Hybrid Prairie Dog and Dwarf Mongoose optimization algorithm-based application placement and resource scheduling technique for fog computing environment

The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 1240 - 25
Hlavní autori: Baskar, R., Mohanraj, E., Saradha, M., Monika, R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 07.01.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches.
AbstractList The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches.
Abstract The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches.
The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches.The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches.
ArticleNumber 1240
Author Baskar, R.
Mohanraj, E.
Saradha, M.
Monika, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Baskar
  fullname: Baskar, R.
  email: rbaskar@ksrct.ac.in
  organization: Department of Computer Science and Engineering, K. S. Rangasamy College of Technology
– sequence: 2
  givenname: E.
  surname: Mohanraj
  fullname: Mohanraj, E.
  organization: Department of Artificial Intelligence and Data Science, K. S. Rangasamy College of Technology
– sequence: 3
  givenname: M.
  surname: Saradha
  fullname: Saradha, M.
  organization: Department of Computer Science and Engineering, K. S. Rangasamy College of Technology
– sequence: 4
  givenname: R.
  surname: Monika
  fullname: Monika, R.
  organization: Department of Computer Science and Engineering, K. S. Rangasamy College of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39774989$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUtFARLZf-AAtkiQ2bgO3YSbxCqAVaqQgWsLYc-yTXVWIHOykqX8Ln4nvTQttFLfkhn5nR-HieowMfPCD0kpK3lJTNu8SpkE1BmCgaQTkrmifoiBEuClYydnDnfIiOU7okeQgmOZXP0GEp65rLRh6hP2fXbXQWf4vaRQf4NPRYe4tPf-nY4S_B9yEkwGGa3eh-69kFj_XQh-jm7Vi0OoHFepoGZ9baNGgDI_h5rxIhhSUawMlswS6D8z2ewWy9-7kA7kLMs8cmjNMy72rgr1wMfsd_gZ52ekhwfLNv0I9PH7-fnBUXXz-fn3y4KIzgdM6rbGuugZHSdlwaZurStpxxKTV0TX6jYZRWHDSBShIwxIJpK4DKalkzWm7Q-aprg75UU3SjjtcqaKf2FyH2SsfZmQGUrDitGlFxAYQT0K3J51ZI2eraihay1vtVa1raEazJz4h6uCd6v-LdVvXhSlFak5rkf92gNzcKMeQWpVmNLhkYBu0hLEmVVJRNXdO98dcPoJe51z73aodinAkpmox6ddfSPy-3CciAZgWYGFKK0Cnj5v1fZoduUJSoXd7UmjeV86b2eVM7bfaAeqv-KKlcSSmDfQ_xv-1HWH8Bb6frnw
CitedBy_id crossref_primary_10_1038_s41598_025_00597_z
crossref_primary_10_1007_s11227_025_07814_6
crossref_primary_10_1038_s41598_025_00796_8
Cites_doi 10.1109/JIOT.2024.3360110
10.1007/s11227-023-05586-5
10.1007/978-981-99-0609-3_19
10.1109/TPWRS.2022.3155750
10.1016/j.future.2020.12.019
10.1109/COMST.2023.3338015
10.1016/j.eswa.2023.119895
10.1109/TII.2020.3042872
10.1016/j.comcom.2024.01.002
10.53907/enpesj.v2i1.76
10.1016/j.jnca.2024.103891
10.1109/TCAD.2024.3437344
10.1007/s11036-020-01563-x
10.1007/BF01096763
10.1109/ACCESS.2020.3003249
10.1016/j.jnca.2021.103078
10.1016/j.cosrev.2023.100616
10.1016/j.cma.2022.114570
10.1007/s42835-024-01933-5
10.1016/j.jpdc.2018.03.004
10.1109/JIOT.2024.3468443
10.1016/j.eswa.2022.117012
10.1109/JIOT.2019.2937110
10.1016/j.dajour.2023.100379
10.1109/JIOT.2024.3427642
10.1007/s10586-021-03406-0
10.1109/JIOT.2020.2971323
10.1109/TNNLS.2022.3165627
10.1007/s12083-024-01642-w
10.1109/TMC.2021.3123165
10.1007/s10723-024-09781-3
10.1007/978-981-16-3448-2_2
10.1007/s12652-021-03354-y
10.1007/s10462-024-10925-w
10.1007/s00521-022-07530-9
10.1016/j.iot.2023.101049
10.1109/TSUSC.2024.3381841
10.1007/s11277-024-11510-8
10.1109/TCE.2023.3320673
10.1007/s11042-023-16008-2
10.1016/j.future.2024.04.029
10.1109/TSC.2024.3478730
10.1109/TITS.2024.3467269
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-85142-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 25
ExternalDocumentID oai_doaj_org_article_9641685645e040eabc564b599ba7d5be
PMC11707010
39774989
10_1038_s41598_025_85142_8
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-c59b74ae203df49c2c73db42499aef8989c21164ea0e690ec0decb6ee6da97213
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001398316700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:06:09 EDT 2025
Tue Nov 04 02:04:03 EST 2025
Fri Sep 05 09:25:43 EDT 2025
Tue Oct 07 08:01:25 EDT 2025
Mon Jul 21 05:47:03 EDT 2025
Tue Nov 18 22:32:54 EST 2025
Sat Nov 29 03:22:16 EST 2025
Fri Feb 21 02:35:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fog computing
Resource scheduling
Prairie Dog optimization algorithm (PDOA)
Dwarf Mongoose optimization algorithm (DMOA)
Internet of things (IoT)
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-c59b74ae203df49c2c73db42499aef8989c21164ea0e690ec0decb6ee6da97213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3152425958?pq-origsite=%requestingapplication%
PMID 39774989
PQID 3152425958
PQPubID 2041939
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_9641685645e040eabc564b599ba7d5be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11707010
proquest_miscellaneous_3153877121
proquest_journals_3152425958
pubmed_primary_39774989
crossref_citationtrail_10_1038_s41598_025_85142_8
crossref_primary_10_1038_s41598_025_85142_8
springer_journals_10_1038_s41598_025_85142_8
PublicationCentury 2000
PublicationDate 2025-01-07
PublicationDateYYYYMMDD 2025-01-07
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References G Goel (85142_CR30) 2024; 17
H Zhang (85142_CR41) 2022; 38
85142_CR28
R Mahmud (85142_CR32) 2019; 132
P Pabitha (85142_CR6) 2024; 41
M Zolghadri (85142_CR1) 2024; 227
S Mangalampalli (85142_CR29) 2024; 83
A Daghayeghi (85142_CR15) 2024; 138
85142_CR27
S Subbaraj (85142_CR24) 2023; 14
G Goel (85142_CR31) 2022; 2
JY Xia (85142_CR40) 2022; 34
P Pabitha (85142_CR13) 2022
M Ghobaei-Arani (85142_CR23) 2022; 200
L Lin (85142_CR42) 2024; 19
M Afzali (85142_CR7) 2024; 80
CG Wu (85142_CR18) 2021; 117
HK Apat (85142_CR4) 2024; 10
TA Feo (85142_CR36) 1995; 6
R Ghafari (85142_CR8) 2024; 22
85142_CR14
85142_CR12
85142_CR10
S Lin (85142_CR3) 2024; 25
M Goudarzi (85142_CR19) 2021; 22
G Sun (85142_CR47) 2020; 17
JO Agushaka (85142_CR38) 2022; 391
85142_CR39
H Nashaat (85142_CR16) 2020; 8
H Sabireen (85142_CR25) 2023; 223
J Taghizadeh (85142_CR22) 2022; 52
M Kumar (85142_CR26) 2024; 9
M Salimian (85142_CR17) 2021; 51
ZM Nayeri (85142_CR34) 2021; 185
G Sun (85142_CR46) 2019; 7
A Asghari (85142_CR9) 2024; 51
Q Tang (85142_CR35) 2020; 7
P Ntumba (85142_CR2) 2024; 158
N Devi (85142_CR5) 2024; 57
LT Oliveira (85142_CR11) 2024; 216
F Tavousi (85142_CR20) 2022; 25
G Baranwal (85142_CR33) 2020; 25
AE Ezugwu (85142_CR37) 2022; 34
85142_CR44
85142_CR45
85142_CR21
85142_CR43
References_xml – ident: 85142_CR44
  doi: 10.1109/JIOT.2024.3360110
– volume: 80
  start-page: 4600
  issue: 4
  year: 2024
  ident: 85142_CR7
  publication-title: J. Supercomputing
  doi: 10.1007/s11227-023-05586-5
– ident: 85142_CR10
  doi: 10.1007/978-981-99-0609-3_19
– start-page: 527
  volume-title: Workshop on Mining Data for Financial Applications
  year: 2022
  ident: 85142_CR13
– volume: 38
  start-page: 488
  issue: 1
  year: 2022
  ident: 85142_CR41
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2022.3155750
– volume: 117
  start-page: 498
  year: 2021
  ident: 85142_CR18
  publication-title: Future Generation Comput. Syst.
  doi: 10.1016/j.future.2020.12.019
– volume: 51
  start-page: 1745
  issue: 8
  year: 2021
  ident: 85142_CR17
  publication-title: Software: Pract. Experience
– ident: 85142_CR27
  doi: 10.1109/COMST.2023.3338015
– volume: 223
  start-page: 119895
  year: 2023
  ident: 85142_CR25
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119895
– volume: 17
  start-page: 7155
  issue: 10
  year: 2020
  ident: 85142_CR47
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2020.3042872
– volume: 216
  start-page: 95
  year: 2024
  ident: 85142_CR11
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2024.01.002
– volume: 2
  start-page: 13
  issue: 1
  year: 2022
  ident: 85142_CR31
  publication-title: ENP Eng. Sci. J.
  doi: 10.53907/enpesj.v2i1.76
– volume: 227
  start-page: 103891
  year: 2024
  ident: 85142_CR1
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2024.103891
– ident: 85142_CR12
  doi: 10.1109/TCAD.2024.3437344
– volume: 25
  start-page: 1816
  issue: 5
  year: 2020
  ident: 85142_CR33
  publication-title: Mob. Networks Appl.
  doi: 10.1007/s11036-020-01563-x
– volume: 6
  start-page: 109
  year: 1995
  ident: 85142_CR36
  publication-title: J. Global Optim.
  doi: 10.1007/BF01096763
– volume: 8
  start-page: 111253
  year: 2020
  ident: 85142_CR16
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3003249
– volume: 185
  start-page: 103078
  year: 2021
  ident: 85142_CR34
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.103078
– volume: 51
  start-page: 100616
  year: 2024
  ident: 85142_CR9
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2023.100616
– volume: 391
  start-page: 114570
  year: 2022
  ident: 85142_CR38
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114570
– volume: 19
  start-page: 4817
  year: 2024
  ident: 85142_CR42
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-024-01933-5
– volume: 132
  start-page: 190
  year: 2019
  ident: 85142_CR32
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2018.03.004
– ident: 85142_CR45
  doi: 10.1109/JIOT.2024.3468443
– volume: 200
  start-page: 117012
  year: 2022
  ident: 85142_CR23
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117012
– volume: 7
  start-page: 5760
  issue: 7
  year: 2019
  ident: 85142_CR46
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2937110
– volume: 10
  start-page: 100379
  year: 2024
  ident: 85142_CR4
  publication-title: Decis. Analytics J.
  doi: 10.1016/j.dajour.2023.100379
– ident: 85142_CR14
  doi: 10.1109/JIOT.2024.3427642
– volume: 25
  start-page: 303
  year: 2022
  ident: 85142_CR20
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-021-03406-0
– volume: 7
  start-page: 4898
  issue: 6
  year: 2020
  ident: 85142_CR35
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2971323
– volume: 34
  start-page: 5366
  issue: 9
  year: 2022
  ident: 85142_CR40
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2022.3165627
– volume: 17
  start-page: 1768
  issue: 3
  year: 2024
  ident: 85142_CR30
  publication-title: Peer-to-Peer Netw. Appl.
  doi: 10.1007/s12083-024-01642-w
– volume: 22
  start-page: 2491
  issue: 5
  year: 2021
  ident: 85142_CR19
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2021.3123165
– volume: 52
  start-page: 482
  issue: 2
  year: 2022
  ident: 85142_CR22
  publication-title: Software: Pract. Experience
– volume: 41
  start-page: 100944
  year: 2024
  ident: 85142_CR6
  publication-title: Sustainable Computing: Inf. Syst.
– volume: 22
  start-page: 66
  issue: 4
  year: 2024
  ident: 85142_CR8
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-024-09781-3
– ident: 85142_CR21
  doi: 10.1007/978-981-16-3448-2_2
– volume: 14
  start-page: 1003
  issue: 2
  year: 2023
  ident: 85142_CR24
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-021-03354-y
– volume: 57
  start-page: 276
  issue: 10
  year: 2024
  ident: 85142_CR5
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10925-w
– volume: 34
  start-page: 20017
  issue: 22
  year: 2022
  ident: 85142_CR37
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07530-9
– volume: 25
  start-page: 101049
  year: 2024
  ident: 85142_CR3
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.101049
– volume: 9
  start-page: 778
  issue: 5
  year: 2024
  ident: 85142_CR26
  publication-title: IEEE Trans. Sustain. Comput.
  doi: 10.1109/TSUSC.2024.3381841
– volume: 138
  start-page: 409
  year: 2024
  ident: 85142_CR15
  publication-title: Wireless Pers. Commun.
  doi: 10.1007/s11277-024-11510-8
– ident: 85142_CR28
  doi: 10.1109/TCE.2023.3320673
– volume: 83
  start-page: 8359
  issue: 3
  year: 2024
  ident: 85142_CR29
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-16008-2
– volume: 158
  start-page: 277
  year: 2024
  ident: 85142_CR2
  publication-title: Future Generation Comput. Syst.
  doi: 10.1016/j.future.2024.04.029
– ident: 85142_CR39
  doi: 10.1109/TSC.2024.3478730
– ident: 85142_CR43
  doi: 10.1109/TITS.2024.3467269
SSID ssj0000529419
Score 2.4617298
Snippet The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the...
Abstract The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1240
SubjectTerms 639/705/1042
639/705/117
639/705/258
Algorithms
Dwarf Mongoose optimization algorithm (DMOA)
Fog computing
Humanities and Social Sciences
Internet of Things
Internet of things (IoT)
Mapping
multidisciplinary
Optimization algorithms
Prairie Dog optimization algorithm (PDOA)
Quality of service
Resource management
Resource scheduling
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlGT2I7jI1CqnqoeQOrN8mOyXalNUHYL6j_h5zLjZMMuzwuHXa3W3qzlGXu-8Xi-YeyV0yqA8GXeQJC5dNrlxhUUKSxDWxmAKsRUbEKfnDRnZ-Z0q9QX3Qkb6YHHiTswNUKGhjhPAPUNnA_42StjvNNReaDdF1HPljM1snpXRpZmypIpRHOwQktF2WSVyhFkSNwGdixRIuz_Hcr89bLkTxHTZIiO7rI7E4Lkb8eR32M3oLvPbo01Ja8fsG_H15SExU8Ht0Q3mB_2C-66yA-_uqHluIQXfb8C3uNWcTnlYHJ3seiH5fr8MiejFvlWVJunS1t0hJieMkyn_RydYjRSlMvOZxpYjgAYXwseUqkIatvKo3vIPh19-Pj-OJ_KL-RByXKN78Zr6aAqRGylCVXQInqJ_ppx0FLZyYDeYy3BFYA-NoQiQvA1QB0dcQKJR2yv6zt4wngRHEIrr71oUZC1cCrWsa2NahUBipixciMKGyZuciqRcWFTjFw0dhSfRfHZJD7bZOz1_JvPIzPHX3u_IwnPPYlVO32BumYnXbP_0rWM7W_0w05LfWUFIiDc-IzC_3g5N-MipciL66C_Sn1Eo3VZlRl7PKrTPJKEwHEyM9bsKNrOUHdbuuV5IgKnqkEaHeqMvdno5I9x_Xkunv6PuXjGble0mOg0Su-zvfVwBc_ZzfBlvVwNL9Jq_A4Vujr3
  priority: 102
  providerName: Directory of Open Access Journals
Title Hybrid Prairie Dog and Dwarf Mongoose optimization algorithm-based application placement and resource scheduling technique for fog computing environment
URI https://link.springer.com/article/10.1038/s41598-025-85142-8
https://www.ncbi.nlm.nih.gov/pubmed/39774989
https://www.proquest.com/docview/3152425958
https://www.proquest.com/docview/3153877121
https://pubmed.ncbi.nlm.nih.gov/PMC11707010
https://doaj.org/article/9641685645e040eabc564b599ba7d5be
Volume 15
WOSCitedRecordID wos001398316700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8MRakHjhexAYlZF4g2j5dvyEGNs0HlZFCKTyFDm2k1XakpF2oP0Tfi53rputfOyFh56q2Gmd3Pk-fXcAryVPlYmr0M-NSvxEcukLGVCkMFR1JIyJlLbNJvh0ms9monAOt4U7VrnmiZZR606Rj3w3RkGD9CXS_N35N5-6RlF01bXQ2IIxVSpLRjDeO5gWnwYvC8WxklC4bJkgzncXKLEoqyxKfVQ2EmQHGxLJFu7_m7b556HJ3yKnViAd3v_fR3kA95wqyt6vaOch3DLtI7izak55-Rh-Hl1SNhcrejlHe5rtdw2TrWb7P2RfM-QFTdctDOuQ55y5ZE4mTxv8o-XJmU_SUbNr4XFmT3-RL9L-Su_CBgyta5R2lBTPhnqyDDVp_DRM2Z4TNHYtIe8JfDk8-PzhyHd9HHyVJuESoah4Ik0UxLpOhIoUj3WVoOEnpKmpf6VC7GWJkYFBY92oQBtVZcZkWlJxoXgbRm3XmmfAAiVRR6t4FdcZqn6xTHWm60ykdUqaifYgXOOyVK7IOfXaOC1tsD3OyxX-S8R_afFf5h68Ge45X5X4uHH2HpHIMJPKc9sLXd-UbreXIkM9N6dCPQaZpJGVwu9VKkQluU4r48HOmjJKxzMW5RVZePBqGMbdTiEc2Zruws6Jc87DKPTg6Yoeh5VYVR5fpgf5BqVuLHVzpJ2f2Iri1H6Io2Xuwds1UV-t69_v4vnNj_EC7ka0z8hhxXdgtOwvzEu4rb4v54t-Alt8xi3MJ27bTqxHBOFxVBDkCMfFx-Pi6y9-BVD0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwgqjZHR8QAoZqqpZRD0XqLXVsJx2pTUoypZp_wq_gN_Kek0k7LL31wGFGo7ETOc5b_ZYP4JXksTJh7rupUZEbSS5dIT2KFPqqCIQxgdIWbIJPJunenthZgZ-LWhhKq1zIRCuoda3ojHw9REWD9CXi9P3xN5dQoyi6uoDQ6Mhiy8xP0WVr322O8P2-DoKNz7ufxm6PKuCqOPJn-C1yHkkTeKEuIqECxUOdR-iGCGkKQlNU6BQlkZGeQdfRKE8blSfGJFpSq5sQ73sFrqIc55RCxvf4cKZDUbPIF31tjhem6y3qR6phC2IXTZsIhc-S_rMwAX-zbf9M0fwtTmvV38bt_23j7sCt3tBmHzrOuAsrproH1zvozfl9-DGeU60a22nktJkaNqpLJivNRqeyKRhKurKuW8NqlKhHfakqk4clPtjs4Mgl3a_ZueA_s7ltdNJq79L0QRHWIk9oSvYv2dAtl6GfgJ-SKYuoQWPnyg0fwNdL2ZaHsFrVlXkMzFMSLdCc52GRoGEbylgnukhEXMRkd2kH_AXtZKpv4U5IIoeZTSUI06yjtwzpLbP0lqUOvBmuOe4amFw4-yOR5DCTmo_bP-qmzHpZlokErfiU2hAZVAFG5gp_57EQueQ6zo0DawtKzHqJ2GZnZOjAy2EYZRkFqGRl6hM7J0w59wPfgUcd_Q8rsY4KbqYD6RJnLC11eaSaHth-6QSuxD3fc-DtgonO1vXvvXhy8WO8gBvj3S_b2fbmZOsp3AyIx-lojq_B6qw5Mc_gmvo-m7bNcyskGOxfNnP9Ar09p6c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmiyOz4gBAxVq8JoDiD1ljq2k47UJiWZUs0_4bfw63jPyaQdlt564DCj0diJHOetfssH8ELyWJkw993UqMiNJJeukB5FCn1VBMKYQGkLNsEnk3R3V0zX4OeyFobSKpcy0QpqXSs6Ix-FqGiQvkScjoo-LWI63nx79M0lBCmKtC7hNDoS2TGLE3Tf2jfbY3zXL4Ng8-OXD1tujzDgqjjy5_gtch5JE3ihLiKhAsVDnUfokghpCkJWVOggJZGRnkE30ihPG5UnxiRaUtubEO97CS7zKI6Juz4H0-F8hyJokS_6Oh0vTEct6kqqZwtiF82cCAXRii60kAF_s3P_TNf8LWZrVeHmzf95E2_Bjd4AZ-86jrkNa6a6A1c7SM7FXfixtaAaNjZt5KyZGTauSyYrzcYnsikYSsCyrlvDapS0h30JK5MHJT7YfP_QJZtAszNJAczmvNEJrL1L0wdLWIu8oqkIoGRDF12G_gN-SqYs0gaNnSlDvAdfL2Rb7sN6VVfmITBPSbRMc56HRYIGbyhjnegiEXERkz2mHfCXdJSpvrU7IYwcZDbFIEyzjvYypL3M0l6WOvBquOaoa2xy7uz3RJ7DTGpKbv-omzLrZVwmErTuU2pPZFA1GJkr_J3HQuSS6zg3DmwsqTLrJWWbnZKkA8-HYZRxFLiSlamP7Zww5dwPfAcedLwwrMQ6MLiZDqQrXLKy1NWRarZv-6gT6BL3fM-B10uGOl3Xv_fi0fmP8QyuIU9ln7YnO4_hekDsTid2fAPW582xeQJX1Pf5rG2eWnnBYO-ieesXKqewdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Prairie+Dog+and+Dwarf+Mongoose+optimization+algorithm-based+application+placement+and+resource+scheduling+technique+for+fog+computing+environment&rft.jtitle=Scientific+reports&rft.au=Baskar%2C+R&rft.au=Mohanraj%2C+E&rft.au=Saradha%2C+M&rft.au=Monika%2C+R&rft.date=2025-01-07&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1240&rft_id=info:doi/10.1038%2Fs41598-025-85142-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon