Distributed dynamic scheduling algorithm of target coverage for wireless sensor networks with hybrid energy harvesting system

The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the stochastic nature of hybrid solar-wind energy arrivals poses a significant challenge to optimizing energy utilization for target coverage. To...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 14; číslo 1; s. 27931 - 19
Hlavní autori: Bao, Xuecai, Jiang, Yanlong, Han, Longzhe, Xu, Xiaohua, Zhu, Hongbo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 14.11.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the stochastic nature of hybrid solar-wind energy arrivals poses a significant challenge to optimizing energy utilization for target coverage. To address this issue, we propose a dynamic and distributed node scheduling algorithm based on Lyapunov optimization for hybrid energy-harvesting WSNs (HEH-WSNs). By formulating the maximum long-term average coverage utility subject to peak power constraints, we utilize Lyapunov optimization theory to develop a dynamic potential game framework for target coverage optimization in HEH-WSNs. The proposed distributed dynamic target-coverage node scheduling algorithm (DTNSA) is then derived from the potential game. We present a comprehensive performance analysis of the distributed implementation and evaluate its efficiency through extensive simulations. The results demonstrate that in two distinct scenarios, specifically with different numbers of sensor nodes and target nodes, the average coverage utility of our proposed DTNSA exceeds that of existing algorithms by 10.5 % and 11.2 % , respectively. The performance of the average number of active sensor nodes decreased by 13.2 % and 16.4 % compared to existing algorithms, while the average coverage redundancy decreased by 23.2 % and 21.6 % relative to existing algorithms. Furthermore, our algorithm adapts effectively to dynamic changes in hybrid harvested energy and exhibits lower computational complexity compared to existing target coverage algorithms.
AbstractList The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the stochastic nature of hybrid solar-wind energy arrivals poses a significant challenge to optimizing energy utilization for target coverage. To address this issue, we propose a dynamic and distributed node scheduling algorithm based on Lyapunov optimization for hybrid energy-harvesting WSNs (HEH-WSNs). By formulating the maximum long-term average coverage utility subject to peak power constraints, we utilize Lyapunov optimization theory to develop a dynamic potential game framework for target coverage optimization in HEH-WSNs. The proposed distributed dynamic target-coverage node scheduling algorithm (DTNSA) is then derived from the potential game. We present a comprehensive performance analysis of the distributed implementation and evaluate its efficiency through extensive simulations. The results demonstrate that in two distinct scenarios, specifically with different numbers of sensor nodes and target nodes, the average coverage utility of our proposed DTNSA exceeds that of existing algorithms by and , respectively. The performance of the average number of active sensor nodes decreased by and compared to existing algorithms, while the average coverage redundancy decreased by and relative to existing algorithms. Furthermore, our algorithm adapts effectively to dynamic changes in hybrid harvested energy and exhibits lower computational complexity compared to existing target coverage algorithms.
The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the stochastic nature of hybrid solar-wind energy arrivals poses a significant challenge to optimizing energy utilization for target coverage. To address this issue, we propose a dynamic and distributed node scheduling algorithm based on Lyapunov optimization for hybrid energy-harvesting WSNs (HEH-WSNs). By formulating the maximum long-term average coverage utility subject to peak power constraints, we utilize Lyapunov optimization theory to develop a dynamic potential game framework for target coverage optimization in HEH-WSNs. The proposed distributed dynamic target-coverage node scheduling algorithm (DTNSA) is then derived from the potential game. We present a comprehensive performance analysis of the distributed implementation and evaluate its efficiency through extensive simulations. The results demonstrate that in two distinct scenarios, specifically with different numbers of sensor nodes and target nodes, the average coverage utility of our proposed DTNSA exceeds that of existing algorithms by 10.5 % and 11.2 % , respectively. The performance of the average number of active sensor nodes decreased by 13.2 % and 16.4 % compared to existing algorithms, while the average coverage redundancy decreased by 23.2 % and 21.6 % relative to existing algorithms. Furthermore, our algorithm adapts effectively to dynamic changes in hybrid harvested energy and exhibits lower computational complexity compared to existing target coverage algorithms.The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the stochastic nature of hybrid solar-wind energy arrivals poses a significant challenge to optimizing energy utilization for target coverage. To address this issue, we propose a dynamic and distributed node scheduling algorithm based on Lyapunov optimization for hybrid energy-harvesting WSNs (HEH-WSNs). By formulating the maximum long-term average coverage utility subject to peak power constraints, we utilize Lyapunov optimization theory to develop a dynamic potential game framework for target coverage optimization in HEH-WSNs. The proposed distributed dynamic target-coverage node scheduling algorithm (DTNSA) is then derived from the potential game. We present a comprehensive performance analysis of the distributed implementation and evaluate its efficiency through extensive simulations. The results demonstrate that in two distinct scenarios, specifically with different numbers of sensor nodes and target nodes, the average coverage utility of our proposed DTNSA exceeds that of existing algorithms by 10.5 % and 11.2 % , respectively. The performance of the average number of active sensor nodes decreased by 13.2 % and 16.4 % compared to existing algorithms, while the average coverage redundancy decreased by 23.2 % and 21.6 % relative to existing algorithms. Furthermore, our algorithm adapts effectively to dynamic changes in hybrid harvested energy and exhibits lower computational complexity compared to existing target coverage algorithms.
The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the stochastic nature of hybrid solar-wind energy arrivals poses a significant challenge to optimizing energy utilization for target coverage. To address this issue, we propose a dynamic and distributed node scheduling algorithm based on Lyapunov optimization for hybrid energy-harvesting WSNs (HEH-WSNs). By formulating the maximum long-term average coverage utility subject to peak power constraints, we utilize Lyapunov optimization theory to develop a dynamic potential game framework for target coverage optimization in HEH-WSNs. The proposed distributed dynamic target-coverage node scheduling algorithm (DTNSA) is then derived from the potential game. We present a comprehensive performance analysis of the distributed implementation and evaluate its efficiency through extensive simulations. The results demonstrate that in two distinct scenarios, specifically with different numbers of sensor nodes and target nodes, the average coverage utility of our proposed DTNSA exceeds that of existing algorithms by $$10.5\%$$ 10.5% and $$11.2\%$$ 11.2%, respectively. The performance of the average number of active sensor nodes decreased by $$13.2\%$$ 13.2% and $$16.4\%$$ 16.4% compared to existing algorithms, while the average coverage redundancy decreased by $$23.2\%$$ 23.2% and $$21.6\%$$ 21.6% relative to existing algorithms. Furthermore, our algorithm adapts effectively to dynamic changes in hybrid harvested energy and exhibits lower computational complexity compared to existing target coverage algorithms.
The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the stochastic nature of hybrid solar-wind energy arrivals poses a significant challenge to optimizing energy utilization for target coverage. To address this issue, we propose a dynamic and distributed node scheduling algorithm based on Lyapunov optimization for hybrid energy-harvesting WSNs (HEH-WSNs). By formulating the maximum long-term average coverage utility subject to peak power constraints, we utilize Lyapunov optimization theory to develop a dynamic potential game framework for target coverage optimization in HEH-WSNs. The proposed distributed dynamic target-coverage node scheduling algorithm (DTNSA) is then derived from the potential game. We present a comprehensive performance analysis of the distributed implementation and evaluate its efficiency through extensive simulations. The results demonstrate that in two distinct scenarios, specifically with different numbers of sensor nodes and target nodes, the average coverage utility of our proposed DTNSA exceeds that of existing algorithms by 10.5 % and 11.2 % , respectively. The performance of the average number of active sensor nodes decreased by 13.2 % and 16.4 % compared to existing algorithms, while the average coverage redundancy decreased by 23.2 % and 21.6 % relative to existing algorithms. Furthermore, our algorithm adapts effectively to dynamic changes in hybrid harvested energy and exhibits lower computational complexity compared to existing target coverage algorithms.
Abstract The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the stochastic nature of hybrid solar-wind energy arrivals poses a significant challenge to optimizing energy utilization for target coverage. To address this issue, we propose a dynamic and distributed node scheduling algorithm based on Lyapunov optimization for hybrid energy-harvesting WSNs (HEH-WSNs). By formulating the maximum long-term average coverage utility subject to peak power constraints, we utilize Lyapunov optimization theory to develop a dynamic potential game framework for target coverage optimization in HEH-WSNs. The proposed distributed dynamic target-coverage node scheduling algorithm (DTNSA) is then derived from the potential game. We present a comprehensive performance analysis of the distributed implementation and evaluate its efficiency through extensive simulations. The results demonstrate that in two distinct scenarios, specifically with different numbers of sensor nodes and target nodes, the average coverage utility of our proposed DTNSA exceeds that of existing algorithms by $$10.5\%$$ 10.5 % and $$11.2\%$$ 11.2 % , respectively. The performance of the average number of active sensor nodes decreased by $$13.2\%$$ 13.2 % and $$16.4\%$$ 16.4 % compared to existing algorithms, while the average coverage redundancy decreased by $$23.2\%$$ 23.2 % and $$21.6\%$$ 21.6 % relative to existing algorithms. Furthermore, our algorithm adapts effectively to dynamic changes in hybrid harvested energy and exhibits lower computational complexity compared to existing target coverage algorithms.
The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the stochastic nature of hybrid solar-wind energy arrivals poses a significant challenge to optimizing energy utilization for target coverage. To address this issue, we propose a dynamic and distributed node scheduling algorithm based on Lyapunov optimization for hybrid energy-harvesting WSNs (HEH-WSNs). By formulating the maximum long-term average coverage utility subject to peak power constraints, we utilize Lyapunov optimization theory to develop a dynamic potential game framework for target coverage optimization in HEH-WSNs. The proposed distributed dynamic target-coverage node scheduling algorithm (DTNSA) is then derived from the potential game. We present a comprehensive performance analysis of the distributed implementation and evaluate its efficiency through extensive simulations. The results demonstrate that in two distinct scenarios, specifically with different numbers of sensor nodes and target nodes, the average coverage utility of our proposed DTNSA exceeds that of existing algorithms by 10.5% and 11.2%, respectively. The performance of the average number of active sensor nodes decreased by 13.2% and 16.4% compared to existing algorithms, while the average coverage redundancy decreased by 23.2% and 21.6% relative to existing algorithms. Furthermore, our algorithm adapts effectively to dynamic changes in hybrid harvested energy and exhibits lower computational complexity compared to existing target coverage algorithms.
ArticleNumber 27931
Author Zhu, Hongbo
Bao, Xuecai
Han, Longzhe
Jiang, Yanlong
Xu, Xiaohua
Author_xml – sequence: 1
  givenname: Xuecai
  surname: Bao
  fullname: Bao, Xuecai
  email: lx97821@nit.edu.cn
  organization: Jiangxi Province Key Laboratory of Smart Water Conservancy, Nanchang Institute of Technology, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications
– sequence: 2
  givenname: Yanlong
  surname: Jiang
  fullname: Jiang, Yanlong
  organization: Jiangxi Province Key Laboratory of Smart Water Conservancy, Nanchang Institute of Technology, School of Information Engineering, Nanchang Institute of Technology
– sequence: 3
  givenname: Longzhe
  surname: Han
  fullname: Han, Longzhe
  organization: Jiangxi Province Key Laboratory of Smart Water Conservancy, Nanchang Institute of Technology, School of Information Engineering, Nanchang Institute of Technology
– sequence: 4
  givenname: Xiaohua
  surname: Xu
  fullname: Xu, Xiaohua
  organization: Smart Water Conservancy Research Institute, Jiangxi Academy of Water Science and Engineering
– sequence: 5
  givenname: Hongbo
  surname: Zhu
  fullname: Zhu, Hongbo
  organization: College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39537671$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBLLFhE4hfib1CqOVRqRIbWFse-ybxkNjFdqaaBf8dz0wLbRf15vrxnaOr6_OyOvLBQ1W9xs173FDxITHMpagbwupOtB2u8bPqhDSM14QScnRvf1ydpbRuyuJEMixfVMdUctoV0Un158KlHN1qyWCR3Xo9O4OSGcEuk_MD0tMQosvjjEKPso4DZGTCBqIeAPUhohsXYYKUUAKfytlDvgnxVyoPeUTjdhWdReAhDls06riBlHe-aZsyzK-q572eEpzd1tPq55fPP86_1Vffv16ef7qqDWc417oXAFRaEJYC63ALjOFG9FLbrjNsJYnFjHVcSGyEoB3hLRWm5x0joNuVpKfV5cHXBr1W19HNOm5V0E7tL0IclI7ZmQkU0YIaqjHYhrIyQqGJ7DFltGV9qbx4fTx4XS-rGawBn6OeHpg-fPFuVEPYKIx5i4mgxeHdrUMMv5cyEDW7ZGCatIewJEULJbCQvCvo20foOizRl1ntqYY1BSvUm_st_evl7psLIA6AiSGlCL0yLuvswq5DNyncqF2o1CFUqoRK7UOldlLySHrn_qSIHkSpwH6A-L_tJ1R_AVLg4IU
CitedBy_id crossref_primary_10_3390_s25082493
Cites_doi 10.1109/JSEN.2021.3076203
10.1007/s11276-022-03224-1
10.1109/TAC.2008.2010885
10.1007/s11277-021-09381-4
10.1109/TNET.2019.2926403
10.1109/JSEN.2022.3227601
10.1016/j.solener.2005.03.013
10.1109/JSEN.2019.2948620
10.1109/LCOMM.2021.3110771
10.1109/JIOT.2019.2930073
10.1109/JSEN.2014.2310180
10.1109/LCOMM.2019.2904578
10.1109/JIOT.2018.2817590
10.1109/TII.2016.2603845
10.1109/ACCESS.2018.2833632
10.1016/j.renene.2010.12.001
10.1109/ACCESS.2024.3365511
10.1109/TMC.2018.2872576
10.1109/TVT.2019.2912188
10.1109/TVT.2019.2908584
10.1109/TVT.2014.2322356
10.1109/MCOM.2015.7321985
10.1109/JSEN.2024.3378998
10.1109/GLOCOM.2014.7036824
10.1109/ICC.2014.6883345
10.1109/TNSE.2019.2952369
10.1109/TETC.2014.2371543
10.1109/JSEN.2013.2286332
10.1109/TMC.2018.2813376
10.1109/INFOCOM.2018.8485808
10.1109/JIOT.2021.3109148
10.1109/JSYST.2018.2820085
10.1016/j.adhoc.2016.10.010
10.1109/INFCOM.2005.1498475
10.1155/2019/6312589
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-78671-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_2a83c3a1ed0340458a29f134364ff135
PMC11561283
39537671
10_1038_s41598_024_78671_1
Genre Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2020M671556; 2020M671556
– fundername: Major science and technology projects in Jiangxi province
  grantid: 20213AAG01012; 20213AAG01012; 20213AAG01012
– fundername: Natural Science Foundation of Jiangxi Province, China
  grantid: 20202BABL202003
– fundername: National Natural Science Foundation of China
  grantid: 61961026; 61961026; 61962036
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M671556
– fundername: National Natural Science Foundation of China
  grantid: 61962036
– fundername: National Natural Science Foundation of China
  grantid: 61961026
– fundername: Major science and technology projects in Jiangxi province
  grantid: 20213AAG01012
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-af8ee39de8d3e4716e44108f9ad77c4b92d14475891c883725638cf5742ea6b93
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001354476800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:01:37 EDT 2025
Tue Nov 04 02:05:18 EST 2025
Fri Sep 05 11:10:43 EDT 2025
Tue Oct 07 07:47:13 EDT 2025
Wed Feb 19 02:02:46 EST 2025
Tue Nov 18 21:54:29 EST 2025
Sat Nov 29 05:25:03 EST 2025
Fri Feb 21 02:40:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Wireless sensor network
Sidelobe control
Collaborative beamforming
Node selection
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-af8ee39de8d3e4716e44108f9ad77c4b92d14475891c883725638cf5742ea6b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/2a83c3a1ed0340458a29f134364ff135
PMID 39537671
PQID 3128040895
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_2a83c3a1ed0340458a29f134364ff135
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11561283
proquest_miscellaneous_3128818957
proquest_journals_3128040895
pubmed_primary_39537671
crossref_citationtrail_10_1038_s41598_024_78671_1
crossref_primary_10_1038_s41598_024_78671_1
springer_journals_10_1038_s41598_024_78671_1
PublicationCentury 2000
PublicationDate 2024-11-14
PublicationDateYYYYMMDD 2024-11-14
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li, Chin, Yang (CR26) 2019; 23
Mini, Udgata, Sabat (CR1) 2014; 14
Tao, Wu (CR4) 2015; 15
CR16
Zhu, Li, Zhou, Chen (CR19) 2019; 13
Zhang, Chin, Wang, Yang (CR25) 2022; 9
Liu, Chin, Yang, He (CR11) 2019; 68
Tina, Gagliano, Raid (CR30) 2006; 80
CR13
Ren, Liang, Xu (CR9) 2015; 3
Wang, Xiong, She, Yu (CR15) 2024; 24
Jia, Zhang (CR5) 2024; 12
Banoth, Donta, Amgoth (CR3) 2023; 29
DeWitt, Shi (CR10) 2014
Yang, Chin (CR20) 2017; 13
Qiu, Hu, Chen, Zeng (CR33) 2018; 5
Bao, Liang, Liu, Zhang (CR32) 2019; 6
Yu, Neely (CR34) 2019; 27
Chen, Xiong, She (CR7) 2023; 23
Nguyen, Liu, Wang (CR17) 2020; 7
Zhou, Wang, Yang (CR27) 2019; 18
Shi, Li, Gao, Cai (CR12) 2018
Tina, Gagliano (CR31) 2011; 36
Xu, Liang, Jia, Xu, Li, Liu (CR8) 2018; 17
Anitha, Somasundaram, Balaji, Swetha (CR2) 2022; 124
Zheng, Cai, Shen, Zheng, Yang (CR18) 2015; 53
Yang, Chin (CR22) 2014
Marden, Arslan, Shamma (CR35) 2009; 54
Xiong, Chen, Lu, Wan, Wu, She (CR23) 2020; 20
Lu, Li, Pan (CR14) 2015; 64
CR21
Yang, Yang, Chin, Liu, He (CR24) 2021; 25
Yang, Chin, Liu, Zhang, He (CR28) 2019; 68
Wang, Xu, Ran, Liu, Xue (CR29) 2021; 21
Tripathi, Gupta, Dutta, Mishra, Shukla, Jit (CR6) 2018; 6
C Yang (78671_CR20) 2017; 13
X Zhu (78671_CR19) 2019; 13
C Yang (78671_CR22) 2014
L Zhang (78671_CR25) 2022; 9
C Li (78671_CR26) 2019; 23
M Anitha (78671_CR2) 2022; 124
J DeWitt (78671_CR10) 2014
JR Marden (78671_CR35) 2009; 54
X Ren (78671_CR9) 2015; 3
SPR Banoth (78671_CR3) 2023; 29
S Mini (78671_CR1) 2014; 14
R Jia (78671_CR5) 2024; 12
D Tao (78671_CR4) 2015; 15
P Zhou (78671_CR27) 2019; 18
Y Liu (78671_CR11) 2019; 68
Z Lu (78671_CR14) 2015; 64
Y Xiong (78671_CR23) 2020; 20
C Qiu (78671_CR33) 2018; 5
R Yang (78671_CR24) 2021; 25
G Chen (78671_CR7) 2023; 23
78671_CR16
C Yang (78671_CR28) 2019; 68
T Shi (78671_CR12) 2018
R Wang (78671_CR29) 2021; 21
78671_CR13
G Tina (78671_CR30) 2006; 80
H Yu (78671_CR34) 2019; 27
78671_CR21
TN Nguyen (78671_CR17) 2020; 7
X Bao (78671_CR32) 2019; 6
GM Tina (78671_CR31) 2011; 36
A Tripathi (78671_CR6) 2018; 6
W Xu (78671_CR8) 2018; 17
P Wang (78671_CR15) 2024; 24
J Zheng (78671_CR18) 2015; 53
References_xml – volume: 21
  start-page: 16282
  issue: 14
  year: 2021
  end-page: 16290
  ident: CR29
  article-title: Minimum nodes deployment for mixed energy replenishment in rechargeable wsns
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3076203
– volume: 29
  start-page: 1815
  issue: 4
  year: 2023
  end-page: 1830
  ident: CR3
  article-title: Target-aware distributed coverage and connectivity algorithm for wireless sensor networks
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-022-03224-1
– volume: 54
  start-page: 208
  issue: 2
  year: 2009
  end-page: 220
  ident: CR35
  article-title: Joint strategy fictitious play with inertia for potential games
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2010885
– volume: 124
  start-page: 741
  issue: 1
  year: 2022
  end-page: 761
  ident: CR2
  article-title: Optimal scheduling of directional sensors with qos constraints to enhance the lifetime
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-09381-4
– volume: 27
  start-page: 1501
  issue: 4
  year: 2019
  end-page: 1514
  ident: CR34
  article-title: Learning-aided optimization for energy-harvesting devices with outdated state information
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2019.2926403
– volume: 23
  start-page: 2865
  issue: 3
  year: 2023
  end-page: 2877
  ident: CR7
  article-title: A k-barrier coverage enhancing scheme based on gaps repairing in visual sensor network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3227601
– volume: 80
  start-page: 578
  issue: 5
  year: 2006
  end-page: 588
  ident: CR30
  article-title: Hybrid solar/wind power system probabilistic modelling for long-term performance assessment
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2005.03.013
– volume: 20
  start-page: 1934
  issue: 4
  year: 2020
  end-page: 1946
  ident: CR23
  article-title: A two-phase lifetime-enhancing method for hybrid energy-harvesting wireless sensor network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2948620
– volume: 25
  start-page: 3644
  issue: 11
  year: 2021
  end-page: 3648
  ident: CR24
  article-title: On max-min complete targets sampling in backscatter-aided rf powered iot networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2021.3110771
– ident: CR16
– volume: 6
  start-page: 9583
  issue: 6
  year: 2019
  end-page: 9595
  ident: CR32
  article-title: A stochastic game approach for collaborative beamforming in SDN-based energy harvesting wireless sensor networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2930073
– volume: 15
  start-page: 876
  issue: 2
  year: 2015
  end-page: 885
  ident: CR4
  article-title: A survey on barrier coverage problem in directional sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2310180
– volume: 23
  start-page: 922
  issue: 5
  year: 2019
  end-page: 925
  ident: CR26
  article-title: On complete targets coverage in rf-harvesting internet of things networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2904578
– volume: 5
  start-page: 1947
  issue: 3
  year: 2018
  end-page: 1956
  ident: CR33
  article-title: Lyapunov optimization for energy harvesting wireless sensor communications
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2817590
– volume: 13
  start-page: 27
  issue: 1
  year: 2017
  end-page: 36
  ident: CR20
  article-title: On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2603845
– volume: 6
  start-page: 26971
  year: 2018
  end-page: 26992
  ident: CR6
  article-title: Coverage and connectivity in WSNS: A survey, research issues and challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2833632
– volume: 36
  start-page: 1719
  issue: 6
  year: 2011
  end-page: 1727
  ident: CR31
  article-title: Probabilistic modelling of hybrid solar/wind power system with solar tracking system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.12.001
– volume: 12
  start-page: 27596
  year: 2024
  end-page: 27610
  ident: CR5
  article-title: Wireless sensor network (WSN) model targeting energy efficient wireless sensor networks node coverage
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3365511
– volume: 18
  start-page: 2430
  issue: 10
  year: 2019
  end-page: 2445
  ident: CR27
  article-title: Static and mobile target k-coverage in wireless rechargeable sensor networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2018.2872576
– volume: 68
  start-page: 6064
  issue: 6
  year: 2019
  end-page: 6073
  ident: CR11
  article-title: Nodes deployment for coverage in rechargeable wireless sensor networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2912188
– volume: 68
  start-page: 5884
  issue: 6
  year: 2019
  end-page: 5892
  ident: CR28
  article-title: Robust targets coverage for energy harvesting wireless sensor networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2908584
– volume: 64
  start-page: 714
  issue: 2
  year: 2015
  end-page: 727
  ident: CR14
  article-title: Maximum lifetime scheduling for target coverage and data collection in wireless sensor networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2322356
– ident: CR21
– volume: 53
  start-page: 150
  issue: 11
  year: 2015
  end-page: 157
  ident: CR18
  article-title: Green energy optimization in energy harvesting wireless sensor networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2015.7321985
– volume: 24
  start-page: 15421
  issue: 9
  year: 2024
  end-page: 15433
  ident: CR15
  article-title: Optimization method for node deployment of closed-barrier coverage in hybrid directional sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3378998
– year: 2014
  ident: CR10
  publication-title: Maximizing lifetime for k-barrier coverage in energy harvesting wireless sensor networks
  doi: 10.1109/GLOCOM.2014.7036824
– year: 2014
  ident: CR22
  publication-title: A novel distributed algorithm for complete targets coverage in energy harvesting wireless sensor networks
  doi: 10.1109/ICC.2014.6883345
– ident: CR13
– volume: 7
  start-page: 1736
  issue: 3
  year: 2020
  end-page: 1751
  ident: CR17
  article-title: On new approaches of maximum weighted target coverage and sensor connectivity: Hardness and approximation
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2019.2952369
– volume: 3
  start-page: 8
  issue: 1
  year: 2015
  end-page: 21
  ident: CR9
  article-title: Quality-aware target coverage in energy harvesting sensor networks
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2014.2371543
– volume: 14
  start-page: 636
  issue: 3
  year: 2014
  end-page: 644
  ident: CR1
  article-title: Sensor deployment and scheduling for target coverage problem in wireless sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2286332
– volume: 17
  start-page: 2564
  issue: 11
  year: 2018
  end-page: 2577
  ident: CR8
  article-title: Maximizing sensor lifetime with the minimal service cost of a mobile charger in wireless sensor networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2018.2813376
– year: 2018
  ident: CR12
  article-title: Coverage in battery-free
  publication-title: Wirel. Sens. Netw.
  doi: 10.1109/INFOCOM.2018.8485808
– volume: 9
  start-page: 6199
  issue: 8
  year: 2022
  end-page: 6212
  ident: CR25
  article-title: Complete targets coverage in energy-harvesting iot networks with dual imperfect batteries
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3109148
– volume: 13
  start-page: 377
  issue: 1
  year: 2019
  end-page: 388
  ident: CR19
  article-title: Optimal deployment of energy-harvesting directional sensor networks for target coverage
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2018.2820085
– year: 2014
  ident: 78671_CR22
  publication-title: A novel distributed algorithm for complete targets coverage in energy harvesting wireless sensor networks
  doi: 10.1109/ICC.2014.6883345
– volume: 23
  start-page: 2865
  issue: 3
  year: 2023
  ident: 78671_CR7
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3227601
– volume: 13
  start-page: 377
  issue: 1
  year: 2019
  ident: 78671_CR19
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2018.2820085
– volume: 5
  start-page: 1947
  issue: 3
  year: 2018
  ident: 78671_CR33
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2817590
– volume: 27
  start-page: 1501
  issue: 4
  year: 2019
  ident: 78671_CR34
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2019.2926403
– ident: 78671_CR16
  doi: 10.1016/j.adhoc.2016.10.010
– volume: 17
  start-page: 2564
  issue: 11
  year: 2018
  ident: 78671_CR8
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2018.2813376
– volume: 124
  start-page: 741
  issue: 1
  year: 2022
  ident: 78671_CR2
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-09381-4
– volume: 53
  start-page: 150
  issue: 11
  year: 2015
  ident: 78671_CR18
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2015.7321985
– year: 2014
  ident: 78671_CR10
  publication-title: Maximizing lifetime for k-barrier coverage in energy harvesting wireless sensor networks
  doi: 10.1109/GLOCOM.2014.7036824
– volume: 15
  start-page: 876
  issue: 2
  year: 2015
  ident: 78671_CR4
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2310180
– volume: 18
  start-page: 2430
  issue: 10
  year: 2019
  ident: 78671_CR27
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2018.2872576
– volume: 29
  start-page: 1815
  issue: 4
  year: 2023
  ident: 78671_CR3
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-022-03224-1
– ident: 78671_CR13
  doi: 10.1109/INFCOM.2005.1498475
– year: 2018
  ident: 78671_CR12
  publication-title: Wirel. Sens. Netw.
  doi: 10.1109/INFOCOM.2018.8485808
– volume: 24
  start-page: 15421
  issue: 9
  year: 2024
  ident: 78671_CR15
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3378998
– volume: 23
  start-page: 922
  issue: 5
  year: 2019
  ident: 78671_CR26
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2904578
– volume: 21
  start-page: 16282
  issue: 14
  year: 2021
  ident: 78671_CR29
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3076203
– ident: 78671_CR21
  doi: 10.1155/2019/6312589
– volume: 12
  start-page: 27596
  year: 2024
  ident: 78671_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3365511
– volume: 68
  start-page: 6064
  issue: 6
  year: 2019
  ident: 78671_CR11
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2912188
– volume: 54
  start-page: 208
  issue: 2
  year: 2009
  ident: 78671_CR35
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2010885
– volume: 36
  start-page: 1719
  issue: 6
  year: 2011
  ident: 78671_CR31
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.12.001
– volume: 3
  start-page: 8
  issue: 1
  year: 2015
  ident: 78671_CR9
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2014.2371543
– volume: 20
  start-page: 1934
  issue: 4
  year: 2020
  ident: 78671_CR23
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2948620
– volume: 14
  start-page: 636
  issue: 3
  year: 2014
  ident: 78671_CR1
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2286332
– volume: 7
  start-page: 1736
  issue: 3
  year: 2020
  ident: 78671_CR17
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2019.2952369
– volume: 68
  start-page: 5884
  issue: 6
  year: 2019
  ident: 78671_CR28
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2908584
– volume: 80
  start-page: 578
  issue: 5
  year: 2006
  ident: 78671_CR30
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2005.03.013
– volume: 13
  start-page: 27
  issue: 1
  year: 2017
  ident: 78671_CR20
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2603845
– volume: 6
  start-page: 26971
  year: 2018
  ident: 78671_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2833632
– volume: 64
  start-page: 714
  issue: 2
  year: 2015
  ident: 78671_CR14
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2322356
– volume: 25
  start-page: 3644
  issue: 11
  year: 2021
  ident: 78671_CR24
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2021.3110771
– volume: 9
  start-page: 6199
  issue: 8
  year: 2022
  ident: 78671_CR25
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3109148
– volume: 6
  start-page: 9583
  issue: 6
  year: 2019
  ident: 78671_CR32
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2930073
SSID ssj0000529419
Score 2.4409742
Snippet The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the...
Abstract The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs)....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27931
SubjectTerms 639/166/987
639/705/117
639/705/258
Algorithms
Collaborative beamforming
Energy
Energy utilization
Humanities and Social Sciences
multidisciplinary
Node selection
Nodes
Optimization
Science
Science (multidisciplinary)
Sensors
Sidelobe control
Solar energy
Wind power
Wireless sensor network
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL5VkCBRmJG0SNY2djnxAFKg6o6gGk3izHdrqVlqTdbJF64L8zY2dTLY9eOK2ycSwn8_aMvwF47RsbmkK3ecVRmiTaiFwLLfMgvXfceaGaCJn_pT48VMfH-mjccBvGssq1ToyK2veO9sj3BCpSZDilq3dn5zl1jaLs6thC4ybcIpQEEUv3jqY9FspiSa7HszKFUHsD2is6U1bKvCZkt5xv2KMI2_83X_PPksnf8qbRHB1s_--L3Id7oyPK3ifOeQA3QvcQ7qTWlJeP4OdHQtSlZljBM5_a1jOMhNEy0QF2ZhcnOOlq_p31LUvl5MxROSjqJ4aOMCMM5AWqUTZgoIzXXao3Hxjt_LL5JZ0UYyGePGRzu4xoHzhvQpZ-DN8OPn398DkfWzXkrpJ8ldtWhSC0D8qLgPZuFtDNKlSrra9rJxtdek7QgkpzpzAmRkdLKNdWGJgHO2u0eAJbXd-Fp8CUxIES58PIVdqmbiQKsrdKqHZWBO4z4GuCGTfimFM7jYWJ-XShTCKyQSKbSGTDM3gzPXOWUDyuHb1PfDCNJATu-Ee_PDGjQJsSV-SE5cEXQlK22Za65UKKmWzxt8pgd01-M6qFwVzRPoNX020UaMrS2C70F2kMelG6qjPYSUw3rUToiL6DK1Qb7Lix1M073ek8goaj54_OrBIZvF1z7tW6_v0tnl3_Gs_hbknCRHWRche2VsuL8AJuux-r02H5MkrjL3npPZ8
  priority: 102
  providerName: ProQuest
Title Distributed dynamic scheduling algorithm of target coverage for wireless sensor networks with hybrid energy harvesting system
URI https://link.springer.com/article/10.1038/s41598-024-78671-1
https://www.ncbi.nlm.nih.gov/pubmed/39537671
https://www.proquest.com/docview/3128040895
https://www.proquest.com/docview/3128818957
https://pubmed.ncbi.nlm.nih.gov/PMC11561283
https://doaj.org/article/2a83c3a1ed0340458a29f134364ff135
Volume 14
WOSCitedRecordID wos001354476800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dj9MwDLfgDiReEN8UjilIvEF1S5OtySMHdwKJmyoE0niK0iS9TRodWndI98D_jp1048bnCy-ZtmSVFdux3dg_AzzztQ31UDf5iKM2SbQRuRZa5kF677jzQtURMv9dOZmo6VRXl1p9UU5YggdOG3dYWCWcsDz4oZB0q2cL3XAhxVg2-BnRS9HruRRMJVTvQkuu-yqZoVCHHVoqqiYrZF4SplvOdyxRBOz_nZf5a7LkTzem0RCd3IKbvQfJXibKb8OV0N6B66mn5MVd-PaaoHCpi1XwzKd-8wxDWDQpVHnO7OJsuZqvZ5_ZsmEpD5w5yuPEg4WhB8sIvHiB5x_rMMLF721KFO8YvbJlswsq8WIhlgyymV1FmA58boKEvgcfT44_vHqT9z0WcjeSfJ3bRoUgtA_Ki4CGahzQPxqqRltflk7WuvCcMAGV5k5hMIseklCuGWFEHey41uI-7LXLNjwEpiQulPg8DDmlrctaogZ6ZJ9qxsPAfQZ8s9_G9QDk1AdjYeJFuFAm8cggj0zkkeEZPN_-50uC3_jr6iNi43YlQWfHH1CgTC9Q5l8ClcHBRghMr8-dEWjG8bhTGqefbqdRE-l6xbZheZ7WoPujR2UGD5LMbCkROsLmIIVqR5p2SN2daeeziPaNLjt6oUpk8GIjeD_o-vNePPofe_EYbhSkMZT2KA9gb706D0_gmvu6nnerAVwtp2Uc1QD2j44n1ftBVEMcT4uKxhLH_ertafXpO1IBNWY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLemDgQXvj8CA4wEJ4hWx05jHxACxrRqXdXDkMbJOLazVurS0XSgHviX-Bt5z0k6lY_dduBUtXGj5-Tn92G_93uEvHC58XlXFXHKYDUJsBGx4krEXjhnmXVc5oEyf5ANh_LoSI02yM-2FgbTKludGBS1m1ncI9_moEgBcFKlb0-_xtg1Ck9X2xYaNSz2_fI7hGzVm_4OvN-XSbL78fDDXtx0FYhtKtgiNoX0nivnpeMeVHPPg0fQlYUyLsusyFXiGLLgScWshPANfAIubZFCDOlNL0fyJVD5mwLALjtkc9Q_GH1e7erguZlgqqnO6XK5XYGFxCq2RMQZcsnFbM0ChkYBf_Nu_0zS_O2kNhjA3Zv_26O7RW40rjZ9V6-N22TDl3fI1br55vIu-bGDnMHY7ss76palOZlYCrE-2F4s0admegyTWIxP6KygdcI8tZjwChqYgqtPkeV5CoaCVr6s4HtZZ9RXFPe26XiJtXDUh9pKOjbzwGcC9625s--RT5cy9_ukU85K_5BQKWCggPtBbC5MnuUCVJUzksui1_XMRYS1ANG2YWrHhiFTHTIGuNQ1qDSASgdQaRaRV6v_nNY8JReOfo-4W41EjvHww2x-rBuVpROQyHLDvOtygefpJlEF44L3RAGfaUS2WrjpRvFV-hxrEXm-ugwqC8-hTOlnZ_UY8BNVmkXkQQ3ylSRcBX4hkFCuwX9N1PUr5WQcaNEhtgF3XfKIvG5Xyrlc_34Wjy6exjNybe_wYKAH_eH-Y3I9wYWMWaBii3QW8zP_hFyx3xaTav600QWUfLnsNfQLoBOajg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWy0NceD8CCxgJThC1jp3GPiAElIrVrqoeQNqbcWynrdRNlqYL6oE_xq9jxkm6Ko-97YFT1caN7OSbzzP2-BtCnrvc-LyvijhlYE0C5ohYcSViL5yzzDou8yCZf5iNx_LoSE12yM_uLAymVXacGIjaVRbXyHsciBQAJ1XaK9q0iMlw9Obka4wVpHCntSun0UDkwK-_Q_hWv94fwrt-kSSjD5_ef4zbCgOxTQVbxaaQ3nPlvHTcA00PPHgHfVko47LMilwljqEinlTMSgjlwD_g0hYpxJPeDHIUYgL6v5ShaHlIG5xs1ndwB00w1Z7T6XPZq2GuxPNsiYgzVJWL2dZcGEoG_M3P_TNd87c92zAVjm78zw_xJrneOuD0bWMxt8iOL2-TK01JzvUd8mOISsJYBMw76talOZ5bWgOyHabsT6lZTGEQq9kxrQrapNFTi2mwwMsUAgCK2s8LmD5o7csavpdNnn1NccWbztZ4Qo76cOKSzswyqJzAfRtF7bvk84WM_R7ZLavSPyBUCmgo4H4QsQuTZ7kAAnNGclkM-p65iLAOLNq2-u1YRmShQx4Bl7oBmAaA6QAwzSLycvOfk0a95NzW7xCDm5aoPB5-qJZT3RKZTqBHlhvmXZ8L3GU3iSoYF3wgCvhMI7LXQU-3dFjrM9xF5NnmMhAZ7k6Z0lenTRvwHlWaReR-A_hNT7gKqkPQQ7llCltd3b5SzmdBLB0iHnDiJY_Iq85qzvr172fx8PxhPCVXwXD04f744BG5lqBNY2qo2CO7q-Wpf0wu22-reb18EkiBki8XbUC_AL-roc0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+dynamic+scheduling+algorithm+of+target+coverage+for+wireless+sensor+networks+with+hybrid+energy+harvesting+system&rft.jtitle=Scientific+reports&rft.au=Bao%2C+Xuecai&rft.au=Jiang%2C+Yanlong&rft.au=Han%2C+Longzhe&rft.au=Xu%2C+Xiaohua&rft.date=2024-11-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-78671-1&rft.externalDocID=PMC11561283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon