Investigation of the effectiveness of a classification method based on improved DAE feature extraction for hepatitis C prediction

Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 14; číslo 1; s. 9143 - 12
Hlavní autori: Zhang, Lin, Wang, Jixin, Chang, Rui, Wang, Weigang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 21.04.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies.
AbstractList Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies.
Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies.Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies.
Abstract Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem. Due to the rapid development of deep learning, it has become a common practice to apply deep learning to the healthcare industry to improve the effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the input layer of the encoder. However, due to the presence of these features, encoders that directly add random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper features. In this study, the problem of data information loss in traditional denoising autoencoding is addressed by incorporating the concept of residual neural networks into an enhanced denoising autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the open-source Hepatitis C dataset and the results showed significant results in feature extraction. While existing baseline machine learning methods have less than 90% accuracy and integrated algorithms and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results demonstrate that IDAE can effectively capture key disease features and improve the accuracy of disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in the detection and management of hepatitis C and similar diseases, especially in the development of early warning systems, progression prediction and personalised treatment strategies.
ArticleNumber 9143
Author Wang, Jixin
Chang, Rui
Zhang, Lin
Wang, Weigang
Author_xml – sequence: 1
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine
– sequence: 2
  givenname: Jixin
  surname: Wang
  fullname: Wang, Jixin
  email: wangjx_zjgsu@163.com
  organization: Department of Statistics and Mathematics, Zhejiang Gongshang University
– sequence: 3
  givenname: Rui
  surname: Chang
  fullname: Chang, Rui
  organization: Department of ICU, Jining No.1 People’s Hospital
– sequence: 4
  givenname: Weigang
  surname: Wang
  fullname: Wang, Weigang
  email: wangweigang@zjgsu.edu.cn
  organization: Department of Statistics and Mathematics, Zhejiang Gongshang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38644402$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_oH-CAInHhEvBnYp9QtbSwUiUucLYcZ7zrVRIvtrPqHvnneDcttD3UF4897_to7Jnz4mT0IxTFO4w-YUTF58gwl6JChFVcNoJX-1fFGUGMV4QScvIoPi0uY9ygvDiRDMs3xSkVNWMMkbPiz3LcQUxupZPzY-ltmdZQgrVgktvBCDEeLnVpeh2js87MwgHS2ndlqyN0ZT67YRv8Lsdfr65LCzpNIWPuUtDmqLc-lGvYZnNysVyU2wCdO6beFq-t7iNc3u8Xxa-b65-L79Xtj2_LxdVtZTjDqTJMU6NlXRspuGWmJWA71GjaiMYipDUD2kkjoJGGUmosQwjzpiEIN2CA0ItiOXM7rzdqG9ygw1557dTxwoeV0iE504Nqac1B1EZoTBgxVrSdFFoILKAVgtjM-jKztlM7QGdgzA_tn0CfZka3Viu_Uzj3jhLOMuHjPSH431PugBpcNND3egQ_RUURyy9DgvEs_fBMuvFTGPNfHVSklkLiA_D945L-1fLQ6iwQs8AEH2MAq4xLx2bmCl2vMFKHwVLzYKk8WOo4WGqfreSZ9YH-oonOppjF4wrC_7JfcP0F2Cji2w
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_109897
Cites_doi 10.1016/j.imed.2021.12.003
10.1038/s41598-017-17842-9
10.1109/access.2022.3202295
10.1186/s12859-019-3116-7
10.1613/jair.953
10.1016/j.sigpro.2016.07.028
10.3390/diagnostics13030348
10.1609/aaai.v31i1.10777
10.1109/tmi.2017.2715284
10.4258/hir.2019.25.3.173
10.1016/j.asoc.2019.106060
10.3390/s23094178
10.1007/s11042-022-13569-6
10.1007/s00371-017-1439-9
10.3390/cancers11040494
10.1109/tip.2018.2839891
10.1038/s41598-019-53048-x
10.1109/lgrs.2018.2802944
10.1109/tip.2017.2662206
10.3390/livers1040023
10.7763/ijmlc.2013.v3.307
10.1109/cvpr.2016.90
10.1007/978-3-319-24574-4_28
10.21037/qims-19-1090
10.30699/fhi.v10i1.274
10.1007/978-3-642-21735-7_7
10.48175/IJARSCT-11138
10.1007/978-3-030-72084-1_39
10.1109/iccv.2017.244
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-59785-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Public Health
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_b365e86c8a1242cf8bd98a8818eb882f
PMC11033254
38644402
10_1038_s41598_024_59785_y
Genre Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Traditional Chinese Medicine Science and Technology Plan Project
  grantid: 2022ZB268
– fundername: National Natural Science Foundation of China
  grantid: 72273132
– fundername: Hangzhou Medical and Health Technology Project
  grantid: 20220919Y031
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c541t-c4a3ca966c985f4cb2efd07a3787f00aa4e3d9c8e79c333cf40015772017ece23
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001207003700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:41:57 EDT 2025
Tue Nov 04 02:05:45 EST 2025
Sun Nov 09 05:24:35 EST 2025
Mon Oct 06 17:52:07 EDT 2025
Mon Jul 21 06:02:57 EDT 2025
Sat Nov 29 02:12:53 EST 2025
Tue Nov 18 21:30:30 EST 2025
Fri Feb 21 02:40:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hepatitis C
Autoencoder
Denoising autoencoder
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-c4a3ca966c985f4cb2efd07a3787f00aa4e3d9c8e79c333cf40015772017ece23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3042698914?pq-origsite=%requestingapplication%
PMID 38644402
PQID 3042698914
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_b365e86c8a1242cf8bd98a8818eb882f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11033254
proquest_miscellaneous_3043780845
proquest_journals_3042698914
pubmed_primary_38644402
crossref_citationtrail_10_1038_s41598_024_59785_y
crossref_primary_10_1038_s41598_024_59785_y
springer_journals_10_1038_s41598_024_59785_y
PublicationCentury 2000
PublicationDate 2024-04-21
PublicationDateYYYYMMDD 2024-04-21
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Barakat, Barakat, Ahmed (CR12) 2019; 25
Zhu, Cheng, Zhang, Wu, Shao (CR25) 2020; 88
Chen (CR7) 2017
CR19
CR17
Khmag, Al Haddad, Ramlee, Kamarudin, Malallah (CR20) 2018
Chawla, Bowyer, Hall, Kegelmeyer (CR32) 2018
Avcı, Karakaya (CR1) 2023; 13
Xu (CR28) 2019
CR14
CR11
Im, Ahn, Memisevic, Bengio (CR10) 2022
CR31
CR30
Lu, Wang, Qin, Ma (CR24) 2017; 130
Zhang, Liu, Wang (CR18) 2018
Gu, Zhao (CR27) 2019
CR2
Zhang, Zuo, Chen, Meng, Zhang (CR5) 2017
CR6
Khmag (CR21) 2023
Zhang, Zuo, Zhang (CR8) 2018
Liu, Hu (CR9) 2019; 11
CR29
Rahman, Davis (CR4) 2013
CR23
CR22
Guan (CR26) 2018
An, Rahman, Zhou, Kang (CR3) 2023
Mostafa, Hasan, Williamson, Khan (CR13) 2021; 1
Safdari, Deghatipour, Gholamzadeh, Maghooli (CR15) 2022
Li, Chiu, Kuo (CR16) 2022; 10
MM Rahman (59785_CR4) 2013
59785_CR23
H Avcı (59785_CR1) 2023; 13
59785_CR22
F Mostafa (59785_CR13) 2021; 1
R Guan (59785_CR26) 2018
R Safdari (59785_CR15) 2022
NV Chawla (59785_CR32) 2018
K Zhang (59785_CR5) 2017
59785_CR6
T Gu (59785_CR27) 2019
59785_CR14
T-HS Li (59785_CR16) 2022; 10
DI Im (59785_CR10) 2022
59785_CR17
Z Zhang (59785_CR18) 2018
59785_CR2
59785_CR19
A Khmag (59785_CR20) 2018
J Xu (59785_CR28) 2019
59785_CR30
K Zhang (59785_CR8) 2018
59785_CR31
59785_CR11
NH Barakat (59785_CR12) 2019; 25
A Khmag (59785_CR21) 2023
C Lu (59785_CR24) 2017; 130
H Zhu (59785_CR25) 2020; 88
Q Liu (59785_CR9) 2019; 11
H Chen (59785_CR7) 2017
Q An (59785_CR3) 2023
59785_CR29
References_xml – year: 2022
  ident: CR15
  article-title: Applying data mining techniques to classify patients with suspected hepatitis C virus infection
  publication-title: Intell. Med.
  doi: 10.1016/j.imed.2021.12.003
– ident: CR22
– year: 2018
  ident: CR26
  article-title: Multi-label deep learning for gene function annotation in cancer pathways
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17842-9
– volume: 10
  start-page: 91045
  year: 2022
  end-page: 91058
  ident: CR16
  article-title: Hepatitis C virus detection model by using random forest, logistic-regression and ABC algorithm
  publication-title: IEEE Access
  doi: 10.1109/access.2022.3202295
– year: 2019
  ident: CR28
  article-title: A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-019-3116-7
– year: 2018
  ident: CR32
  article-title: Smote: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– ident: CR14
– volume: 130
  start-page: 377
  year: 2017
  end-page: 388
  ident: CR24
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.07.028
– ident: CR2
– volume: 13
  start-page: 348
  year: 2023
  ident: CR1
  article-title: A novel medical image enhancement algorithm for breast cancer detection on mammography images using machine learning
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13030348
– ident: CR30
– year: 2022
  ident: CR10
  article-title: Denoising criterion for variational auto-encoding framework
  publication-title: Proc. AAAI Conf. Artif. Intell.
  doi: 10.1609/aaai.v31i1.10777
– year: 2017
  ident: CR7
  article-title: Low-dose CT with a residual encoder-decoder convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2017.2715284
– ident: CR6
– ident: CR29
– volume: 25
  start-page: 173
  year: 2019
  ident: CR12
  article-title: Prediction and staging of hepatic fibrosis in children with hepatitis C virus: A machine learning approach
  publication-title: Healthc. Inform. Res.
  doi: 10.4258/hir.2019.25.3.173
– ident: CR23
– ident: CR19
– volume: 88
  start-page: 106060
  year: 2020
  ident: CR25
  article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106060
– year: 2023
  ident: CR3
  article-title: A comprehensive review on machine learning in healthcare industry: Classification, restrictions, opportunities and challenges
  publication-title: Sensors
  doi: 10.3390/s23094178
– year: 2023
  ident: CR21
  article-title: Additive Gaussian noise removal based on generative adversarial network model and semi-soft thresholding approach
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13569-6
– year: 2018
  ident: CR20
  article-title: Natural image noise removal using nonlocal means and hidden Markov models in transform domain
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1439-9
– ident: CR17
– ident: CR31
– ident: CR11
– volume: 11
  start-page: 494
  year: 2019
  ident: CR9
  article-title: Association analysis of deep genomic features extracted by denoising autoencoders in breast cancer
  publication-title: Cancers
  doi: 10.3390/cancers11040494
– year: 2018
  ident: CR8
  article-title: Ffdnet: Toward a fast and flexible solution for CNN-based image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2018.2839891
– year: 2019
  ident: CR27
  article-title: Integrating multi-platform genomic datasets for kidney renal clear cell carcinoma subtyping using stacked denoising autoencoders
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53048-x
– year: 2018
  ident: CR18
  article-title: Road extraction by deep residual u-net
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/lgrs.2018.2802944
– year: 2017
  ident: CR5
  article-title: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2017.2662206
– volume: 1
  start-page: 294
  year: 2021
  end-page: 312
  ident: CR13
  article-title: Statistical machine learning approaches to liver disease prediction
  publication-title: Livers
  doi: 10.3390/livers1040023
– year: 2013
  ident: CR4
  article-title: Addressing the class imbalance problem in medical datasets
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.7763/ijmlc.2013.v3.307
– year: 2022
  ident: 59785_CR15
  publication-title: Intell. Med.
  doi: 10.1016/j.imed.2021.12.003
– volume: 25
  start-page: 173
  year: 2019
  ident: 59785_CR12
  publication-title: Healthc. Inform. Res.
  doi: 10.4258/hir.2019.25.3.173
– year: 2018
  ident: 59785_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17842-9
– year: 2018
  ident: 59785_CR8
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2018.2839891
– volume: 13
  start-page: 348
  year: 2023
  ident: 59785_CR1
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13030348
– year: 2018
  ident: 59785_CR18
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/lgrs.2018.2802944
– ident: 59785_CR29
– ident: 59785_CR23
– ident: 59785_CR11
  doi: 10.1109/cvpr.2016.90
– ident: 59785_CR17
  doi: 10.1007/978-3-319-24574-4_28
– year: 2023
  ident: 59785_CR3
  publication-title: Sensors
  doi: 10.3390/s23094178
– year: 2017
  ident: 59785_CR7
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2017.2715284
– volume: 88
  start-page: 106060
  year: 2020
  ident: 59785_CR25
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106060
– volume: 10
  start-page: 91045
  year: 2022
  ident: 59785_CR16
  publication-title: IEEE Access
  doi: 10.1109/access.2022.3202295
– ident: 59785_CR19
  doi: 10.21037/qims-19-1090
– volume: 1
  start-page: 294
  year: 2021
  ident: 59785_CR13
  publication-title: Livers
  doi: 10.3390/livers1040023
– ident: 59785_CR14
  doi: 10.30699/fhi.v10i1.274
– volume: 130
  start-page: 377
  year: 2017
  ident: 59785_CR24
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.07.028
– ident: 59785_CR31
– ident: 59785_CR30
  doi: 10.1007/978-3-642-21735-7_7
– volume: 11
  start-page: 494
  year: 2019
  ident: 59785_CR9
  publication-title: Cancers
  doi: 10.3390/cancers11040494
– year: 2019
  ident: 59785_CR28
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-019-3116-7
– ident: 59785_CR2
  doi: 10.48175/IJARSCT-11138
– year: 2023
  ident: 59785_CR21
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13569-6
– year: 2018
  ident: 59785_CR20
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1439-9
– ident: 59785_CR22
  doi: 10.1007/978-3-030-72084-1_39
– year: 2017
  ident: 59785_CR5
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2017.2662206
– year: 2019
  ident: 59785_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53048-x
– year: 2013
  ident: 59785_CR4
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.7763/ijmlc.2013.v3.307
– ident: 59785_CR6
  doi: 10.1109/iccv.2017.244
– year: 2018
  ident: 59785_CR32
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– year: 2022
  ident: 59785_CR10
  publication-title: Proc. AAAI Conf. Artif. Intell.
  doi: 10.1609/aaai.v31i1.10777
SSID ssj0000529419
Score 2.4180362
Snippet Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health problem....
Abstract Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, is a major socio-economic and public health...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9143
SubjectTerms 639/705
692/699/1541
Accuracy
Algorithms
Autoencoder
Classification
Deep learning
Denoising autoencoder
Disease
Disease detection
Hepacivirus
Hepatitis
Hepatitis C
Hepatitis C - diagnosis
Humanities and Social Sciences
Humans
Machine Learning
multidisciplinary
Neural networks
Neural Networks, Computer
Predictions
Public health
Science
Science (multidisciplinary)
Warning systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiDeBgozEDaw6sZPYx1Jacao4gNSb5UwcdSWUrXa3lfbIP2fGzi67PC_cktiJrPE3nm_i8QzAmy5qbEITJMGHHJS2D9Jq1UmNqBsbdRxUn4pNtOfn9uLCfdop9cUxYTk9cBbcUaebOtoGbSBLVOFgu97ZYMnOxI7Y4cCrr2rdjjOVs3pXzpRuOiWjtD1akqXi02SVkcShbS3Xe5YoJez_Hcv8NVjypx3TZIjO7sO9iUGK4zzyB3Arjg_hTq4puX4E33YyZ8xHMR8EUTyRwzamlY0fBoHMmzlQKHfMpaQFW7Ve0P0s_W2g6w_Hp2KIKf-noJV8kU9CCCK74jJyPPZqthQn4mrBWz7c9Bi-nJ1-PvkopzoLEmtTriSaoDGQ34PO1oPBropDr9qgSZkHpUIwUfcObWwdaq1xMMy0iJaTNkeMlX4CB-N8jM9AWIMNEQ7EWPambYLDvg20LNT0tTqYroByI3OPUxJyroXx1afNcG19nidP8-TTPPl1AW-371zlFBx_7f2ep3Lbk9NnpwcEKj-Byv8LVAUcboDgJ51eev7xw-U2S1PA620zaSNvsYQxzq9TH5KasqYu4GnGzXYk2hL3JHe9ALuHqL2h7reMs8uU8Zs4mtbkyhfwbgO-H-P6syye_w9ZvIC7FWuNMrIqD-FgtbiOL-E23hC6Fq-S2n0HIHkytQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Investigation of the effectiveness of a classification method based on improved DAE feature extraction for hepatitis C prediction
URI https://link.springer.com/article/10.1038/s41598-024-59785-y
https://www.ncbi.nlm.nih.gov/pubmed/38644402
https://www.proquest.com/docview/3042698914
https://www.proquest.com/docview/3043780845
https://pubmed.ncbi.nlm.nih.gov/PMC11033254
https://doaj.org/article/b365e86c8a1242cf8bd98a8818eb882f
Volume 14
WOSCitedRecordID wos001207003700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xFSQkxMf4CozKSLxBtCR2EucJbWMTPKyqEEjlKXIuzlYJJaXtkPrIf86dnXaUj73wYiWxkzjx-e7nu_MdwKvKSsxMZkIiH1qg5LUJtYyqUCLKTFtpm6h2ySby0UhPJsW4V7gterfKNU90jLrukHXkB7zs5mSHsXo7-xZy1ii2rvYpNHZgQMgmZpeus2S80bGwFUvFRb9XJpL6YEHyiveUJSokJK3TcLUlj1zY_r9hzT9dJn-zmzpxdHrvfz_kPtztgag49JTzAG7Ydg9u-dSUqz244_V5wm9Tegg_fgnI0bWiawQhR-G9QXqGyReNQIbj7H_kG_oM1YKFZS3ofOqUGHT87vBENNaFFRUkIOZ-g4UgDC0uLLt5L6cLcSxmc7YkcdUj-Hx68un4fdinbwgxVfEyRGUkGlpOYaHTRmGV2KaOciOJRzRRZIyysi5Q27xAKSU2igEcoX1iEhZtIh_Dbtu19ikIrTAjHINo41rlmSmwzg1xm5SelhpVBRCvB7HEPrY5p9j4Wjobu9SlH_iSBr50A1-uAni9uWfmI3tc2_qIaWPTkqNyuwvd_LzsJ3lZySy1OkNtCDUl2OiqLrTRhIlsRSuZJoD9NUmUPatYlFf0EMDLTTVNcrbcmNZ2l64N_bVIqzSAJ54QNz2RmiCtipIA9BaJbnV1u6adXrhA4gT9pExSevGbNTVf9evf_-LZ9Z_xHG4nPMEiFSbxPuwu55f2BdzE70Q38yHs5JPclXoIg6OT0fjj0ClChm7ucplTORh_OBt_-Qm8sEyA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBUQlxKO8AgWMBCeImsRO4hwQKn2oVcuqhyL15jqOQ1eqkmV3C9ojf4jfyIydbFkevfXAbTd2Nl7nm_E3nvEMwKvScpPpTIcIHzRQ8kqHkkdlyI3hmbTc1lHlik3kg4E8Pi4Ol-BHfxaGwip7negUddUa2iNfJ7Obih3G4v3oS0hVo8i72pfQ8LDYt7NvaLJN3u1t4ft9nSQ720ebu2FXVSA0qYinoRGaG40s3xQyrYUpE1tXUa45QreOIq2F5VVhpM0Lwzk3tSBegSQUsWuNpUQHqPKvCcosRqGCyeF8T4e8ZiIuurM5EZfrE1wf6QxbIkJk7jINZwvrnysT8Ddu-2eI5m9-Wrf87dz53ybuLtzuiDbb8JJxD5Zsswo3fOnN2Src8vuVzB_Dug_ff0k40jasrRkyY-ajXboFgS5qZsjcoPgq39FX4GZEBiqG34dukwY_b21ss9q6tKkMF8CxP0DC0EZgp5bC2KfDCdtkozF5yqjpAXy6kvl4CMtN29jHwKQwGfI0Y2xciTzThalyjdo0xV9LtSgDiHvQKNPlbqcSImfKxRBwqTzQFAJNOaCpWQBv5veMfOaSS3t_ICzOe1LWcXehHX9WnRJTJc9SKzMjNbLCxNSyrAqpJXI-W6KlVgew1kNQdapwoi7wF8DLeTMqMfJM6ca2564PzlokRRrAIw_8-Ui4RMouoiQAuSASC0NdbGmGpy5ROlJbzpMUH_y2l56Lcf17Lp5c_jdewM3do48H6mBvsP8UVhIS7kiESbwGy9PxuX0G181XxND4udMODE6uWqp-Ap-Dop8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tuoCQEI_lFVjASHCCqEnsJM4BoWW7FdVC1QNIy8k4jsNWQklpu6Ae-Vv8OmbipEt57G0P3NrYaVznm_E39jwAnuSWm0Qn2kf4oIGSFtqXPMh9bgxPpOW2DIqm2EQ6Hsujo2yyBT-6WBhyq-x0YqOoi9rQHnmfzG4qdhiKftm6RUwGw5ezLz5VkKKT1q6choPIoV19Q_Nt8WI0wHf9NIqGB-_2X_tthQHfxCJc-kZobjQyfpPJuBQmj2xZBKnmCOMyCLQWlheZkTbNDOfclII4BhJSxLE1lpIeoPrfRkouoh5sT0ZvJx_WOzx0hibCrI3UCbjsL3C1pIi2SPjI42XsrzZWw6ZowN-Y7p8Om7-d2jaL4fDa_zyN1-FqS8HZnpOZG7Blqx246IpyrnbgitvJZC5A6yZ8_yUVSV2xumTImZnzg2mXCrqomSFDhDyvXEdXm5sRTSgYfp822zf4ebB3wErbJFRlODFzF1rC0Hpgx5Yc3JfTBdtnszmdoVHTLXh_LvNxG3pVXdm7wKQwCTI4Y2xYiDTRmSlSjXo2xl-Ltcg9CDsAKdNmdafiIp9V413ApXKgUwg61YBOrTx4tr5n5nKanNn7FeFy3ZPykTcX6vkn1ao3lfMktjIxUiNfjEwp8yKTWiIbtDnacKUHux0cVaskF-oUix48XjejeqMzK13Z-qTpg7MWSBF7cMcJwXokXCKZF0HkgdwQj42hbrZU0-MmhTqSXs6jGB_8vJOk03H9ey7unf03HsElFCb1ZjQ-vA-XI5LzQPhRuAu95fzEPoAL5itCaP6wVRUMPp63WP0ERBus6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+effectiveness+of+a+classification+method+based+on+improved+DAE+feature+extraction+for+hepatitis+C+prediction&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Lin&rft.au=Wang%2C+Jixin&rft.au=Chang%2C+Rui&rft.au=Wang%2C+Weigang&rft.date=2024-04-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=9143&rft_id=info:doi/10.1038%2Fs41598-024-59785-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon