Investigation of the effectiveness of a classification method based on improved DAE feature extraction for hepatitis C prediction
Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve...
Uložené v:
| Vydané v: | Scientific reports Ročník 14; číslo 1; s. 9143 - 12 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
21.04.2024
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies. |
|---|---|
| AbstractList | Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies. Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies.Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies. Abstract Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies. |
| ArticleNumber | 9143 |
| Author | Wang, Jixin Chang, Rui Zhang, Lin Wang, Weigang |
| Author_xml | – sequence: 1 givenname: Lin surname: Zhang fullname: Zhang, Lin organization: Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine – sequence: 2 givenname: Jixin surname: Wang fullname: Wang, Jixin email: wangjx_zjgsu@163.com organization: Department of Statistics and Mathematics, Zhejiang Gongshang University – sequence: 3 givenname: Rui surname: Chang fullname: Chang, Rui organization: Department of ICU, Jining No.1 People’s Hospital – sequence: 4 givenname: Weigang surname: Wang fullname: Wang, Weigang email: wangweigang@zjgsu.edu.cn organization: Department of Statistics and Mathematics, Zhejiang Gongshang University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38644402$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNURD_oH-CAInHhEvBnYp9QtbSwUiUucLYcZ7zrVRIvtrPqHvnneDcttD3UF4897_to7Jnz4mT0IxTFO4w-YUTF58gwl6JChFVcNoJX-1fFGUGMV4QScvIoPi0uY9ygvDiRDMs3xSkVNWMMkbPiz3LcQUxupZPzY-ltmdZQgrVgktvBCDEeLnVpeh2js87MwgHS2ndlqyN0ZT67YRv8Lsdfr65LCzpNIWPuUtDmqLc-lGvYZnNysVyU2wCdO6beFq-t7iNc3u8Xxa-b65-L79Xtj2_LxdVtZTjDqTJMU6NlXRspuGWmJWA71GjaiMYipDUD2kkjoJGGUmosQwjzpiEIN2CA0ItiOXM7rzdqG9ygw1557dTxwoeV0iE504Nqac1B1EZoTBgxVrSdFFoILKAVgtjM-jKztlM7QGdgzA_tn0CfZka3Viu_Uzj3jhLOMuHjPSH431PugBpcNND3egQ_RUURyy9DgvEs_fBMuvFTGPNfHVSklkLiA_D945L-1fLQ6iwQs8AEH2MAq4xLx2bmCl2vMFKHwVLzYKk8WOo4WGqfreSZ9YH-oonOppjF4wrC_7JfcP0F2Cji2w |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_109897 |
| Cites_doi | 10.1016/j.imed.2021.12.003 10.1038/s41598-017-17842-9 10.1109/access.2022.3202295 10.1186/s12859-019-3116-7 10.1613/jair.953 10.1016/j.sigpro.2016.07.028 10.3390/diagnostics13030348 10.1609/aaai.v31i1.10777 10.1109/tmi.2017.2715284 10.4258/hir.2019.25.3.173 10.1016/j.asoc.2019.106060 10.3390/s23094178 10.1007/s11042-022-13569-6 10.1007/s00371-017-1439-9 10.3390/cancers11040494 10.1109/tip.2018.2839891 10.1038/s41598-019-53048-x 10.1109/lgrs.2018.2802944 10.1109/tip.2017.2662206 10.3390/livers1040023 10.7763/ijmlc.2013.v3.307 10.1109/cvpr.2016.90 10.1007/978-3-319-24574-4_28 10.21037/qims-19-1090 10.30699/fhi.v10i1.274 10.1007/978-3-642-21735-7_7 10.48175/IJARSCT-11138 10.1007/978-3-030-72084-1_39 10.1109/iccv.2017.244 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-59785-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Public Health |
| EISSN | 2045-2322 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_b365e86c8a1242cf8bd98a8818eb882f PMC11033254 38644402 10_1038_s41598_024_59785_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Zhejiang Provincial Traditional Chinese Medicine Science and Technology Plan Project grantid: 2022ZB268 – fundername: National Natural Science Foundation of China grantid: 72273132 – fundername: Hangzhou Medical and Health Technology Project grantid: 20220919Y031 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c541t-c4a3ca966c985f4cb2efd07a3787f00aa4e3d9c8e79c333cf40015772017ece23 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001207003700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:41:57 EDT 2025 Tue Nov 04 02:05:45 EST 2025 Sun Nov 09 05:24:35 EST 2025 Mon Oct 06 17:52:07 EDT 2025 Mon Jul 21 06:02:57 EDT 2025 Sat Nov 29 02:12:53 EST 2025 Tue Nov 18 21:30:30 EST 2025 Fri Feb 21 02:40:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Hepatitis C Autoencoder Denoising autoencoder |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-c4a3ca966c985f4cb2efd07a3787f00aa4e3d9c8e79c333cf40015772017ece23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3042698914?pq-origsite=%requestingapplication% |
| PMID | 38644402 |
| PQID | 3042698914 |
| PQPubID | 2041939 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b365e86c8a1242cf8bd98a8818eb882f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11033254 proquest_miscellaneous_3043780845 proquest_journals_3042698914 pubmed_primary_38644402 crossref_citationtrail_10_1038_s41598_024_59785_y crossref_primary_10_1038_s41598_024_59785_y springer_journals_10_1038_s41598_024_59785_y |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-21 |
| PublicationDateYYYYMMDD | 2024-04-21 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Barakat, Barakat, Ahmed (CR12) 2019; 25 Zhu, Cheng, Zhang, Wu, Shao (CR25) 2020; 88 Chen (CR7) 2017 CR19 CR17 Khmag, Al Haddad, Ramlee, Kamarudin, Malallah (CR20) 2018 Chawla, Bowyer, Hall, Kegelmeyer (CR32) 2018 Avcı, Karakaya (CR1) 2023; 13 Xu (CR28) 2019 CR14 CR11 Im, Ahn, Memisevic, Bengio (CR10) 2022 CR31 CR30 Lu, Wang, Qin, Ma (CR24) 2017; 130 Zhang, Liu, Wang (CR18) 2018 Gu, Zhao (CR27) 2019 CR2 Zhang, Zuo, Chen, Meng, Zhang (CR5) 2017 CR6 Khmag (CR21) 2023 Zhang, Zuo, Zhang (CR8) 2018 Liu, Hu (CR9) 2019; 11 CR29 Rahman, Davis (CR4) 2013 CR23 CR22 Guan (CR26) 2018 An, Rahman, Zhou, Kang (CR3) 2023 Mostafa, Hasan, Williamson, Khan (CR13) 2021; 1 Safdari, Deghatipour, Gholamzadeh, Maghooli (CR15) 2022 Li, Chiu, Kuo (CR16) 2022; 10 MM Rahman (59785_CR4) 2013 59785_CR23 H Avcı (59785_CR1) 2023; 13 59785_CR22 F Mostafa (59785_CR13) 2021; 1 R Guan (59785_CR26) 2018 R Safdari (59785_CR15) 2022 NV Chawla (59785_CR32) 2018 K Zhang (59785_CR5) 2017 59785_CR6 T Gu (59785_CR27) 2019 59785_CR14 T-HS Li (59785_CR16) 2022; 10 DI Im (59785_CR10) 2022 59785_CR17 Z Zhang (59785_CR18) 2018 59785_CR2 59785_CR19 A Khmag (59785_CR20) 2018 J Xu (59785_CR28) 2019 59785_CR30 K Zhang (59785_CR8) 2018 59785_CR31 59785_CR11 NH Barakat (59785_CR12) 2019; 25 A Khmag (59785_CR21) 2023 C Lu (59785_CR24) 2017; 130 H Zhu (59785_CR25) 2020; 88 Q Liu (59785_CR9) 2019; 11 H Chen (59785_CR7) 2017 Q An (59785_CR3) 2023 59785_CR29 |
| References_xml | – year: 2022 ident: CR15 article-title: Applying data mining techniques to classify patients with suspected hepatitis C virus infection publication-title: Intell. Med. doi: 10.1016/j.imed.2021.12.003 – ident: CR22 – year: 2018 ident: CR26 article-title: Multi-label deep learning for gene function annotation in cancer pathways publication-title: Sci. Rep. doi: 10.1038/s41598-017-17842-9 – volume: 10 start-page: 91045 year: 2022 end-page: 91058 ident: CR16 article-title: Hepatitis C virus detection model by using random forest, logistic-regression and ABC algorithm publication-title: IEEE Access doi: 10.1109/access.2022.3202295 – year: 2019 ident: CR28 article-title: A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data publication-title: BMC Bioinform. doi: 10.1186/s12859-019-3116-7 – year: 2018 ident: CR32 article-title: Smote: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – ident: CR14 – volume: 130 start-page: 377 year: 2017 end-page: 388 ident: CR24 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.07.028 – ident: CR2 – volume: 13 start-page: 348 year: 2023 ident: CR1 article-title: A novel medical image enhancement algorithm for breast cancer detection on mammography images using machine learning publication-title: Diagnostics doi: 10.3390/diagnostics13030348 – ident: CR30 – year: 2022 ident: CR10 article-title: Denoising criterion for variational auto-encoding framework publication-title: Proc. AAAI Conf. Artif. Intell. doi: 10.1609/aaai.v31i1.10777 – year: 2017 ident: CR7 article-title: Low-dose CT with a residual encoder-decoder convolutional neural network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/tmi.2017.2715284 – ident: CR6 – ident: CR29 – volume: 25 start-page: 173 year: 2019 ident: CR12 article-title: Prediction and staging of hepatic fibrosis in children with hepatitis C virus: A machine learning approach publication-title: Healthc. Inform. Res. doi: 10.4258/hir.2019.25.3.173 – ident: CR23 – ident: CR19 – volume: 88 start-page: 106060 year: 2020 ident: CR25 article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.106060 – year: 2023 ident: CR3 article-title: A comprehensive review on machine learning in healthcare industry: Classification, restrictions, opportunities and challenges publication-title: Sensors doi: 10.3390/s23094178 – year: 2023 ident: CR21 article-title: Additive Gaussian noise removal based on generative adversarial network model and semi-soft thresholding approach publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13569-6 – year: 2018 ident: CR20 article-title: Natural image noise removal using nonlocal means and hidden Markov models in transform domain publication-title: Vis. Comput. doi: 10.1007/s00371-017-1439-9 – ident: CR17 – ident: CR31 – ident: CR11 – volume: 11 start-page: 494 year: 2019 ident: CR9 article-title: Association analysis of deep genomic features extracted by denoising autoencoders in breast cancer publication-title: Cancers doi: 10.3390/cancers11040494 – year: 2018 ident: CR8 article-title: Ffdnet: Toward a fast and flexible solution for CNN-based image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/tip.2018.2839891 – year: 2019 ident: CR27 article-title: Integrating multi-platform genomic datasets for kidney renal clear cell carcinoma subtyping using stacked denoising autoencoders publication-title: Sci. Rep. doi: 10.1038/s41598-019-53048-x – year: 2018 ident: CR18 article-title: Road extraction by deep residual u-net publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/lgrs.2018.2802944 – year: 2017 ident: CR5 article-title: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/tip.2017.2662206 – volume: 1 start-page: 294 year: 2021 end-page: 312 ident: CR13 article-title: Statistical machine learning approaches to liver disease prediction publication-title: Livers doi: 10.3390/livers1040023 – year: 2013 ident: CR4 article-title: Addressing the class imbalance problem in medical datasets publication-title: Int. J. Mach. Learn. Comput. doi: 10.7763/ijmlc.2013.v3.307 – year: 2022 ident: 59785_CR15 publication-title: Intell. Med. doi: 10.1016/j.imed.2021.12.003 – volume: 25 start-page: 173 year: 2019 ident: 59785_CR12 publication-title: Healthc. Inform. Res. doi: 10.4258/hir.2019.25.3.173 – year: 2018 ident: 59785_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-017-17842-9 – year: 2018 ident: 59785_CR8 publication-title: IEEE Trans. Image Process. doi: 10.1109/tip.2018.2839891 – volume: 13 start-page: 348 year: 2023 ident: 59785_CR1 publication-title: Diagnostics doi: 10.3390/diagnostics13030348 – year: 2018 ident: 59785_CR18 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/lgrs.2018.2802944 – ident: 59785_CR29 – ident: 59785_CR23 – ident: 59785_CR11 doi: 10.1109/cvpr.2016.90 – ident: 59785_CR17 doi: 10.1007/978-3-319-24574-4_28 – year: 2023 ident: 59785_CR3 publication-title: Sensors doi: 10.3390/s23094178 – year: 2017 ident: 59785_CR7 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/tmi.2017.2715284 – volume: 88 start-page: 106060 year: 2020 ident: 59785_CR25 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.106060 – volume: 10 start-page: 91045 year: 2022 ident: 59785_CR16 publication-title: IEEE Access doi: 10.1109/access.2022.3202295 – ident: 59785_CR19 doi: 10.21037/qims-19-1090 – volume: 1 start-page: 294 year: 2021 ident: 59785_CR13 publication-title: Livers doi: 10.3390/livers1040023 – ident: 59785_CR14 doi: 10.30699/fhi.v10i1.274 – volume: 130 start-page: 377 year: 2017 ident: 59785_CR24 publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.07.028 – ident: 59785_CR31 – ident: 59785_CR30 doi: 10.1007/978-3-642-21735-7_7 – volume: 11 start-page: 494 year: 2019 ident: 59785_CR9 publication-title: Cancers doi: 10.3390/cancers11040494 – year: 2019 ident: 59785_CR28 publication-title: BMC Bioinform. doi: 10.1186/s12859-019-3116-7 – ident: 59785_CR2 doi: 10.48175/IJARSCT-11138 – year: 2023 ident: 59785_CR21 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13569-6 – year: 2018 ident: 59785_CR20 publication-title: Vis. Comput. doi: 10.1007/s00371-017-1439-9 – ident: 59785_CR22 doi: 10.1007/978-3-030-72084-1_39 – year: 2017 ident: 59785_CR5 publication-title: IEEE Trans. Image Process. doi: 10.1109/tip.2017.2662206 – year: 2019 ident: 59785_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-019-53048-x – year: 2013 ident: 59785_CR4 publication-title: Int. J. Mach. Learn. Comput. doi: 10.7763/ijmlc.2013.v3.307 – ident: 59785_CR6 doi: 10.1109/iccv.2017.244 – year: 2018 ident: 59785_CR32 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – year: 2022 ident: 59785_CR10 publication-title: Proc. AAAI Conf. Artif. Intell. doi: 10.1609/aaai.v31i1.10777 |
| SSID | ssj0000529419 |
| Score | 2.4180362 |
| Snippet | Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem.... Abstract Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9143 |
| SubjectTerms | 639/705 692/699/1541 Accuracy Algorithms Autoencoder Classification Deep learning Denoising autoencoder Disease Disease detection Hepacivirus Hepatitis Hepatitis C Hepatitis C - diagnosis Humanities and Social Sciences Humans Machine Learning multidisciplinary Neural networks Neural Networks, Computer Predictions Public health Science Science (multidisciplinary) Warning systems |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiDeBgozEDaw6sZPYx1Jacao4gNSb5UwcdSWUrXa3lfbIP2fGzi67PC_cktiJrPE3nm_i8QzAmy5qbEITJMGHHJS2D9Jq1UmNqBsbdRxUn4pNtOfn9uLCfdop9cUxYTk9cBbcUaebOtoGbSBLVOFgu97ZYMnOxI7Y4cCrr2rdjjOVs3pXzpRuOiWjtD1akqXi02SVkcShbS3Xe5YoJez_Hcv8NVjypx3TZIjO7sO9iUGK4zzyB3Arjg_hTq4puX4E33YyZ8xHMR8EUTyRwzamlY0fBoHMmzlQKHfMpaQFW7Ve0P0s_W2g6w_Hp2KIKf-noJV8kU9CCCK74jJyPPZqthQn4mrBWz7c9Bi-nJ1-PvkopzoLEmtTriSaoDGQ34PO1oPBropDr9qgSZkHpUIwUfcObWwdaq1xMMy0iJaTNkeMlX4CB-N8jM9AWIMNEQ7EWPambYLDvg20LNT0tTqYroByI3OPUxJyroXx1afNcG19nidP8-TTPPl1AW-371zlFBx_7f2ep3Lbk9NnpwcEKj-Byv8LVAUcboDgJ51eev7xw-U2S1PA620zaSNvsYQxzq9TH5KasqYu4GnGzXYk2hL3JHe9ALuHqL2h7reMs8uU8Zs4mtbkyhfwbgO-H-P6syye_w9ZvIC7FWuNMrIqD-FgtbiOL-E23hC6Fq-S2n0HIHkytQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Investigation of the effectiveness of a classification method based on improved DAE feature extraction for hepatitis C prediction |
| URI | https://link.springer.com/article/10.1038/s41598-024-59785-y https://www.ncbi.nlm.nih.gov/pubmed/38644402 https://www.proquest.com/docview/3042698914 https://www.proquest.com/docview/3043780845 https://pubmed.ncbi.nlm.nih.gov/PMC11033254 https://doaj.org/article/b365e86c8a1242cf8bd98a8818eb882f |
| Volume | 14 |
| WOSCitedRecordID | wos001207003700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xFSQkxMf4CozKSLxBtCR2EucJbWMTPKyqEEjlKXIuzlYJJaXtkPrIf86dnXaUj73wYiWxkzjx-e7nu_MdwKvKSsxMZkIiH1qg5LUJtYyqUCLKTFtpm6h2ySby0UhPJsW4V7gterfKNU90jLrukHXkB7zs5mSHsXo7-xZy1ii2rvYpNHZgQMgmZpeus2S80bGwFUvFRb9XJpL6YEHyiveUJSokJK3TcLUlj1zY_r9hzT9dJn-zmzpxdHrvfz_kPtztgag49JTzAG7Ydg9u-dSUqz244_V5wm9Tegg_fgnI0bWiawQhR-G9QXqGyReNQIbj7H_kG_oM1YKFZS3ofOqUGHT87vBENNaFFRUkIOZ-g4UgDC0uLLt5L6cLcSxmc7YkcdUj-Hx68un4fdinbwgxVfEyRGUkGlpOYaHTRmGV2KaOciOJRzRRZIyysi5Q27xAKSU2igEcoX1iEhZtIh_Dbtu19ikIrTAjHINo41rlmSmwzg1xm5SelhpVBRCvB7HEPrY5p9j4Wjobu9SlH_iSBr50A1-uAni9uWfmI3tc2_qIaWPTkqNyuwvd_LzsJ3lZySy1OkNtCDUl2OiqLrTRhIlsRSuZJoD9NUmUPatYlFf0EMDLTTVNcrbcmNZ2l64N_bVIqzSAJ54QNz2RmiCtipIA9BaJbnV1u6adXrhA4gT9pExSevGbNTVf9evf_-LZ9Z_xHG4nPMEiFSbxPuwu55f2BdzE70Q38yHs5JPclXoIg6OT0fjj0ClChm7ucplTORh_OBt_-Qm8sEyA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBUQlxKO8AgWMBCeImsRO4hwQKn2oVcuqhyL15jqOQ1eqkmV3C9ojf4jfyIydbFkevfXAbTd2Nl7nm_E3nvEMwKvScpPpTIcIHzRQ8kqHkkdlyI3hmbTc1lHlik3kg4E8Pi4Ol-BHfxaGwip7negUddUa2iNfJ7Obih3G4v3oS0hVo8i72pfQ8LDYt7NvaLJN3u1t4ft9nSQ720ebu2FXVSA0qYinoRGaG40s3xQyrYUpE1tXUa45QreOIq2F5VVhpM0Lwzk3tSBegSQUsWuNpUQHqPKvCcosRqGCyeF8T4e8ZiIuurM5EZfrE1wf6QxbIkJk7jINZwvrnysT8Ddu-2eI5m9-Wrf87dz53ybuLtzuiDbb8JJxD5Zsswo3fOnN2Src8vuVzB_Dug_ff0k40jasrRkyY-ajXboFgS5qZsjcoPgq39FX4GZEBiqG34dukwY_b21ss9q6tKkMF8CxP0DC0EZgp5bC2KfDCdtkozF5yqjpAXy6kvl4CMtN29jHwKQwGfI0Y2xciTzThalyjdo0xV9LtSgDiHvQKNPlbqcSImfKxRBwqTzQFAJNOaCpWQBv5veMfOaSS3t_ICzOe1LWcXehHX9WnRJTJc9SKzMjNbLCxNSyrAqpJXI-W6KlVgew1kNQdapwoi7wF8DLeTMqMfJM6ca2564PzlokRRrAIw_8-Ui4RMouoiQAuSASC0NdbGmGpy5ROlJbzpMUH_y2l56Lcf17Lp5c_jdewM3do48H6mBvsP8UVhIS7kiESbwGy9PxuX0G181XxND4udMODE6uWqp-Ap-Dop8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tuoCQEI_lFVjASHCCqEnsJM4BoWW7FdVC1QNIy8k4jsNWQklpu6Ae-Vv8OmbipEt57G0P3NrYaVznm_E39jwAnuSWm0Qn2kf4oIGSFtqXPMh9bgxPpOW2DIqm2EQ6Hsujo2yyBT-6WBhyq-x0YqOoi9rQHnmfzG4qdhiKftm6RUwGw5ezLz5VkKKT1q6choPIoV19Q_Nt8WI0wHf9NIqGB-_2X_tthQHfxCJc-kZobjQyfpPJuBQmj2xZBKnmCOMyCLQWlheZkTbNDOfclII4BhJSxLE1lpIeoPrfRkouoh5sT0ZvJx_WOzx0hibCrI3UCbjsL3C1pIi2SPjI42XsrzZWw6ZowN-Y7p8Om7-d2jaL4fDa_zyN1-FqS8HZnpOZG7Blqx246IpyrnbgitvJZC5A6yZ8_yUVSV2xumTImZnzg2mXCrqomSFDhDyvXEdXm5sRTSgYfp822zf4ebB3wErbJFRlODFzF1rC0Hpgx5Yc3JfTBdtnszmdoVHTLXh_LvNxG3pVXdm7wKQwCTI4Y2xYiDTRmSlSjXo2xl-Ltcg9CDsAKdNmdafiIp9V413ApXKgUwg61YBOrTx4tr5n5nKanNn7FeFy3ZPykTcX6vkn1ao3lfMktjIxUiNfjEwp8yKTWiIbtDnacKUHux0cVaskF-oUix48XjejeqMzK13Z-qTpg7MWSBF7cMcJwXokXCKZF0HkgdwQj42hbrZU0-MmhTqSXs6jGB_8vJOk03H9ey7unf03HsElFCb1ZjQ-vA-XI5LzQPhRuAu95fzEPoAL5itCaP6wVRUMPp63WP0ERBus6A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+effectiveness+of+a+classification+method+based+on+improved+DAE+feature+extraction+for+hepatitis+C+prediction&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Lin&rft.au=Wang%2C+Jixin&rft.au=Chang%2C+Rui&rft.au=Wang%2C+Weigang&rft.date=2024-04-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=9143&rft_id=info:doi/10.1038%2Fs41598-024-59785-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |