.3338015 – volume: 223 start-page: 119895 year: 2023 ident: 85142_CR25 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119895 – volume: 17 start-page: 7155 issue: 10 year: 2020 ident: 85142_CR47 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2020.3042872 – volume: 216 start-page: 95 year: 2024 ident: 85142_CR11 publication-title: Comput. Commun. doi: 10.1016/j.comcom.2024.01.002 – volume: 2 start-page: 13 issue: 1 year: 2022 ident: 85142_CR31 publication-title: ENP Eng. Sci. J. doi: 10.53907/enpesj.v2i1.76 – volume: 227 start-page: 103891 year: 2024 ident: 85142_CR1 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2024.103891 – ident: 85142_CR12 doi: 10.1109/TCAD.2024.3437344 – volume: 25 start-page: 1816 issue: 5 year: 2020 ident: 85142_CR33 publication-title: Mob. Networks Appl. doi: 10.1007/s11036-020-01563-x – volume: 6 start-page: 109 year: 1995 ident: 85142_CR36 publication-title: J. Global Optim. doi: 10.1007/BF01096763 – volume: 8 start-page: 111253 year: 2020 ident: 85142_CR16 publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.3003249 – volume: 185 start-page: 103078 year: 2021 ident: 85142_CR34 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.103078 – volume: 51 start-page: 100616 year: 2024 ident: 85142_CR9 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2023.100616 – volume: 391 start-page: 114570 year: 2022 ident: 85142_CR38 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114570 – volume: 19 start-page: 4817 year: 2024 ident: 85142_CR42 publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-024-01933-5 – volume: 132 start-page: 190 year: 2019 ident: 85142_CR32 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2018.03.004 – ident: 85142_CR45 doi: 10.1109/JIOT.2024.3468443 – volume: 200 start-page: 117012 year: 2022 ident: 85142_CR23 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117012 – volume: 7 start-page: 5760 issue: 7 year: 2019 ident: 85142_CR46 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2937110 – volume: 10 start-page: 100379 year: 2024 ident: 85142_CR4 publication-title: Decis. Analytics J. doi: 10.1016/j.dajour.2023.100379 – ident: 85142_CR14 doi: 10.1109/JIOT.2024.3427642 – volume: 25 start-page: 303 year: 2022 ident: 85142_CR20 publication-title: Cluster Comput. doi: 10.1007/s10586-021-03406-0 – volume: 7 start-page: 4898 issue: 6 year: 2020 ident: 85142_CR35 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2971323 – volume: 34 start-page: 5366 issue: 9 year: 2022 ident: 85142_CR40 publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2022.3165627 – volume: 17 start-page: 1768 issue: 3 year: 2024 ident: 85142_CR30 publication-title: Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-024-01642-w – volume: 22 start-page: 2491 issue: 5 year: 2021 ident: 85142_CR19 publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2021.3123165 – volume: 52 start-page: 482 issue: 2 year: 2022 ident: 85142_CR22 publication-title: Software: Pract. Experience – volume: 41 start-page: 100944 year: 2024 ident: 85142_CR6 publication-title: Sustainable Computing: Inf. Syst. – volume: 22 start-page: 66 issue: 4 year: 2024 ident: 85142_CR8 publication-title: J. Grid Comput. doi: 10.1007/s10723-024-09781-3 – ident: 85142_CR21 doi: 10.1007/978-981-16-3448-2_2 – volume: 14 start-page: 1003 issue: 2 year: 2023 ident: 85142_CR24 publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-021-03354-y – volume: 57 start-page: 276 issue: 10 year: 2024 ident: 85142_CR5 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10925-w – volume: 34 start-page: 20017 issue: 22 year: 2022 ident: 85142_CR37 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07530-9 – volume: 25 start-page: 101049 year: 2024 ident: 85142_CR3 publication-title: Internet Things doi: 10.1016/j.iot.2023.101049 – volume: 9 start-page: 778 issue: 5 year: 2024 ident: 85142_CR26 publication-title: IEEE Trans. Sustain. Comput. doi: 10.1109/TSUSC.2024.3381841 – volume: 138 start-page: 409 year: 2024 ident: 85142_CR15 publication-title: Wireless Pers. Commun. doi: 10.1007/s11277-024-11510-8 – ident: 85142_CR28 doi: 10.1109/TCE.2023.3320673 – volume: 83 start-page: 8359 issue: 3 year: 2024 ident: 85142_CR29 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-16008-2 – volume: 158 start-page: 277 year: 2024 ident: 85142_CR2 publication-title: Future Generation Comput. Syst. doi: 10.1016/j.future.2024.04.029 – ident: 85142_CR39 doi: 10.1109/TSC.2024.3478730 – ident: 85142_CR43 doi: 10.1109/TITS.2024.3467269 |
| SSID | ssj0000529419 |
| Score | 2.4617298 |
| Snippet | The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the... Abstract The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1240 |
| SubjectTerms | 639/705/1042 639/705/117 639/705/258 Algorithms Dwarf Mongoose optimization algorithm (DMOA) Fog computing Humanities and Social Sciences Internet of Things Internet of things (IoT) Mapping multidisciplinary Optimization algorithms Prairie Dog optimization algorithm (PDOA) Quality of service Resource management Resource scheduling Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlGT2I7jI1CqnqoeQOrN8mOyXalNUHYL6j_h5zLjZMMuzwuHXa3W3qzlGXu-8Xi-YeyV0yqA8GXeQJC5dNrlxhUUKSxDWxmAKsRUbEKfnDRnZ-Z0q9QX3Qkb6YHHiTswNUKGhjhPAPUNnA_42StjvNNReaDdF1HPljM1snpXRpZmypIpRHOwQktF2WSVyhFkSNwGdixRIuz_Hcr89bLkTxHTZIiO7rI7E4Lkb8eR32M3oLvPbo01Ja8fsG_H15SExU8Ht0Q3mB_2C-66yA-_uqHluIQXfb8C3uNWcTnlYHJ3seiH5fr8MiejFvlWVJunS1t0hJieMkyn_RydYjRSlMvOZxpYjgAYXwseUqkIatvKo3vIPh19-Pj-OJ_KL-RByXKN78Zr6aAqRGylCVXQInqJ_ppx0FLZyYDeYy3BFYA-NoQiQvA1QB0dcQKJR2yv6zt4wngRHEIrr71oUZC1cCrWsa2NahUBipixciMKGyZuciqRcWFTjFw0dhSfRfHZJD7bZOz1_JvPIzPHX3u_IwnPPYlVO32BumYnXbP_0rWM7W_0w05LfWUFIiDc-IzC_3g5N-MipciL66C_Sn1Eo3VZlRl7PKrTPJKEwHEyM9bsKNrOUHdbuuV5IgKnqkEaHeqMvdno5I9x_Xkunv6PuXjGble0mOg0Su-zvfVwBc_ZzfBlvVwNL9Jq_A4Vujr3 priority: 102 providerName: Directory of Open Access Journals |
| Title | Hybrid Prairie Dog and Dwarf Mongoose optimization algorithm-based application placement and resource scheduling technique for fog computing environment |
| URI | https://link.springer.com/article/10.1038/s41598-025-85142-8 https://www.ncbi.nlm.nih.gov/pubmed/39774989 https://www.proquest.com/docview/3152425958 https://www.proquest.com/docview/3153877121 https://pubmed.ncbi.nlm.nih.gov/PMC11707010 https://doaj.org/article/9641685645e040eabc564b599ba7d5be |
| Volume | 15 |
| WOSCitedRecordID | wos001398316700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8MRakHjhexAYlZF4g2j5dvyEGNs0HlZFCKTyFDm2k1XakpF2oP0Tfi53rputfOyFh56q2Gmd3Pk-fXcAryVPlYmr0M-NSvxEcukLGVCkMFR1JIyJlLbNJvh0ms9monAOt4U7VrnmiZZR606Rj3w3RkGD9CXS_N35N5-6RlF01bXQ2IIxVSpLRjDeO5gWnwYvC8WxklC4bJkgzncXKLEoqyxKfVQ2EmQHGxLJFu7_m7b556HJ3yKnViAd3v_fR3kA95wqyt6vaOch3DLtI7izak55-Rh-Hl1SNhcrejlHe5rtdw2TrWb7P2RfM-QFTdctDOuQ55y5ZE4mTxv8o-XJmU_SUbNr4XFmT3-RL9L-Su_CBgyta5R2lBTPhnqyDDVp_DRM2Z4TNHYtIe8JfDk8-PzhyHd9HHyVJuESoah4Ik0UxLpOhIoUj3WVoOEnpKmpf6VC7GWJkYFBY92oQBtVZcZkWlJxoXgbRm3XmmfAAiVRR6t4FdcZqn6xTHWm60ykdUqaifYgXOOyVK7IOfXaOC1tsD3OyxX-S8R_afFf5h68Ge45X5X4uHH2HpHIMJPKc9sLXd-UbreXIkM9N6dCPQaZpJGVwu9VKkQluU4r48HOmjJKxzMW5RVZePBqGMbdTiEc2Zruws6Jc87DKPTg6Yoeh5VYVR5fpgf5BqVuLHVzpJ2f2Iri1H6Io2Xuwds1UV-t69_v4vnNj_EC7ka0z8hhxXdgtOwvzEu4rb4v54t-Alt8xi3MJ27bTqxHBOFxVBDkCMfFx-Pi6y9-BVD0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwgqjZHR8QAoZqqpZRD0XqLXVsJx2pTUoypZp_wq_gN_Kek0k7LL31wGFGo7ETOc5b_ZYP4JXksTJh7rupUZEbSS5dIT2KFPqqCIQxgdIWbIJPJunenthZgZ-LWhhKq1zIRCuoda3ojHw9REWD9CXi9P3xN5dQoyi6uoDQ6Mhiy8xP0WVr322O8P2-DoKNz7ufxm6PKuCqOPJn-C1yHkkTeKEuIqECxUOdR-iGCGkKQlNU6BQlkZGeQdfRKE8blSfGJFpSq5sQ73sFrqIc55RCxvf4cKZDUbPIF31tjhem6y3qR6phC2IXTZsIhc-S_rMwAX-zbf9M0fwtTmvV38bt_23j7sCt3tBmHzrOuAsrproH1zvozfl9-DGeU60a22nktJkaNqpLJivNRqeyKRhKurKuW8NqlKhHfakqk4clPtjs4Mgl3a_ZueA_s7ltdNJq79L0QRHWIk9oSvYv2dAtl6GfgJ-SKYuoQWPnyg0fwNdL2ZaHsFrVlXkMzFMSLdCc52GRoGEbylgnukhEXMRkd2kH_AXtZKpv4U5IIoeZTSUI06yjtwzpLbP0lqUOvBmuOe4amFw4-yOR5DCTmo_bP-qmzHpZlokErfiU2hAZVAFG5gp_57EQueQ6zo0DawtKzHqJ2GZnZOjAy2EYZRkFqGRl6hM7J0w59wPfgUcd_Q8rsY4KbqYD6RJnLC11eaSaHth-6QSuxD3fc-DtgonO1vXvvXhy8WO8gBvj3S_b2fbmZOsp3AyIx-lojq_B6qw5Mc_gmvo-m7bNcyskGOxfNnP9Ar09p6c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmiyOz4gBAxVq8JoDiD1ljq2k47UJiWZUs0_4bfw63jPyaQdlt564DCj0diJHOetfssH8ELyWJkw993UqMiNJJeukB5FCn1VBMKYQGkLNsEnk3R3V0zX4OeyFobSKpcy0QpqXSs6Ix-FqGiQvkScjoo-LWI63nx79M0lBCmKtC7hNDoS2TGLE3Tf2jfbY3zXL4Ng8-OXD1tujzDgqjjy5_gtch5JE3ihLiKhAsVDnUfokghpCkJWVOggJZGRnkE30ihPG5UnxiRaUtubEO97CS7zKI6Juz4H0-F8hyJokS_6Oh0vTEct6kqqZwtiF82cCAXRii60kAF_s3P_TNf8LWZrVeHmzf95E2_Bjd4AZ-86jrkNa6a6A1c7SM7FXfixtaAaNjZt5KyZGTauSyYrzcYnsikYSsCyrlvDapS0h30JK5MHJT7YfP_QJZtAszNJAczmvNEJrL1L0wdLWIu8oqkIoGRDF12G_gN-SqYs0gaNnSlDvAdfL2Rb7sN6VVfmITBPSbRMc56HRYIGbyhjnegiEXERkz2mHfCXdJSpvrU7IYwcZDbFIEyzjvYypL3M0l6WOvBquOaoa2xy7uz3RJ7DTGpKbv-omzLrZVwmErTuU2pPZFA1GJkr_J3HQuSS6zg3DmwsqTLrJWWbnZKkA8-HYZRxFLiSlamP7Zww5dwPfAcedLwwrMQ6MLiZDqQrXLKy1NWRarZv-6gT6BL3fM-B10uGOl3Xv_fi0fmP8QyuIU9ln7YnO4_hekDsTid2fAPW582xeQJX1Pf5rG2eWnnBYO-ieesXKqewdA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Prairie+Dog+and+Dwarf+Mongoose+optimization+algorithm-based+application+placement+and+resource+scheduling+technique+for+fog+computing+environment&rft.jtitle=Scientific+reports&rft.au=Baskar%2C+R&rft.au=Mohanraj%2C+E&rft.au=Saradha%2C+M&rft.au=Monika%2C+R&rft.date=2025-01-07&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1240&rft_id=info:doi/10.1038%2Fs41598-025-85142-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |