Based on improved crayfish optimization algorithm cooperative optimal scheduling of multi-microgrid system

In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 24871 - 18
Hlavní autoři: Yan, Dongmei, Wang, Hongkun, Gao, Yujie, Tian, Shiji, Zhang, Hong
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 22.10.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission.
AbstractList In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission.
In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission.In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission.
Abstract In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission.
ArticleNumber 24871
Author Gao, Yujie
Zhang, Hong
Yan, Dongmei
Tian, Shiji
Wang, Hongkun
Author_xml – sequence: 1
  givenname: Dongmei
  surname: Yan
  fullname: Yan, Dongmei
  organization: College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs
– sequence: 2
  givenname: Hongkun
  surname: Wang
  fullname: Wang, Hongkun
  email: whkmyr@163.com
  organization: College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs
– sequence: 3
  givenname: Yujie
  surname: Gao
  fullname: Gao, Yujie
  organization: College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs
– sequence: 4
  givenname: Shiji
  surname: Tian
  fullname: Tian, Shiji
  organization: College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs
– sequence: 5
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39438548$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpH-CAInHhEvBnbJ8QVHxUqsQFzpbj2FmvnHixnZWWX4-7aaHtob7Ymnnm9auZeQlO5jhbAF4j-B5BIj5kipgULcS05R2kqGXPwBmGlLWYYHxy730KLnLewnoYlhTJF-CUSEoEo-IMbD_rbIcmzo2fdinu69skfXA-b5q4K37yf3TxNa3DGJMvm6kxMe5sqtG9XREdmmw2dliCn8cmumZaQvHt5E2KY_JDkw-52OkVeO50yPbi9j4Hv75--Xn5vb3-8e3q8tN1axhFpdW966TkVvSDI4NxXBvLtIaQ9JJyKyXSoiMUUyMJ4aYSBCECue2kNrpz5BxcrbpD1Fu1S9VgOqiovToGYhqVTsWbYFWHeMcdE4IaTJ1zwgmBuZD1E9dTCqvWx1Vrt_STHYydS9LhgejDzOw3aox7hRCVXSdYVXh3q5Di78XmoiafjQ1BzzYuWVXzkmMsGaro20foNi5prr06UoRByXml3ty39M_L3UwrIFagtj_nZJ0yvhyHWB36oBBUNxuk1g1SdYPUcYPUjVn8qPRO_ckishblCs-jTf9tP1H1F-Uu2mY
CitedBy_id crossref_primary_10_1038_s41598_025_02200_x
crossref_primary_10_1038_s41598_025_02218_1
Cites_doi 10.13335/j.1000-3673.pst.2021.0889
10.1016/J.APENERGY.2021.118018
10.1080/15325008.2023.2234378
10.13335/j.1000-3673.pst.2021.0106
10.1016/J.RENENE.2022.09.027
10.1016/J.RENENE.2024.120247
10.1016/J.APENERGY.2022.120522
10.1016/J.JKSUCI.2021.07.017
10.16081/j.epae.202208039
10.19753/j.issn1001-1390.2023.03.016
10.1016/j.renene.2016.08.026
10.13335/j.1000-3673.pst.2022.0843
10.13335/j.1000-3673.pst.2022.1361
10.1016/J.EST.2024.111318
10.13335/j.1000-3673.pst.2022.0399
10.1016/J.JNCA.2023.103788
10.1016/J.ENCONMAN.2022.115639
10.1109/TPWRD.2010.2051819
10.13334/j.0258-8013.pcsee.201845
10.3390/SU14116759
10.19783/j.cnki.pspc.220333
10.13335/j.1000-3673.pst.2020.0186a
10.1016/J.SETA.2022.102670
10.1007/S12065-023-00826-2
10.1016/J.APENERGY.2023.121181
10.3390/FRACTALFRACT8030132
10.1016/J.SCS.2023.104943
10.13335/j.1000-3673.pst.2021.2191
10.1016/J.ENERGY.2023.126981
10.1007/s10462-023-10567-4
10.13334/j.0258-8013.pcsee.210582
10.1016/J.APENERGY.2023.120640
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-76041-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
ProQuest Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_61767f5884c24fff8f882789991fb440
PMC11496685
39438548
10_1038_s41598_024_76041_5
Genre Journal Article
GrantInformation_xml – fundername: Ningxia Natural Science Foundation Project
  grantid: 2023AAC03845; 2023AAC03845; 2023AAC03845; 2023AAC03845; 2023AAC03845
– fundername: Key Laboratory of Modern Agricultural Machinery Corps Open Project
  grantid: XDNJ2022002; XDNJ2022002; XDNJ2022002; XDNJ2022002; XDNJ2022002
– fundername: Key Laboratory of Modern Agricultural Machinery Corps Open Project
  grantid: XDNJ2022002
– fundername: Ningxia Natural Science Foundation Project
  grantid: 2023AAC03845
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-abf6997e8bdf3dcf7ace5aa003b947e991a863424c9337cdcf311307e69aca6f3
IEDL.DBID M7P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001340425900066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:52:49 EDT 2025
Tue Nov 04 02:05:15 EST 2025
Fri Sep 05 06:27:10 EDT 2025
Tue Oct 07 08:07:53 EDT 2025
Wed Feb 19 02:03:50 EST 2025
Sat Nov 29 05:24:28 EST 2025
Tue Nov 18 22:20:41 EST 2025
Fri Feb 21 02:37:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Shared energy storage
Stackelberg game
Crayfish optimization algorithm
Multi-microgrid system
Optimal scheduling
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-abf6997e8bdf3dcf7ace5aa003b947e991a863424c9337cdcf311307e69aca6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3119350977?pq-origsite=%requestingapplication%
PMID 39438548
PQID 3119350977
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_61767f5884c24fff8f882789991fb440
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11496685
proquest_miscellaneous_3119722951
proquest_journals_3119350977
pubmed_primary_39438548
crossref_citationtrail_10_1038_s41598_024_76041_5
crossref_primary_10_1038_s41598_024_76041_5
springer_journals_10_1038_s41598_024_76041_5
PublicationCentury 2000
PublicationDate 2024-10-22
PublicationDateYYYYMMDD 2024-10-22
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References HouYZengJLuoYLiuJResearch on Collaborative and Optimization Methods of Active Energy Management in Community MicrogridPower Syst. Technol.202347041548155710.13335/j.1000-3673.pst.2022.1361
ZhangCKuangYLiuJLinGJinTTwo-stage optimal scheduling of a wind, photovoltaic, gas turbine, fuel cell and storage energy microgrid considering demand-side managementPower Syst. Prot. Control20225024132210.19783/j.cnki.pspc.220333
Liu, X., Zhao, M., Wei, Z. & Lu, M. The energy management and economic optimization scheduling of microgrid based on Colored Petri net and Quantum-PSO algorithm. Sustain. Energy Technol. Assess. 53 (PD). https://doi.org/10.1016/J.SETA.2022.102670 (2022).
ShuaiXCooperative Optimal Scheduling of multi-microgrids based on Cooperative Game considering conditional value at riskPower Syst. Technol.2022460113013810.13335/j.1000-3673.pst.2021.0106
NaderiEMirzaeiLTrimbleJCantrellDMulti-objective Optimal Power Flow incorporating flexible Alternating Current Transmission systems: application of a Wavelet-oriented evolutionary algorithmElectr. Power Compon. Syst.202452576679510.1080/15325008.2023.2234378
Gümüşçü, A., Kaya, S., Tenekeci, M. E., Karaçizmeli, İ. H. & Aydilek, İ. B. The impact of local search strategies on chaotic hybrid firefly particle swarm optimization algorithm in flow-shop scheduling. Journal Of King Saud University-Computer And Information Sciences. 34(8 PB), 6432–6440. https://doi.org/10.1016/J.JKSUCI.2021.07.017 (2022)
Alzahrani Ahmad et al. l-time energy optimization and scheduling of buildings integrated with renewable microgrid. Appl. Energy. 335.  https://doi.org/10.1016/J.APENERGY.2023.120640 (2023).
XuYLiuHSunSMI Lu. Bi-level optimal scheduling of multi-microgrid system considering demand response and shared energy storageElectr. Power Autom. Equip.20234306182610.16081/j.epae.202208039
ShuaiXMaZWangXGuoHZhangHResearch on Optimal Operation of Shared Energy Storage and Integrated Energy Microgrid based on leader-follower game theoryPower Syst. Technol.2023470267969010.13335/j.1000-3673.pst.2021.2191
YaoWWangCZhaoYZhangZGuanQDistributed Optimization of Integrated Energy System Based on Cooperative Game in Uncertain EnvironmentAutom. Electr. Power Syst.202246204353
ZhengYGongJMeiGYeYEconomic risk game model of microgrid considering wind and photovoltaic power uncertaintiesElectr. Meas. Instrum.2023600310711410.19753/j.issn1001-1390.2023.03.016
NnamdiINwuluXiaXOptimal dispatch for a microgrid incorporating renewables and demand responseRenew. Energy2017101162810.1016/j.renene.2016.08.026
NaderiEMirzaeiLPourakbariKCernaFLehtonenMOptimization of active power dispatch considering unified power flow controller: application of evolutionary algorithms in a fuzzy frameworkEvol. Intel.20231731357138710.1007/S12065-023-00826-2
Wang, S., Wang, S., Zhao, Q., Dong, S. & Li, H. Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand. Energy. 269. https://doi.org/10.1016/J.ENERGY.2023.126981 (2023).
ZhouXHanXLiTWeiBLiYMaster-slave game optimal scheduling strategy for Multi-agent Integrated Energy System based on demand response and Power InteractionPower Syst. Technol.202246093333334610.13335/j.1000-3673.pst.2022.0399
DongHFuYJiaQWenXOptimal dispatch of integrated energy microgrid considering hybrid structured electric-thermal energy storageRenew. Energy202219962863910.1016/J.RENENE.2022.09.027
LiPOptimal Dispatch of Multi-microgrids Integrated Energy System Based on Integrated Demand Response and Stackelberg gameProc. CSEE202141041307132110.13334/j.0258-8013.pcsee.201845
Li, B., Wang, H., Wang, X., Negnevitsky, M. & Li, C. Tri-stage optimal scheduling for an islanded microgrid based on a quantum adaptive sparrow search algorithm. Energy. Conv. Manag. 261. https://doi.org/10.1016/J.ENCONMAN.2022.115639 (2022).
DashtdarMOptimal operation of Microgrids with demand-side management based on a combination of genetic algorithm and Artificial Bee colonySustainability202214116759675910.3390/SU14116759(2022)
Khaleel, M. I. Region-aware dynamic job scheduling and resource efficiency for load balancing based on adaptive chaotic sparrow search optimization and coalitional game in cloud computing environments. J. Netw. Comput. Appl. 221. https://doi.org/10.1016/J.JNCA.2023.103788 (2024).
Zhang, R. et al. Network-aware energy management for microgrids in distribution market: a leader-followers approach. Appl. Energy 332. https://doi.org/10.1016/J.APENERGY.2022.120522 (2023).
Jia H., Rao H., Wen C. & Mirjalili S. Crayfish optimization algorithm. Artificial Intelligence Review. 56(Suppl 2), 1919-1979. https://doi.org/10.1007/s10462-023-10567-4 (2023).
SunCEnergy Storage sharing mechanism based on combinatorial double auctionPower Syst. Technol.202044051732173910.13335/j.1000-3673.pst.2020.0186a
Li, J. et al. Distributed quantum multiagent deep meta reinforcement learning for area autonomy energy management of a multiarea microgrid. Appl. Energy. 343. https://doi.org/10.1016/J.APENERGY.2023.121181 (2023).
LasseterRHCERTS Microgrid Laboratory Test BedIEEE Trans. Power Delivery201126132533210.1109/TPWRD.2010.2051819
LiDWuZZhaoBCooperative Game Model and Optimal Dispatch Strategy of Multi-microgrid SystemProc. CSEE202242145140515410.13334/j.0258-8013.pcsee.210582
Abdullah, M. et al. Optimum fractional tilt based cascaded frequency stabilization with MLC Algorithm for Multi-microgrid Assimilating Electric vehicles. Fractal Fract. 8 (3). https://doi.org/10.3390/FRACTALFRACT8030132 (2024).
ElkholyMHOptimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithmRenew. Energy202422412024710.1016/J.RENENE.2024.120247
LiXWangMRobust optimal scheduling of multi-microgrid and bidding strategy of VCG mechanism considering renewable energy-load uncertaintyPower Syst. Technol.202347062330234510.13335/j.1000-3673.pst.2022.0843
FanTWangHWangWLiXYanSCoordinated Optimization Scheduling of Microgrid and distribution Network Based on Cooperative Game considering Active/Passive demand responsePower Syst. Technol.2022460245346310.13335/j.1000-3673.pst.2021.0889
Zhang, X., Wang, Z. & Lu, Z. Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm. Appl. Energy. 306 (PA). https://doi.org/10.1016/J.APENERGY.2021.118018 (2022).
Seyednouri, S. R. et al. Optimal stochastic scheduling of a multi-carrier multi-microgrid system considering storages, demand responses, and thermal comfort. Sustainable Cities Soc. 99. https://doi.org/10.1016/J.SCS.2023.104943 (2023).
YaoRA multi-agent-based microgrid day-ahead optimal operation framework with liquid air energy storage by hybrid IGDT-STAJ. Energy Storage202486PB11131810.1016/J.EST.2024.111318
C Sun (76041_CR13) 2020; 44
T Fan (76041_CR18) 2022; 46
76041_CR25
76041_CR23
76041_CR29
M Dashtdar (76041_CR22) 2022; 14
76041_CR28
76041_CR27
76041_CR26
Y Hou (76041_CR21) 2023; 47
C Zhang (76041_CR2) 2022; 50
76041_CR30
W Yao (76041_CR19) 2022; 46
P Li (76041_CR20) 2021; 41
RH Lasseter (76041_CR3) 2011; 26
X Shuai (76041_CR4) 2022; 46
76041_CR9
R Yao (76041_CR12) 2024; 86
E Naderi (76041_CR31) 2024; 52
X Li (76041_CR10) 2023; 47
76041_CR1
X Zhou (76041_CR5) 2022; 46
X Shuai (76041_CR15) 2023; 47
76041_CR11
76041_CR33
76041_CR16
Y Zheng (76041_CR8) 2023; 60
MH Elkholy (76041_CR24) 2024; 224
E Naderi (76041_CR32) 2023; 17
I Nnamdi (76041_CR7) 2017; 101
D Li (76041_CR17) 2022; 42
Y Xu (76041_CR6) 2023; 43
H Dong (76041_CR14) 2022; 199
References_xml – reference: LiPOptimal Dispatch of Multi-microgrids Integrated Energy System Based on Integrated Demand Response and Stackelberg gameProc. CSEE202141041307132110.13334/j.0258-8013.pcsee.201845
– reference: Zhang, X., Wang, Z. & Lu, Z. Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm. Appl. Energy. 306 (PA). https://doi.org/10.1016/J.APENERGY.2021.118018 (2022).
– reference: NaderiEMirzaeiLPourakbariKCernaFLehtonenMOptimization of active power dispatch considering unified power flow controller: application of evolutionary algorithms in a fuzzy frameworkEvol. Intel.20231731357138710.1007/S12065-023-00826-2
– reference: YaoWWangCZhaoYZhangZGuanQDistributed Optimization of Integrated Energy System Based on Cooperative Game in Uncertain EnvironmentAutom. Electr. Power Syst.202246204353
– reference: Abdullah, M. et al. Optimum fractional tilt based cascaded frequency stabilization with MLC Algorithm for Multi-microgrid Assimilating Electric vehicles. Fractal Fract. 8 (3). https://doi.org/10.3390/FRACTALFRACT8030132 (2024).
– reference: LiDWuZZhaoBCooperative Game Model and Optimal Dispatch Strategy of Multi-microgrid SystemProc. CSEE202242145140515410.13334/j.0258-8013.pcsee.210582
– reference: HouYZengJLuoYLiuJResearch on Collaborative and Optimization Methods of Active Energy Management in Community MicrogridPower Syst. Technol.202347041548155710.13335/j.1000-3673.pst.2022.1361
– reference: Liu, X., Zhao, M., Wei, Z. & Lu, M. The energy management and economic optimization scheduling of microgrid based on Colored Petri net and Quantum-PSO algorithm. Sustain. Energy Technol. Assess. 53 (PD). https://doi.org/10.1016/J.SETA.2022.102670 (2022).
– reference: XuYLiuHSunSMI Lu. Bi-level optimal scheduling of multi-microgrid system considering demand response and shared energy storageElectr. Power Autom. Equip.20234306182610.16081/j.epae.202208039
– reference: Li, J. et al. Distributed quantum multiagent deep meta reinforcement learning for area autonomy energy management of a multiarea microgrid. Appl. Energy. 343. https://doi.org/10.1016/J.APENERGY.2023.121181 (2023).
– reference: YaoRA multi-agent-based microgrid day-ahead optimal operation framework with liquid air energy storage by hybrid IGDT-STAJ. Energy Storage202486PB11131810.1016/J.EST.2024.111318
– reference: NnamdiINwuluXiaXOptimal dispatch for a microgrid incorporating renewables and demand responseRenew. Energy2017101162810.1016/j.renene.2016.08.026
– reference: NaderiEMirzaeiLTrimbleJCantrellDMulti-objective Optimal Power Flow incorporating flexible Alternating Current Transmission systems: application of a Wavelet-oriented evolutionary algorithmElectr. Power Compon. Syst.202452576679510.1080/15325008.2023.2234378
– reference: LiXWangMRobust optimal scheduling of multi-microgrid and bidding strategy of VCG mechanism considering renewable energy-load uncertaintyPower Syst. Technol.202347062330234510.13335/j.1000-3673.pst.2022.0843
– reference: ShuaiXCooperative Optimal Scheduling of multi-microgrids based on Cooperative Game considering conditional value at riskPower Syst. Technol.2022460113013810.13335/j.1000-3673.pst.2021.0106
– reference: ZhengYGongJMeiGYeYEconomic risk game model of microgrid considering wind and photovoltaic power uncertaintiesElectr. Meas. Instrum.2023600310711410.19753/j.issn1001-1390.2023.03.016
– reference: LasseterRHCERTS Microgrid Laboratory Test BedIEEE Trans. Power Delivery201126132533210.1109/TPWRD.2010.2051819
– reference: Wang, S., Wang, S., Zhao, Q., Dong, S. & Li, H. Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand. Energy. 269. https://doi.org/10.1016/J.ENERGY.2023.126981 (2023).
– reference: ShuaiXMaZWangXGuoHZhangHResearch on Optimal Operation of Shared Energy Storage and Integrated Energy Microgrid based on leader-follower game theoryPower Syst. Technol.2023470267969010.13335/j.1000-3673.pst.2021.2191
– reference: Zhang, R. et al. Network-aware energy management for microgrids in distribution market: a leader-followers approach. Appl. Energy 332. https://doi.org/10.1016/J.APENERGY.2022.120522 (2023).
– reference: Khaleel, M. I. Region-aware dynamic job scheduling and resource efficiency for load balancing based on adaptive chaotic sparrow search optimization and coalitional game in cloud computing environments. J. Netw. Comput. Appl. 221. https://doi.org/10.1016/J.JNCA.2023.103788 (2024).
– reference: Seyednouri, S. R. et al. Optimal stochastic scheduling of a multi-carrier multi-microgrid system considering storages, demand responses, and thermal comfort. Sustainable Cities Soc. 99. https://doi.org/10.1016/J.SCS.2023.104943 (2023).
– reference: ElkholyMHOptimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithmRenew. Energy202422412024710.1016/J.RENENE.2024.120247
– reference: Li, B., Wang, H., Wang, X., Negnevitsky, M. & Li, C. Tri-stage optimal scheduling for an islanded microgrid based on a quantum adaptive sparrow search algorithm. Energy. Conv. Manag. 261. https://doi.org/10.1016/J.ENCONMAN.2022.115639 (2022).
– reference: Gümüşçü, A., Kaya, S., Tenekeci, M. E., Karaçizmeli, İ. H. & Aydilek, İ. B. The impact of local search strategies on chaotic hybrid firefly particle swarm optimization algorithm in flow-shop scheduling. Journal Of King Saud University-Computer And Information Sciences. 34(8 PB), 6432–6440. https://doi.org/10.1016/J.JKSUCI.2021.07.017 (2022) 
– reference: SunCEnergy Storage sharing mechanism based on combinatorial double auctionPower Syst. Technol.202044051732173910.13335/j.1000-3673.pst.2020.0186a
– reference: DongHFuYJiaQWenXOptimal dispatch of integrated energy microgrid considering hybrid structured electric-thermal energy storageRenew. Energy202219962863910.1016/J.RENENE.2022.09.027
– reference: Jia H., Rao H., Wen C. & Mirjalili S. Crayfish optimization algorithm. Artificial Intelligence Review. 56(Suppl 2), 1919-1979. https://doi.org/10.1007/s10462-023-10567-4 (2023).
– reference: FanTWangHWangWLiXYanSCoordinated Optimization Scheduling of Microgrid and distribution Network Based on Cooperative Game considering Active/Passive demand responsePower Syst. Technol.2022460245346310.13335/j.1000-3673.pst.2021.0889
– reference: DashtdarMOptimal operation of Microgrids with demand-side management based on a combination of genetic algorithm and Artificial Bee colonySustainability202214116759675910.3390/SU14116759(2022)
– reference: ZhangCKuangYLiuJLinGJinTTwo-stage optimal scheduling of a wind, photovoltaic, gas turbine, fuel cell and storage energy microgrid considering demand-side managementPower Syst. Prot. Control20225024132210.19783/j.cnki.pspc.220333
– reference: ZhouXHanXLiTWeiBLiYMaster-slave game optimal scheduling strategy for Multi-agent Integrated Energy System based on demand response and Power InteractionPower Syst. Technol.202246093333334610.13335/j.1000-3673.pst.2022.0399
– reference: Alzahrani Ahmad et al. l-time energy optimization and scheduling of buildings integrated with renewable microgrid. Appl. Energy. 335.  https://doi.org/10.1016/J.APENERGY.2023.120640 (2023).
– volume: 46
  start-page: 453
  issue: 02
  year: 2022
  ident: 76041_CR18
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2021.0889
– ident: 76041_CR23
  doi: 10.1016/J.APENERGY.2021.118018
– volume: 52
  start-page: 766
  issue: 5
  year: 2024
  ident: 76041_CR31
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325008.2023.2234378
– volume: 46
  start-page: 130
  issue: 01
  year: 2022
  ident: 76041_CR4
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2021.0106
– volume: 199
  start-page: 628
  year: 2022
  ident: 76041_CR14
  publication-title: Renew. Energy
  doi: 10.1016/J.RENENE.2022.09.027
– volume: 224
  start-page: 120247
  year: 2024
  ident: 76041_CR24
  publication-title: Renew. Energy
  doi: 10.1016/J.RENENE.2024.120247
– ident: 76041_CR16
  doi: 10.1016/J.APENERGY.2022.120522
– ident: 76041_CR27
  doi: 10.1016/J.JKSUCI.2021.07.017
– volume: 43
  start-page: 18
  issue: 06
  year: 2023
  ident: 76041_CR6
  publication-title: Electr. Power Autom. Equip.
  doi: 10.16081/j.epae.202208039
– volume: 60
  start-page: 107
  issue: 03
  year: 2023
  ident: 76041_CR8
  publication-title: Electr. Meas. Instrum.
  doi: 10.19753/j.issn1001-1390.2023.03.016
– volume: 101
  start-page: 16
  year: 2017
  ident: 76041_CR7
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.08.026
– volume: 47
  start-page: 2330
  issue: 06
  year: 2023
  ident: 76041_CR10
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2022.0843
– volume: 47
  start-page: 1548
  issue: 04
  year: 2023
  ident: 76041_CR21
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2022.1361
– volume: 86
  start-page: 111318
  issue: PB
  year: 2024
  ident: 76041_CR12
  publication-title: J. Energy Storage
  doi: 10.1016/J.EST.2024.111318
– volume: 46
  start-page: 3333
  issue: 09
  year: 2022
  ident: 76041_CR5
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2022.0399
– ident: 76041_CR25
  doi: 10.1016/J.JNCA.2023.103788
– ident: 76041_CR29
  doi: 10.1016/J.ENCONMAN.2022.115639
– volume: 26
  start-page: 325
  issue: 1
  year: 2011
  ident: 76041_CR3
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2010.2051819
– volume: 41
  start-page: 1307
  issue: 04
  year: 2021
  ident: 76041_CR20
  publication-title: Proc. CSEE
  doi: 10.13334/j.0258-8013.pcsee.201845
– volume: 14
  start-page: 6759
  issue: 11
  year: 2022
  ident: 76041_CR22
  publication-title: Sustainability
  doi: 10.3390/SU14116759
– volume: 50
  start-page: 13
  issue: 24
  year: 2022
  ident: 76041_CR2
  publication-title: Power Syst. Prot. Control
  doi: 10.19783/j.cnki.pspc.220333
– volume: 46
  start-page: 43
  issue: 20
  year: 2022
  ident: 76041_CR19
  publication-title: Autom. Electr. Power Syst.
– volume: 44
  start-page: 1732
  issue: 05
  year: 2020
  ident: 76041_CR13
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2020.0186a
– ident: 76041_CR30
  doi: 10.1016/J.SETA.2022.102670
– volume: 17
  start-page: 1357
  issue: 3
  year: 2023
  ident: 76041_CR32
  publication-title: Evol. Intel.
  doi: 10.1007/S12065-023-00826-2
– ident: 76041_CR28
  doi: 10.1016/J.APENERGY.2023.121181
– ident: 76041_CR26
  doi: 10.3390/FRACTALFRACT8030132
– ident: 76041_CR11
  doi: 10.1016/J.SCS.2023.104943
– volume: 47
  start-page: 679
  issue: 02
  year: 2023
  ident: 76041_CR15
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2021.2191
– ident: 76041_CR1
  doi: 10.1016/J.ENERGY.2023.126981
– ident: 76041_CR33
  doi: 10.1007/s10462-023-10567-4
– volume: 42
  start-page: 5140
  issue: 14
  year: 2022
  ident: 76041_CR17
  publication-title: Proc. CSEE
  doi: 10.13334/j.0258-8013.pcsee.210582
– ident: 76041_CR9
  doi: 10.1016/J.APENERGY.2023.120640
SSID ssj0000529419
Score 2.4501185
Snippet In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system...
Abstract In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24871
SubjectTerms 639/166/987
639/4077/4079
639/4077/909
Algorithms
Crayfish optimization algorithm
Emissions
Energy storage
Humanities and Social Sciences
Multi-microgrid system
multidisciplinary
Optimal scheduling
Optimization algorithms
Pollutants
Pollution control
Science
Science (multidisciplinary)
Shared energy storage
Stackelberg game
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQKlIvVVv6SIHKSL21Fkk8ie0jVKAeKsSBStwsx7HZVGyCsksl_n3HdnbL9nnpbZXMrpx57DcTe74h5F1hrcoBBAOoGgYqz5nirWQSwLmmlc6baOnP4vxcXl2piwejvsKZsEQPnBR3hAhbCx_aKW0J3nvpMScUMuQ1vgGI1TpmPQ-KqcTqXSoo1NQlk3N5tECkCt1kJTBR51CwagOJImH_77LMXw9L_rRjGoHo7Cl5MmWQ9Dit_BnZcv1zspNmSt7vkq8niEstHXraxfcF-NmO5t53ixkd8P9hPjVeUnNzPYzdcjandhhuXWIATyL481j0IgiFXnU6eBqPHbJ5OLx3PXYtTfzPL8iXs9PLj5_YNFCB2QqKJTONr5USTjat5631wlhXGYOB3SgQDlVqZM2hBKs4FxYleIEYJ1ytjDW15y_Jdj_07jWhHC_XHhE2N2jV1hiX89ZIRFzlcst9RoqVcrWd2MbD0IsbHXe9udTJIBoNoqNBdJWR9-vv3Caujb9KnwSbrSUDT3a8gN6jJ-_R__KejOyvLK6n4F1ofGjFMZESIiOH69sYdmEvxfRuuEsyIoxCLzLyKjnIeiVcAZdYCWZEbrjOxlI37_TdLFJ7Y3WK9afEh_uw8rIf6_qzLt78D13skcdlCA8E5rLcJ9vL8c4dkEf227JbjG9jfH0HyVIpeg
  priority: 102
  providerName: Directory of Open Access Journals
Title Based on improved crayfish optimization algorithm cooperative optimal scheduling of multi-microgrid system
URI https://link.springer.com/article/10.1038/s41598-024-76041-5
https://www.ncbi.nlm.nih.gov/pubmed/39438548
https://www.proquest.com/docview/3119350977
https://www.proquest.com/docview/3119722951
https://pubmed.ncbi.nlm.nih.gov/PMC11496685
https://doaj.org/article/61767f5884c24fff8f882789991fb440
Volume 14
WOSCitedRecordID wos001340425900066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8MQ2kHjhGxYYVZB4A2tJ7MT2E6JoE0isihBI5SlyHLsNWpOu6ZD27zk7aafysRdeoii-RHbufF--D4DXsdYyYowTxtKSMBlFRNJKEMGYMWUljFUe05_5ZCKmU5kPDrduCKvc8ETPqKtWOx_5MY1R1UDpxvm75QVxXaPc6erQQmMPDlyVBOpD9_Ktj8WdYrFYDrkyERXHHcorl1OWMMKziMUk3ZFHvmz_33TNP0Mmfzs39eLo9P7_LuQB3BsU0fB9TzkP4ZZpHsGdvjXl1WP4MUbxVoVtE9be7YD3eqWubN3NwxbZzGLI3wzV-Qy_vp4vQt22S9MXEu9B8PNoO6MscynvYWtDH71IFi4GcLaqq7AvI_0Evp2efP3wkQx9GYhOWbwmqrSZlNyIsrK00pYrbVKlkD-UknGDGqcSGWUJ05JSrhEC14y8xGRSaZVZ-hT2m7YxhxBSfJxZFNSRQuKolDIRrZRAwS1NpKkNIN5gp9BD0XLXO-O88IfnVBQ9RgvEaOExWqQBvNm-s-xLdtwIPXZI30K6ctv-QbuaFcPuLVDNy7h1Ob06YdZaYdEw4cIp17ZkLArgaIPrYuABXXGN6ABebYdx97ojGdWY9rKH4a6jehzAs57CtjOhklGBBmUAYof2dqa6O9LUc18hHI1cNGMFLu7thkyv5_Xvf_H85mW8gLuJ2zkouZPkCPbXq0vzEm7rn-u6W41gj0-5v4oRHIxPJvmXkfdw4PUsyUd-a-JI_uks__4Lon8_qA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHQheuDMCA4wETxAtid3YfkCIAdOqdVUfhjSeMsex205rUpoO1D_Fb-Q4l07lsrc98BYlJ4mdfOdmnwvAq1BrGTDGfca6qc9kEPiSZsIXjBmTZsJYVf3pPh8MxPGxHG7AzzYXxoVVtjKxEtRZod0a-Q4N0dRA7cb5-9k333WNcrurbQuNGhYHZvkDXbbyXe8T_t_XUbT3-ejjvt90FfB1l4ULX6U2lpIbkWaWZtpypU1XKUR3Khk3aC8pEVMWMY2-PtdIga9GTjCxVFrFluJzr8EmQ7CLDmwOe4fDr6tVHbdvxkLZZOcEVOyUqCFdFlvEfB4HLPS7axqwahTwN-v2zyDN33ZqKwW4d-d_-3R34XZjapMPNW_cgw2T34cbdfPN5QM43UUFnpEiJ5NqYQWP9Vwt7aQckwIF6bTJUCXqbISzWYynRBfFzNSl0msSfHyJqM9cOP-IFJZU8Zn-1EU5juaTjNSFsh_ClyuZ6CPo5EVuHgOheDq2aIoECuGfKWUCmimBpok0gabWg7BFQ6KbsuyuO8hZUoUHUJHUCEoQQUmFoKTrwZvVPbO6KMml1LsOZCtKV1C8OlHMR0kjnxI0ZGNuXdayjpi1Vlh0vbhw7oNNGQs82G6xlTRSrkwugOXBy9VllE9u00nlpjivabjrGR96sFUjejUSKhkV6DJ7INawvjbU9Sv5ZFzVQEc3Hh11gZN727LFxbj-_S2eXD6NF3Bz_-iwn_R7g4OncCtyXIt2ShRtQ2cxPzfP4Lr-vpiU8-cN4xM4uWqG-QW_sJkn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGLfGeIgLb0ZggJHgBFaT2I3tA0KMUTFtqnoAaTfjOHbbaU1K04H6r_HX8dlJOpXHbjtwi5Ivke38vpf9PRB6mRgjY8Y4YayfEybjmEhaCCIYszYvhHU6_OkjPhyK42M52kI_u1wYH1bZycQgqIvK-D3yHk3A1ADtxnnPtWERo_3Bu_k34jtI-ZPWrp1GA5FDu_oB7lv99mAf_vWrNB18_PzhE2k7DBDTZ8mS6NxlUnIr8sLRwjiuje1rDUjPJeMWbCctMspSZsDv5wYoYBjAFTaT2ujMUfjuFXSV-6LlIWxwtN7f8SdoLJFtnk5MRa8GXenz2VJGeBazhPQ3dGFoGfA3O_fPcM3fzmyDKhzc_p8X8Q661Rrg-H3DMXfRli3voetNS87VfXSyB2q9wFWJp2G7Ba7NQq_ctJ7gCsTrrM1bxfp0DLNZTmbYVNXcNgXUGxL4fA28UPgg_zGuHA5Rm2TmYx_Hi2mBm_LZD9CXS5noQ7RdVqV9hDCF25kDAyXWwBSF1jamhRZgsEgbG-oilHTIUKYt1u57hpyqEDRAhWrQpABNKqBJ9SP0ev3OvClVciH1ngfcmtKXGQ83qsVYtVJLgXmbcedzmU3KnHPCgUPGhXcqXM5YHKHdDmeqlX21OgdZhF6sH4PU8kdRurTVWUPDfSf5JEI7DbrXI6GSUQGOdITEBu43hrr5pJxOQmV0cO7BfRcwuTcdi5yP699r8fjiaTxHN4BL1NHB8PAJupl6BgbjJU130fZycWafomvm-3JaL54FCYDR18vmll9Nw6Bm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Based+on+improved+crayfish+optimization+algorithm+cooperative+optimal+scheduling+of+multi-microgrid+system&rft.jtitle=Scientific+reports&rft.au=Yan%2C+Dongmei&rft.au=Wang%2C+Hongkun&rft.au=Gao%2C+Yujie&rft.au=Tian%2C+Shiji&rft.date=2024-10-22&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=24871&rft_id=info:doi/10.1038%2Fs41598-024-76041-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon