VI-Net—View-Invariant Quality of Human Movement Assessment
We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 20; číslo 18; s. 5258 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI
15.09.2020
MDPI AG |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images, and then the collection of trajectories for all joints are processed by an adapted, pre-trained 2D convolutional neural network (CNN) (e.g., VGG-19 or ResNeXt-50) to learn the relationship amongst the different body parts and deliver a score for the movement quality. We release the only publicly-available, multi-view, non-skeleton, non-mocap, rehabilitation movement dataset (QMAR), and provide results for both cross-subject and cross-view scenarios on this dataset. We show that VI-Net achieves average rank correlation of 0.66 on cross-subject and 0.65 on unseen views when trained on only two views. We also evaluate the proposed method on the single-view rehabilitation dataset KIMORE and obtain 0.66 rank correlation against a baseline of 0.62. |
|---|---|
| AbstractList | We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images, and then the collection of trajectories for all joints are processed by an adapted, pre-trained 2D convolutional neural network (CNN) (e.g., VGG-19 or ResNeXt-50) to learn the relationship amongst the different body parts and deliver a score for the movement quality. We release the only publicly-available, multi-view, non-skeleton, non-mocap, rehabilitation movement dataset (QMAR), and provide results for both cross-subject and cross-view scenarios on this dataset. We show that VI-Net achieves average rank correlation of 0.66 on cross-subject and 0.65 on unseen views when trained on only two views. We also evaluate the proposed method on the single-view rehabilitation dataset KIMORE and obtain 0.66 rank correlation against a baseline of 0.62.We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images, and then the collection of trajectories for all joints are processed by an adapted, pre-trained 2D convolutional neural network (CNN) (e.g., VGG-19 or ResNeXt-50) to learn the relationship amongst the different body parts and deliver a score for the movement quality. We release the only publicly-available, multi-view, non-skeleton, non-mocap, rehabilitation movement dataset (QMAR), and provide results for both cross-subject and cross-view scenarios on this dataset. We show that VI-Net achieves average rank correlation of 0.66 on cross-subject and 0.65 on unseen views when trained on only two views. We also evaluate the proposed method on the single-view rehabilitation dataset KIMORE and obtain 0.66 rank correlation against a baseline of 0.62. We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images, and then the collection of trajectories for all joints are processed by an adapted, pre-trained 2D convolutional neural network (CNN) (e.g., VGG-19 or ResNeXt-50) to learn the relationship amongst the different body parts and deliver a score for the movement quality. We release the only publicly-available, multi-view, non-skeleton, non-mocap, rehabilitation movement dataset (QMAR), and provide results for both cross-subject and cross-view scenarios on this dataset. We show that VI-Net achieves average rank correlation of 0.66 on cross-subject and 0.65 on unseen views when trained on only two views. We also evaluate the proposed method on the single-view rehabilitation dataset KIMORE and obtain 0.66 rank correlation against a baseline of 0.62. We propose a view-invariant method towards the assessment of the quality of human 1 movements which does not rely on skeleton data. Our end-to-end convolutional neural network 2 consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is 3 generated from RGB images, and then the collection of trajectories for all joints are processed by an 4 adapted, pre-trained 2D CNN (e.g. VGG-19 or ResNeXt-50) to learn the relationship amongst 5 the different body parts and deliver a score for the movement quality. We release the only 6 publicly-available, multi-view, non-skeleton, non-mocap, rehabilitation movement dataset (QMAR), 7 and provide results for both cross-subject and cross-view scenarios on this dataset. We show that 8 VI-Net achieves average rank correlation of 0.66 on cross-subject and 0.65 on unseen views when 9 trained on only two views. We also evaluate the proposed method on the single-view rehabilitation 10 dataset KIMORE and obtain 0.66 rank correlation against a baseline of 0.62. |
| Author | Hannuna, Sion Sardari, Faegheh Mirmehdi, Majid Paiement, Adeline |
| AuthorAffiliation | 2 Université de Toulon, Aix Marseille Univ, CNRS, LIS, Marseille, France; adeline.paiement@univ-tln.fr 1 Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK; sh1670@bristol.ac.uk (S.H.); m.mirmehdi@bristol.ac.uk (M.M.) |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK; sh1670@bristol.ac.uk (S.H.); m.mirmehdi@bristol.ac.uk (M.M.) – name: 2 Université de Toulon, Aix Marseille Univ, CNRS, LIS, Marseille, France; adeline.paiement@univ-tln.fr |
| Author_xml | – sequence: 1 givenname: Faegheh orcidid: 0000-0002-9134-0427 surname: Sardari fullname: Sardari, Faegheh – sequence: 2 givenname: Adeline orcidid: 0000-0001-5114-1514 surname: Paiement fullname: Paiement, Adeline – sequence: 3 givenname: Sion surname: Hannuna fullname: Hannuna, Sion – sequence: 4 givenname: Majid orcidid: 0000-0002-6478-1403 surname: Mirmehdi fullname: Mirmehdi, Majid |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32942561$$D View this record in MEDLINE/PubMed https://hal.science/hal-02934456$$DView record in HAL |
| BookMark | eNptkstu1DAUhi1URC-w4AXQLOkire9xJIQ0qqAz0lCEBN1atnPcukriYieDuuMheEKepEmnTC9i5aNz-f7zy2cf7XSxA4TeEnzEWIWPM8VECSrUC7RHOOWFohTvPIp30X7OVxhTxph6hXYZrTgVkuyhD-fL4gz6v7__nAf4VSy7tUnBdP3s22Ca0N_Mop8thtZ0sy9xDS2MlXnOkPMUvkYvvWkyvLl_D9CPz5--nyyK1dfT5cl8VTjBSV84UhHiK8lsxZln0mDmKSudMhRKC5QDlZIwzjGl3FkB3koJVe0U567Enh2g5YZbR3Olr1NoTbrR0QR9l4jpQpvUB9eAZrW1qvbOSsy4ErYSQtBSUeusEjWQkfVxw7oebAu1G20k0zyBPq104VJfxLUuRYlLLEfA4QZw-WxsMV_pKYdpNXoRcj2Jvb8XS_HnALnXbcgOmsZ0EIesKeecKcHZhH33eK8t-d9XPei6FHNO4LctBOvpDPT2DMbe42e9LvSmD3GyFJr_TNwCNlqycg |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2021_103323 crossref_primary_10_1016_j_jvcir_2022_103625 crossref_primary_10_3390_signals2030037 crossref_primary_10_1007_s40747_022_00892_6 crossref_primary_10_57197_JDR_2023_0065 crossref_primary_10_1109_ACCESS_2025_3545787 crossref_primary_10_1016_j_bspc_2025_108347 crossref_primary_10_1109_TNSRE_2022_3219085 crossref_primary_10_1038_s41597_023_02663_5 crossref_primary_10_1080_24751839_2025_2454053 |
| Cites_doi | 10.1109/CVPRW.2017.16 10.1109/ICCV.2015.510 10.1109/ICCV.2017.89 10.5244/C.28.79 10.1007/978-3-030-00767-6_12 10.1109/ICCV.2019.00234 10.1016/j.cviu.2015.11.016 10.1109/CVPR.2017.502 10.1109/CVPR.2019.00953 10.1109/CVPR.2019.00117 10.1109/CVPR42600.2020.00986 10.1007/978-3-319-10599-4_36 10.1016/j.artmed.2018.12.007 10.1007/978-3-030-30645-8_22 10.1109/TNSRE.2019.2923060 10.1007/978-3-030-01240-3_28 10.1016/j.patcog.2017.02.030 10.1109/CVPR.2017.634 10.1109/TPAMI.2019.2896631 10.1109/CVPR.2018.00685 10.1109/CVPR.2019.00805 10.1109/WACV.2019.00150 10.1109/CVPR.2018.00127 10.3390/data3010002 10.3390/s19194129 10.1109/CVPR.2017.486 10.1109/CVPR.2019.00039 10.1002/rcs.1850 10.1109/TNSRE.2020.2966249 10.1109/CVPR.2019.00354 10.1109/CVPR42600.2020.00530 10.1109/CVPR.2017.143 10.1109/TPAMI.2017.2704624 10.1109/CVPR42600.2020.00608 10.1109/ICCVW.2015.49 10.1109/ICCV.2019.00444 10.1109/ICIP.2018.8451364 10.1109/CVPR.2019.00797 10.1109/TPAMI.2017.2691768 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License 2020 by the authors. 2020 |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
| DOI | 10.3390/s20185258 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_3dbb8dfcb603485b95552782bcb85de1 PMC7570706 oai:HAL:hal-02934456v1 32942561 10_3390_s20185258 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/R005273/1 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7X8 PUEGO 1XC ADRAZ IAO IPNFZ ITC RIG VOOES 5PM |
| ID | FETCH-LOGICAL-c541t-c1911f963b943f36a03f237c8a2e7be24e26613440224cb5efb66e9dc844c70f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583351200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:05:55 EDT 2025 Tue Nov 04 01:59:24 EST 2025 Tue Oct 14 20:41:27 EDT 2025 Wed Oct 01 13:15:16 EDT 2025 Wed Feb 19 02:28:21 EST 2025 Sat Nov 29 07:20:46 EST 2025 Tue Nov 18 22:38:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | health monitoring view-invariant convolutional neural network (CNN) movement analysis |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-c1911f963b943f36a03f237c8a2e7be24e26613440224cb5efb66e9dc844c70f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6478-1403 0000-0002-9134-0427 0000-0001-5114-1514 |
| OpenAccessLink | https://doaj.org/article/3dbb8dfcb603485b95552782bcb85de1 |
| PMID | 32942561 |
| PQID | 2444385436 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3dbb8dfcb603485b95552782bcb85de1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7570706 hal_primary_oai_HAL_hal_02934456v1 proquest_miscellaneous_2444385436 pubmed_primary_32942561 crossref_primary_10_3390_s20185258 crossref_citationtrail_10_3390_s20185258 |
| PublicationCentury | 2000 |
| PublicationDate | 20200915 |
| PublicationDateYYYYMMDD | 2020-09-15 |
| PublicationDate_xml | – month: 9 year: 2020 text: 20200915 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | ref_50 ref_14 Zhang (ref_44) 2019; 41 ref_13 ref_12 ref_11 ref_52 ref_51 ref_19 ref_18 ref_17 ref_16 ref_15 Rahmani (ref_38) 2018; 40 Tao (ref_36) 2016; 148 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_29 Elkholy (ref_37) 2019; 24 ref_27 ref_26 Fard (ref_5) 2018; 14 ref_35 ref_34 ref_33 ref_32 ref_31 ref_39 Khokhlova (ref_10) 2019; 94 Liu (ref_43) 2017; 68 ref_47 ref_46 ref_45 ref_42 ref_41 ref_40 ref_1 Liao (ref_8) 2019; 28 ref_3 ref_2 ref_49 ref_48 ref_9 Li (ref_28) 2017; 40 Capecci (ref_30) 2019; 27 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_2 doi: 10.1109/CVPRW.2017.16 – ident: ref_34 doi: 10.1109/ICCV.2015.510 – ident: ref_50 doi: 10.1109/ICCV.2017.89 – ident: ref_26 – ident: ref_47 doi: 10.5244/C.28.79 – ident: ref_1 doi: 10.1007/978-3-030-00767-6_12 – ident: ref_17 doi: 10.1109/ICCV.2019.00234 – ident: ref_16 – volume: 148 start-page: 136 year: 2016 ident: ref_36 article-title: A Comparative Study of Pose Representation and Dynamics Modelling for Online Motion Quality Assessment publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2015.11.016 – ident: ref_39 – ident: ref_35 doi: 10.1109/CVPR.2017.502 – ident: ref_51 doi: 10.1109/CVPR.2019.00953 – ident: ref_23 – ident: ref_49 doi: 10.1109/CVPR.2019.00117 – ident: ref_33 doi: 10.1109/CVPR42600.2020.00986 – ident: ref_31 doi: 10.1007/978-3-319-10599-4_36 – volume: 94 start-page: 54 year: 2019 ident: ref_10 article-title: Normal and Pathological Gait Classification LSTM Model publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.12.007 – ident: ref_7 doi: 10.1007/978-3-030-30645-8_22 – ident: ref_4 – ident: ref_27 – volume: 27 start-page: 1436 year: 2019 ident: ref_30 article-title: The KIMORE Dataset: Kinematic Assessment of Movement and Clinical Scores for Remote Monitoring of Physical Rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2923060 – ident: ref_52 – ident: ref_25 doi: 10.1007/978-3-030-01240-3_28 – volume: 68 start-page: 346 year: 2017 ident: ref_43 article-title: Enhanced Skeleton Visualization for View Invariant Human Action Recognition publication-title: Pattern Recog. doi: 10.1016/j.patcog.2017.02.030 – ident: ref_24 doi: 10.1109/CVPR.2017.634 – ident: ref_41 – volume: 41 start-page: 1963 year: 2019 ident: ref_44 article-title: View Adaptive Neural Networks for High Performance Skeleton-Based Human Action Recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2896631 – ident: ref_40 doi: 10.1109/CVPR.2018.00685 – ident: ref_6 doi: 10.1109/CVPR.2019.00805 – ident: ref_12 doi: 10.1109/WACV.2019.00150 – ident: ref_45 doi: 10.1109/CVPR.2018.00127 – ident: ref_48 doi: 10.3390/data3010002 – ident: ref_11 – ident: ref_13 doi: 10.3390/s19194129 – ident: ref_42 doi: 10.1109/CVPR.2017.486 – ident: ref_3 doi: 10.1109/CVPR.2019.00039 – volume: 14 start-page: 1850 year: 2018 ident: ref_5 article-title: Automated Robot-Assisted Surgical Skill Evaluation: Predictive Analytics Approach publication-title: Int. J. Med. Robot. Comput. Assist. Surg. doi: 10.1002/rcs.1850 – volume: 28 start-page: 468 year: 2019 ident: ref_8 article-title: A Deep Learning Framework for Assessing Physical Rehabilitation Exercises publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2966249 – ident: ref_15 doi: 10.1109/CVPR.2019.00354 – ident: ref_18 doi: 10.1109/CVPR42600.2020.00530 – ident: ref_21 doi: 10.1109/CVPR.2017.143 – ident: ref_29 – volume: 40 start-page: 1114 year: 2017 ident: ref_28 article-title: Domain Generalization and Adaptation Using Low Rank Exemplar SVMs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2704624 – volume: 24 start-page: 208 year: 2019 ident: ref_37 article-title: Efficient and Robust Skeleton-Based Quality Assessment and Abnormality Detection in Human Action Performance publication-title: IEEE J. Biomed. Health Inform. – ident: ref_46 – ident: ref_20 doi: 10.1109/CVPR42600.2020.00608 – ident: ref_9 doi: 10.1109/ICCVW.2015.49 – ident: ref_19 doi: 10.1109/ICCV.2019.00444 – ident: ref_22 – ident: ref_32 doi: 10.1109/ICIP.2018.8451364 – ident: ref_14 doi: 10.1109/CVPR.2019.00797 – volume: 40 start-page: 667 year: 2018 ident: ref_38 article-title: Learning a Deep Model for Human Action Recognition from Novel Viewpoints publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2691768 |
| SSID | ssj0023338 |
| Score | 2.4614785 |
| Snippet | We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional... We propose a view-invariant method towards the assessment of the quality of human 1 movements which does not rely on skeleton data. Our end-to-end... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5258 |
| SubjectTerms | Artificial Intelligence Computer Science Computer Vision and Pattern Recognition health monitoring Humans Image Processing Machine Learning Movement movement analysis Neural and Evolutionary Computing Neural Networks, Computer Signal and Image Processing view-invariant convolutional neural network (CNN) |
| Title | VI-Net—View-Invariant Quality of Human Movement Assessment |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32942561 https://www.proquest.com/docview/2444385436 https://hal.science/hal-02934456 https://pubmed.ncbi.nlm.nih.gov/PMC7570706 https://doaj.org/article/3dbb8dfcb603485b95552782bcb85de1 |
| Volume | 20 |
| WOSCitedRecordID | wos000583351200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Health and Medical Complete customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7atIfmEJo-nbRGLT30IrLWPgW5OMUhhtqY0gb3JLSrXWIocokVh15KfkR-YX5JZleysJNAL73sYTX70Ix2Z77V8g3AJ0VUwXuaxdxwHTNHaZz70ybOBDZJmGAFCckm5HisptN0spbqy98Jq-mBa8Ud0EJrVTijBaFMcZ1yzxmmEm204oUNwIfIdAWmGqhFEXnVPEIUQf3BAt2c4onP677mfQJJP_qUM38F8n58efea5JrfOX4OO03AGPXrie7CI1u-gO01GsGXcHg6jMe2urm6Pp3Zy3hYLhEAo8aimiDjTzR3UTisj0bzQA9eRf2WkPMV_DgefP9yEjdZEWLDWa-KDSKsnsN1o1NGHRU5oS6h0qg8sdKr13qfSxnz3tlobp0WwqaFUYwZSRx9DVvlvLRvIZIawzvCtaWpYTlCKemo1LkjzHDs1Xbg80pbmWkow33mil8ZQgev2KxVbAc-tqK_a56Mh4SOvMpbAU9tHSrQ4Flj8OxfBseR0GAbfZz0v2a-jmDswjAiXKLQh5U9M1wv_idIXtr5xSLDcIZRxRkVHXhT27ftiyYpbmECW8sNy28MtvmknJ0FTm7JJW6eYu9_vOE-PEs8qveJKvg72KrOL-x7eGqW1Wxx3oXHcipDqbrw5Ggwnnzrho8fy9HfAdZNhqPJz1sdCwlK |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VI-Net%E2%80%94View-Invariant+Quality+of+Human+Movement+Assessment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sardari%2C+Faegheh&rft.au=Paiement%2C+Adeline&rft.au=Hannuna%2C+Sion&rft.au=Mirmehdi%2C+Majid&rft.date=2020-09-15&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft_id=info:doi/10.3390%2Fs20185258&rft_id=info%3Apmid%2F32942561&rft.externalDocID=PMC7570706 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |