Molecular dynamics simulation on regulation of liquid–liquid phase separation of repetitive peptides
Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation o...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 14; číslo 1; s. 13382 - 10 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
11.06.2024
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems. |
|---|---|
| AbstractList | Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems. Abstract Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems. Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems. Understanding the intricate interactions governing protein and peptide behavior in liquid-liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems.Understanding the intricate interactions governing protein and peptide behavior in liquid-liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems. |
| ArticleNumber | 13382 |
| Author | Yang, Xiaojun Yang, Guangcan Wang, Yanwei |
| Author_xml | – sequence: 1 givenname: Xiaojun surname: Yang fullname: Yang, Xiaojun organization: Department of Physics, Wenzhou University – sequence: 2 givenname: Yanwei surname: Wang fullname: Wang, Yanwei email: wangyw@wzu.edu.cn organization: Department of Physics, Wenzhou University – sequence: 3 givenname: Guangcan surname: Yang fullname: Yang, Guangcan email: yanggc@wzu.edu.cn organization: Department of Physics, Wenzhou University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38862770$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAUhi1URMvQF2CBIrFhE_AttrNCqOJSqYgNrC3HPp56lIlTO6nUHe_AG_IkeCbt0HZRy5KP7e__dexzXqKjIQ6A0GuC3xPM1IfMSdOqGlNeC86orOUzdEIxb2rKKD26Fx-j05w3uIyGtpy0L9AxU0pQKfEJ8t9jD3buTarczWC2weYqh205mEIcqjITrA87X_Xhag7u7-8_S1CNlyZDlWE06cAkGGEKU7iGaoRxCg7yK_Tcmz7D6e26Qr--fP559q2--PH1_OzTRW0bTqbacsaUZBKU8B46AaIFxZxjslHMO64Ua7HDnYHCEEMUYc4S1jXEekWtZCt0vvi6aDZ6TGFr0o2OJuj9QUxrbdIUbA9aYgvS8-LWGG5N13bGMNo5Ir1k0O28Pi5e49xtwVkYpmT6B6YPb4ZwqdfxWhNChMSlSiv07tYhxasZ8qS3IVvoezNAnLNmWMiWUKxEQd8-QjdxTkP5qx0lBG4Ubwr15n5Kh1zu6lkAtQA2xZwTeG3DtC9MyTD0mmC96x69dI8u3aP33aN3z6WPpHfuT4rYIsoFHtaQ_qf9hOofM0_aUA |
| CitedBy_id | crossref_primary_10_1002_adma_202414703 |
| Cites_doi | 10.1038/ncomms9088 10.1016/j.neuron.2011.09.010 10.1016/j.csbj.2021.06.051 10.19185/matters.201702000010 10.15252/embj.201695957 10.1002/pro.4094 10.1038/s41467-021-21181-9 10.1016/j.cell.2015.07.047 10.1126/science.1232927 10.1007/s00401-013-1189-3 10.1016/j.cell.2017.02.007 10.1371/journal.pcbi.1005941 10.1021/acs.jpcb.0c11479 10.1016/j.cell.2018.12.035 10.1152/ajpcell.00372.2021 10.1021/acs.jctc.0c01064 10.1073/pnas.1013343108 10.1529/biophysj.107.116152 10.1016/j.bpj.2021.01.034 10.3390/molecules28186707 10.1021/jacsau.2c00414 10.1039/C8CP05095C 10.1016/j.neuron.2011.09.011 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-64327-7 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_70ce7f4d0b5a4cab9baa32bd17f73eb7 PMC11167010 38862770 10_1038_s41598_024_64327_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NSFC grantid: 12074289 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-c4338737e86ffeb6e69e83dd37583fd488390d0bae37e1a1813dc13b51cf82c73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245305300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:27 EDT 2025 Tue Nov 04 02:05:40 EST 2025 Fri Sep 05 06:42:53 EDT 2025 Tue Oct 07 08:11:18 EDT 2025 Mon Jul 21 05:58:44 EDT 2025 Tue Nov 18 20:44:41 EST 2025 Sat Nov 29 02:13:17 EST 2025 Fri Feb 21 02:39:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Liquid–liquid phase separation Molecular dynamics Polypeptides Hydrophobicity GENESIS Electrostatic interaction |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-c4338737e86ffeb6e69e83dd37583fd488390d0bae37e1a1813dc13b51cf82c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/70ce7f4d0b5a4cab9baa32bd17f73eb7 |
| PMID | 38862770 |
| PQID | 3066605845 |
| PQPubID | 2041939 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_70ce7f4d0b5a4cab9baa32bd17f73eb7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11167010 proquest_miscellaneous_3067912086 proquest_journals_3066605845 pubmed_primary_38862770 crossref_citationtrail_10_1038_s41598_024_64327_7 crossref_primary_10_1038_s41598_024_64327_7 springer_journals_10_1038_s41598_024_64327_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-11 |
| PublicationDateYYYYMMDD | 2024-06-11 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Regy, Thompson, Kim, Mittal (CR20) 2021; 30 Hnisz, Shrinivas, Young, Chakraborty, Sharp (CR3) 2017; 169 Tesei, Schulze, Crehuet, Lindorff-Larsen (CR19) 2021; 11 Dannenhoffer-Lafage, Best (CR21) 2021; 125 Wang, Xiang, Chen, Yang (CR16) 2023; 28 Mori, Arzberger, Grässer, Gijselinck, May, Rentzsch, Weng, Schludi, van der Zee, Cruts (CR15) 2013; 126 Zhang, Xue, Li, Shi, Cao, Wang, Li (CR5) 2022; 3 Krainer, Welsh, Joseph, Espinosa, Wittmann, de Csilléry, Sridhar, Toprakcioglu, Gudiškytė, Czekalska (CR6) 2021 Altmeyer, Neelsen, Teloni, Pozdnyakova, Pellegrino, Grøfte, Rask, Streicher, Jungmichel, Nielsen (CR1) 2015 Jiang, Sun, Yang, Yuan, Velkov, Wang, Li (CR7) 2021; 19 DeJesus-Hernandez, Mackenzie, Boeve, Boxer, Baker, Rutherford, Nicholson, Finch, Flynn, Adamson (CR11) 2011; 72 Mateju, Franzmann, Patel, Kopach, Boczek, Maharana, Lee, Carra, Hyman, Alberti (CR4) 2017; 36 Dignon, Zheng, Kim, Best, Mittal (CR17) 2018; 14 Dumetz, Chockla, Kaler, Lenhoff (CR22) 2008; 94 Kroschwald, Maharana, Simon (CR18) 2017 Kanekura, Hayamizu, Kuroda (CR24) 2022; 322 Benayad, von Bülow, Stelzl, Hummer (CR8) 2020; 17 Zu, Gibbens, Doty, Gomes-Pereira, Huguet, Stone, Margolis, Peterson, Markowski, Ingram (CR13) 2011; 108 Das, Amin, Lin, Chan (CR9) 2018; 20 Patel, Lee, Jawerth, Maharana, Jahnel, Hein, Stoynov, Mahamid, Saha, Franzmann (CR2) 2015; 162 Alberti, Gladfelter, Mittag (CR23) 2019; 176 Renton, Majounie, Waite, Simón-Sánchez, Rollinson, Gibbs, Schymick, Laaksovirta, Van Swieten, Myllykangas (CR12) 2011; 72 Perdikari, Jovic, Dignon, Kim, Fawzi, Mittal (CR10) 2021; 120 Mori, Weng, Arzberger, May, Rentzsch, Kremmer, Schmid, Kretzschmar, Cruts, Van Broeckhoven (CR14) 2013; 339 GL Dignon (64327_CR17) 2018; 14 K Kanekura (64327_CR24) 2022; 322 Y Wang (64327_CR16) 2023; 28 G Tesei (64327_CR19) 2021; 11 TM Perdikari (64327_CR10) 2021; 120 M DeJesus-Hernandez (64327_CR11) 2011; 72 AE Renton (64327_CR12) 2011; 72 G Krainer (64327_CR6) 2021 T Zu (64327_CR13) 2011; 108 T Dannenhoffer-Lafage (64327_CR21) 2021; 125 A Patel (64327_CR2) 2015; 162 AC Dumetz (64327_CR22) 2008; 94 M Zhang (64327_CR5) 2022; 3 K Mori (64327_CR14) 2013; 339 S Kroschwald (64327_CR18) 2017 M Altmeyer (64327_CR1) 2015 D Mateju (64327_CR4) 2017; 36 X Jiang (64327_CR7) 2021; 19 D Hnisz (64327_CR3) 2017; 169 S Das (64327_CR9) 2018; 20 RM Regy (64327_CR20) 2021; 30 S Alberti (64327_CR23) 2019; 176 Z Benayad (64327_CR8) 2020; 17 K Mori (64327_CR15) 2013; 126 |
| References_xml | – year: 2015 ident: CR1 article-title: Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose) publication-title: Nat. Commun. doi: 10.1038/ncomms9088 – volume: 72 start-page: 257 year: 2011 end-page: 268 ident: CR12 article-title: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD publication-title: Neuron doi: 10.1016/j.neuron.2011.09.010 – volume: 19 start-page: 3885 year: 2021 end-page: 3891 ident: CR7 article-title: Coarse-grained simulations uncover Gram-negative bacterial defense against polymyxins by the outer membrane publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.06.051 – year: 2017 ident: CR18 article-title: Hexanediol: A chemical probe to investigate the material properties of membrane-less compartments publication-title: Matters. doi: 10.19185/matters.201702000010 – volume: 36 start-page: 1669 year: 2017 end-page: 1687 ident: CR4 article-title: An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function publication-title: EMBO J. doi: 10.15252/embj.201695957 – volume: 30 start-page: 1371 year: 2021 end-page: 1379 ident: CR20 article-title: Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins publication-title: Protein Sci. doi: 10.1002/pro.4094 – year: 2021 ident: CR6 article-title: Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions publication-title: Nat. Commun. doi: 10.1038/s41467-021-21181-9 – volume: 162 start-page: 1066 year: 2015 end-page: 1077 ident: CR2 article-title: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 339 start-page: 1335 year: 2013 end-page: 1338 ident: CR14 article-title: The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS publication-title: Science doi: 10.1126/science.1232927 – volume: 126 start-page: 881 year: 2013 end-page: 893 ident: CR15 article-title: Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins publication-title: Acta Neuropathol. doi: 10.1007/s00401-013-1189-3 – volume: 169 start-page: 13 year: 2017 end-page: 23 ident: CR3 article-title: A phase separation model for transcriptional control publication-title: Cell doi: 10.1016/j.cell.2017.02.007 – volume: 14 start-page: e1005941 year: 2018 ident: CR17 article-title: Sequence determinants of protein phase behavior from a coarse-grained model publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005941 – volume: 125 start-page: 4046 year: 2021 end-page: 4056 ident: CR21 article-title: A data-driven hydrophobicity scale for predicting liquid–liquid phase separation of proteins publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c11479 – volume: 176 start-page: 419 year: 2019 end-page: 434 ident: CR23 article-title: Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates publication-title: Cell doi: 10.1016/j.cell.2018.12.035 – volume: 322 start-page: C197 year: 2022 end-page: C204 ident: CR24 article-title: Order controls disordered droplets: Structure–function relationships in C9ORF72-derived poly (PR) publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00372.2021 – volume: 17 start-page: 525 year: 2020 end-page: 537 ident: CR8 article-title: Simulation of FUS protein condensates with an adapted coarse-grained model publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c01064 – volume: 108 start-page: 260 year: 2011 end-page: 265 ident: CR13 article-title: Non-ATG-initiated translation directed by microsatellite expansions publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1013343108 – volume: 94 start-page: 570 year: 2008 end-page: 583 ident: CR22 article-title: Protein phase behavior in aqueous solutions: Crystallization, liquid–liquid phase separation, gels, and aggregates publication-title: Biophys. J. doi: 10.1529/biophysj.107.116152 – volume: 120 start-page: 1187 year: 2021 end-page: 1197 ident: CR10 article-title: A predictive coarse-grained model for position-specific effects of post-translational modifications publication-title: Biophys. J. doi: 10.1016/j.bpj.2021.01.034 – volume: 28 start-page: 6707 year: 2023 ident: CR16 article-title: Comprehensive regulation of liquid–liquid phase separation of polypeptides publication-title: Molecules doi: 10.3390/molecules28186707 – volume: 3 start-page: 93 year: 2022 end-page: 104 ident: CR5 article-title: Sequence tendency for the interaction between low-complexity intrinsically disordered proteins publication-title: JACS Au doi: 10.1021/jacsau.2c00414 – volume: 11 start-page: 1 year: 2021 end-page: 9 ident: CR19 article-title: Accurate model of liquid–liquid phase behaviour of intrinsically-disordered proteins from data-driven optimization of single-chain properties publication-title: BioRxiv – volume: 20 start-page: 28558 year: 2018 end-page: 28574 ident: CR9 article-title: Coarse-grained residue-based models of disordered protein condensates: Utility and limitations of simple charge pattern parameters publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP05095C – volume: 72 start-page: 245 year: 2011 end-page: 256 ident: CR11 article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS publication-title: Neuron doi: 10.1016/j.neuron.2011.09.011 – volume: 30 start-page: 1371 year: 2021 ident: 64327_CR20 publication-title: Protein Sci. doi: 10.1002/pro.4094 – volume: 14 start-page: e1005941 year: 2018 ident: 64327_CR17 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005941 – volume: 176 start-page: 419 year: 2019 ident: 64327_CR23 publication-title: Cell doi: 10.1016/j.cell.2018.12.035 – volume: 11 start-page: 1 year: 2021 ident: 64327_CR19 publication-title: BioRxiv – volume: 28 start-page: 6707 year: 2023 ident: 64327_CR16 publication-title: Molecules doi: 10.3390/molecules28186707 – volume: 94 start-page: 570 year: 2008 ident: 64327_CR22 publication-title: Biophys. J. doi: 10.1529/biophysj.107.116152 – year: 2021 ident: 64327_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21181-9 – volume: 125 start-page: 4046 year: 2021 ident: 64327_CR21 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c11479 – volume: 322 start-page: C197 year: 2022 ident: 64327_CR24 publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00372.2021 – volume: 3 start-page: 93 year: 2022 ident: 64327_CR5 publication-title: JACS Au doi: 10.1021/jacsau.2c00414 – year: 2015 ident: 64327_CR1 publication-title: Nat. Commun. doi: 10.1038/ncomms9088 – volume: 339 start-page: 1335 year: 2013 ident: 64327_CR14 publication-title: Science doi: 10.1126/science.1232927 – volume: 36 start-page: 1669 year: 2017 ident: 64327_CR4 publication-title: EMBO J. doi: 10.15252/embj.201695957 – volume: 72 start-page: 245 year: 2011 ident: 64327_CR11 publication-title: Neuron doi: 10.1016/j.neuron.2011.09.011 – volume: 17 start-page: 525 year: 2020 ident: 64327_CR8 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c01064 – volume: 19 start-page: 3885 year: 2021 ident: 64327_CR7 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.06.051 – volume: 20 start-page: 28558 year: 2018 ident: 64327_CR9 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP05095C – volume: 126 start-page: 881 year: 2013 ident: 64327_CR15 publication-title: Acta Neuropathol. doi: 10.1007/s00401-013-1189-3 – volume: 162 start-page: 1066 year: 2015 ident: 64327_CR2 publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 108 start-page: 260 year: 2011 ident: 64327_CR13 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1013343108 – volume: 120 start-page: 1187 year: 2021 ident: 64327_CR10 publication-title: Biophys. J. doi: 10.1016/j.bpj.2021.01.034 – year: 2017 ident: 64327_CR18 publication-title: Matters. doi: 10.19185/matters.201702000010 – volume: 169 start-page: 13 year: 2017 ident: 64327_CR3 publication-title: Cell doi: 10.1016/j.cell.2017.02.007 – volume: 72 start-page: 257 year: 2011 ident: 64327_CR12 publication-title: Neuron doi: 10.1016/j.neuron.2011.09.010 |
| SSID | ssj0000529419 |
| Score | 2.4395895 |
| Snippet | Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological... Understanding the intricate interactions governing protein and peptide behavior in liquid-liquid phase separation (LLPS) is crucial for unraveling biological... Abstract Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 13382 |
| SubjectTerms | 631/57/2266 631/57/2269 631/57/2272 Dielectric constant DNA - chemistry DNA - metabolism Electrostatic interaction Electrostatic properties GENESIS Humanities and Social Sciences Hydrophobic and Hydrophilic Interactions Hydrophobicity Liquid–liquid phase separation Molecular dynamics Molecular Dynamics Simulation multidisciplinary Peptides Peptides - chemistry Phase Separation Phase Transition Polypeptides Polyproline Salts Science Science (multidisciplinary) Temperature Temperature effects |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwELaggMSFHRooyEjcIGocJ7FzQoCouFD1AFJvllcaqeSlyXuVuPEf-If8EsZLUj2WXpByyDKJ7MyMZ8Zjz4fQCwc2Qktt86YBCa50U-aqVSpXTIH5bwgvjAlgE-zwkB8ft0dpwm1KyyrnMTEM1Gal_Rz5PvWOdgHmsn49nOUeNcpnVxOExlV0zVdJoGHp3tEyx-KzWBVp016ZgvL9CeyV31NWVjmY4pLlbMsehbL9f_M1_1wy-VveNJijg9v_25E76FZyRPGbKDl30RXb30M3IjTlt_vIfZxxc7GJoPUTnrqvCewLwzFGFPtw5fBpd7bpzM_vP-IJHk7APOLJxtLikWa0g9_TBuMrHvxiGmOnB-jzwftP7z7kCZMh13VF1rmuIKZllFneOGdVY5vWcmoMhbiDOgPDAW0LUyhpgYZI8B-o0YSqmmjHS83oQ7TTr3q7i7BzThGpjQUvr1KF5G1lOHeqrDlhhsoMkZkzQqeC5R4341SExDnlInJTADdF4KZgGXq5vDPEch2XUr_1DF8ofantcGM1fhFJcwUrtGWugj7VstISJFlKWipDmGPUKvjI3sxnkfR_EhdMztDz5TFork_HyN6uNoGGtaSEmDJDj6J0LS2hHCJNxooM8S2522rq9pO-OwnVwYnPrEGUnaFXs4hetOvf_-Lx5d14gm6WXms8ahPZQzvrcWOfouv6fN1N47Ogdr8AJLk4ZA priority: 102 providerName: ProQuest |
| Title | Molecular dynamics simulation on regulation of liquid–liquid phase separation of repetitive peptides |
| URI | https://link.springer.com/article/10.1038/s41598-024-64327-7 https://www.ncbi.nlm.nih.gov/pubmed/38862770 https://www.proquest.com/docview/3066605845 https://www.proquest.com/docview/3067912086 https://pubmed.ncbi.nlm.nih.gov/PMC11167010 https://doaj.org/article/70ce7f4d0b5a4cab9baa32bd17f73eb7 |
| Volume | 14 |
| WOSCitedRecordID | wos001245305300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC50V8GL-Da6DhG8adh0Okl3jq7soocZgiiMp6afbGA3O05mBG_-B_-hv8Tq7sy44_MihCaPSmjqkaqiu-oDeObQR2ipbVbXqMGlrotMNUpliil0_zXhuTEBbILNZnw-b9pLUF9-T1hsDxwZd8hybZkrTa4qWWqJH5KSFsoQ5hi1KtSRY9RzKZmKXb2LpiTNWCWTU344oKfy1WRFmaETLljGdjxRaNj_uyjz182SP62YBkd0cgtujhFk-jLO_DZcsf0duB4xJT_fBTfdAN6mJqLND-nQnY8oXSkeywg_H65cetZ9XHfm25ev8SRdnKJfSwcbe4JHmqVd-GI0_DGmC78LxtjhHrw_OX736nU2gilkuirJKtMlJqOMMstr56yqbd1YTo2hmDBQZ9COaZMjl6VFGiLR8VOjCVUV0Y4XmtH7sNdf9PYhpM45RaQ2FsOzUuWSN6Xh3Kmi4oQZKhMgG8YKPXYa94AXZyKseFMuojAECkMEYQiWwPPtO4vYZ-Ov1EdeXltK3yM73EDNEaPmiH9pTgIHG2mL0XAHQX0-l2NUViXwdPsYTc6vo8jeXqwDDWsIal2dwIOoHNuZUI4pImN5AnxHbXamuvuk705DW2_il8QwPU7gxUbDfszrz7x49D948RhuFN40PCgTOYC91XJtn8A1_WnVDcsJXGVzFkY-gf2j41n7dhLsDcdp0fqR4bjfvpm2H74Dw7gzJA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGFN-1CgSDBCaLGdjZ2Dgjxqlq1XfVQpN5cP9tIbTbd7IL2xn_gf_Cj-CWMnUe1PHrrAWkPu8kksrPfzDfOjGcQeuGAI7TUNs4yQHCqMxKrXKlYMQX0n2GeGBOaTbDRiB8c5HtL6Ee3F8anVXY2MRhqM9b-Hfk69Y52AnQ5fFudxb5rlI-udi00Glhs2_lXWLLVb7Y-wv_7kpCNT_sfNuO2q0CshymexjqFVRmjzPLMOasym-WWU2MoeM7UGQA0zROTKGlBBktgQGo0pmqIteNEMwr3vYKughtBeEgV3Ovf6fioWYrzdm9OQvl6Dfzo97CRNAbqJyxmC_wX2gT8zbf9M0XztzhtoL-N2__bg7uDbrWOdvSu0Yy7aMmW99D1pvXm_D5yu11f4MjMS3la6Dqqi9O2mVkEn4k96n-56KQ4mxXm57fvzZeoOgb6j2rblE5vZCa28nv2gD-iyicLGVs_QJ8vZZIP0XI5Lu0qipxzCkttLHixqUokz1PDuVNkyDEzVA4Q7pAgdFuQ3fcFOREhMYBy0aBHAHpEQI9gA_Sqv6ZqypFcKP3eA6yX9KXEw4Hx5Ei0lkmwRFvmUpjTUKZagqZKSYkymDlGrYKbrHW4Eq19q8U5qAboeX8aLJMPN8nSjmdBhuWYwJp5gFYaNPcjoRxW0owlA8QXcL4w1MUzZXEcqp9jHzlMMFz6ulOJ83H9-1k8ungaz9CNzf3dHbGzNdp-jG4Sr7G-QxVeQ8vTycw-Qdf0l2lRT54GlY_Q4WWryi_Dx5VD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VsogL-xIoYCQ4gRWPx_aMDwgBJaIqRDmA1Nswa2updVw7AeXGf-Df8HP4JbwZL1VYeusBKYfEfrZmnO8t4_fmfQg9seAjlFAmzDJAcKKyOJS5lKGkEtx_hlmktSeboNMp29vLZxvoR78XxpVV9jbRG2o9V-4d-Zi4QDsCd5mObVcWMduevKyOQ8cg5TKtPZ1GC5Fds_oKy7fmxc42_NdP43jy9uObd2HHMBCqNMGLUCWwQqOEGpZZa2RmstwwojWBKJpYDeAmeaQjKQzIYAHekGiFiUyxsixWlMB9z6Hz1DUt92WDs-H9jsugJTjv9ulEhI0b8JVuP1uchBAGxDSka77QUwb8Lc79s1zzt5ytd4WTq__zQ7yGrnQBePCq1ZjraMOUN9DFlpJzdRPZDz1fcKBXpTgqVBM0xVFHchbApzb7wy8bHBbHy0L__Pa9_RJUBxAWBI1pW6q3MrWp3F4-8CtB5YqItGluoU9nMsnbaLOcl-YuCqy1EgulDUS3iYwEyxPNmJVxyjDVRIwQ7lHBVdeo3fGFHHJfMEAYb5HEAUncI4nTEXo2XFO1bUpOlX7twDZIuhbj_sC83uedxeI0UobaBOaUikQJ0GAhSCw1ppYSI-EmWz3GeGf3Gn4CsBF6PJwGi-XSUKI086WXoTmOYS09QndaZA8jIQxW2JRGI8TWML821PUzZXHgu6Jjl1GMMFz6vFePk3H9-1ncO30aj9Al0BD-fme6ex9djp3yOuIqvIU2F_XSPEAX1JdF0dQPvfYH6PNZa8ovSP6eAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulation+on+regulation+of+liquid-liquid+phase+separation+of+repetitive+peptides&rft.jtitle=Scientific+reports&rft.au=Yang%2C+Xiaojun&rft.au=Wang%2C+Yanwei&rft.au=Yang%2C+Guangcan&rft.date=2024-06-11&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=13382&rft_id=info:doi/10.1038%2Fs41598-024-64327-7&rft_id=info%3Apmid%2F38862770&rft.externalDocID=38862770 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |