Based on improved crayfish optimization algorithm cooperative optimal scheduling of multi-microgrid system
In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based o...
Saved in:
| Published in: | Scientific reports Vol. 14; no. 1; pp. 24871 - 18 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
22.10.2024
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission. |
|---|---|
| AbstractList | In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission. In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission.In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission. Abstract In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission. |
| ArticleNumber | 24871 |
| Author | Gao, Yujie Zhang, Hong Yan, Dongmei Tian, Shiji Wang, Hongkun |
| Author_xml | – sequence: 1 givenname: Dongmei surname: Yan fullname: Yan, Dongmei organization: College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs – sequence: 2 givenname: Hongkun surname: Wang fullname: Wang, Hongkun email: whkmyr@163.com organization: College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs – sequence: 3 givenname: Yujie surname: Gao fullname: Gao, Yujie organization: College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs – sequence: 4 givenname: Shiji surname: Tian fullname: Tian, Shiji organization: College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs – sequence: 5 givenname: Hong surname: Zhang fullname: Zhang, Hong organization: College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39438548$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhi1UREvpH-CAInHhEvBnbJ8QVHxUqsQFzpbj2FmvnHixnZWWX4-7aaHtob7Ymnnm9auZeQlO5jhbAF4j-B5BIj5kipgULcS05R2kqGXPwBmGlLWYYHxy730KLnLewnoYlhTJF-CUSEoEo-IMbD_rbIcmzo2fdinu69skfXA-b5q4K37yf3TxNa3DGJMvm6kxMe5sqtG9XREdmmw2dliCn8cmumZaQvHt5E2KY_JDkw-52OkVeO50yPbi9j4Hv75--Xn5vb3-8e3q8tN1axhFpdW966TkVvSDI4NxXBvLtIaQ9JJyKyXSoiMUUyMJ4aYSBCECue2kNrpz5BxcrbpD1Fu1S9VgOqiovToGYhqVTsWbYFWHeMcdE4IaTJ1zwgmBuZD1E9dTCqvWx1Vrt_STHYydS9LhgejDzOw3aox7hRCVXSdYVXh3q5Di78XmoiafjQ1BzzYuWVXzkmMsGaro20foNi5prr06UoRByXml3ty39M_L3UwrIFagtj_nZJ0yvhyHWB36oBBUNxuk1g1SdYPUcYPUjVn8qPRO_ckishblCs-jTf9tP1H1F-Uu2mY |
| CitedBy_id | crossref_primary_10_1038_s41598_025_02200_x crossref_primary_10_1038_s41598_025_02218_1 |
| Cites_doi | 10.13335/j.1000-3673.pst.2021.0889 10.1016/J.APENERGY.2021.118018 10.1080/15325008.2023.2234378 10.13335/j.1000-3673.pst.2021.0106 10.1016/J.RENENE.2022.09.027 10.1016/J.RENENE.2024.120247 10.1016/J.APENERGY.2022.120522 10.1016/J.JKSUCI.2021.07.017 10.16081/j.epae.202208039 10.19753/j.issn1001-1390.2023.03.016 10.1016/j.renene.2016.08.026 10.13335/j.1000-3673.pst.2022.0843 10.13335/j.1000-3673.pst.2022.1361 10.1016/J.EST.2024.111318 10.13335/j.1000-3673.pst.2022.0399 10.1016/J.JNCA.2023.103788 10.1016/J.ENCONMAN.2022.115639 10.1109/TPWRD.2010.2051819 10.13334/j.0258-8013.pcsee.201845 10.3390/SU14116759 10.19783/j.cnki.pspc.220333 10.13335/j.1000-3673.pst.2020.0186a 10.1016/J.SETA.2022.102670 10.1007/S12065-023-00826-2 10.1016/J.APENERGY.2023.121181 10.3390/FRACTALFRACT8030132 10.1016/J.SCS.2023.104943 10.13335/j.1000-3673.pst.2021.2191 10.1016/J.ENERGY.2023.126981 10.1007/s10462-023-10567-4 10.13334/j.0258-8013.pcsee.210582 10.1016/J.APENERGY.2023.120640 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-76041-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_61767f5884c24fff8f882789991fb440 PMC11496685 39438548 10_1038_s41598_024_76041_5 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Ningxia Natural Science Foundation Project grantid: 2023AAC03845; 2023AAC03845; 2023AAC03845; 2023AAC03845; 2023AAC03845 – fundername: Key Laboratory of Modern Agricultural Machinery Corps Open Project grantid: XDNJ2022002; XDNJ2022002; XDNJ2022002; XDNJ2022002; XDNJ2022002 – fundername: Key Laboratory of Modern Agricultural Machinery Corps Open Project grantid: XDNJ2022002 – fundername: Ningxia Natural Science Foundation Project grantid: 2023AAC03845 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-abf6997e8bdf3dcf7ace5aa003b947e991a863424c9337cdcf311307e69aca6f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001340425900066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:52:49 EDT 2025 Tue Nov 04 02:05:15 EST 2025 Fri Sep 05 06:27:10 EDT 2025 Tue Oct 07 08:07:53 EDT 2025 Wed Feb 19 02:03:50 EST 2025 Sat Nov 29 05:24:28 EST 2025 Tue Nov 18 22:20:41 EST 2025 Fri Feb 21 02:37:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Shared energy storage Stackelberg game Crayfish optimization algorithm Multi-microgrid system Optimal scheduling |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-abf6997e8bdf3dcf7ace5aa003b947e991a863424c9337cdcf311307e69aca6f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/61767f5884c24fff8f882789991fb440 |
| PMID | 39438548 |
| PQID | 3119350977 |
| PQPubID | 2041939 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_61767f5884c24fff8f882789991fb440 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11496685 proquest_miscellaneous_3119722951 proquest_journals_3119350977 pubmed_primary_39438548 crossref_citationtrail_10_1038_s41598_024_76041_5 crossref_primary_10_1038_s41598_024_76041_5 springer_journals_10_1038_s41598_024_76041_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-22 |
| PublicationDateYYYYMMDD | 2024-10-22 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | HouYZengJLuoYLiuJResearch on Collaborative and Optimization Methods of Active Energy Management in Community MicrogridPower Syst. Technol.202347041548155710.13335/j.1000-3673.pst.2022.1361 ZhangCKuangYLiuJLinGJinTTwo-stage optimal scheduling of a wind, photovoltaic, gas turbine, fuel cell and storage energy microgrid considering demand-side managementPower Syst. Prot. Control20225024132210.19783/j.cnki.pspc.220333 Liu, X., Zhao, M., Wei, Z. & Lu, M. The energy management and economic optimization scheduling of microgrid based on Colored Petri net and Quantum-PSO algorithm. Sustain. Energy Technol. Assess. 53 (PD). https://doi.org/10.1016/J.SETA.2022.102670 (2022). ShuaiXCooperative Optimal Scheduling of multi-microgrids based on Cooperative Game considering conditional value at riskPower Syst. Technol.2022460113013810.13335/j.1000-3673.pst.2021.0106 NaderiEMirzaeiLTrimbleJCantrellDMulti-objective Optimal Power Flow incorporating flexible Alternating Current Transmission systems: application of a Wavelet-oriented evolutionary algorithmElectr. Power Compon. Syst.202452576679510.1080/15325008.2023.2234378 Gümüşçü, A., Kaya, S., Tenekeci, M. E., Karaçizmeli, İ. H. & Aydilek, İ. B. The impact of local search strategies on chaotic hybrid firefly particle swarm optimization algorithm in flow-shop scheduling. Journal Of King Saud University-Computer And Information Sciences. 34(8 PB), 6432–6440. https://doi.org/10.1016/J.JKSUCI.2021.07.017 (2022) Alzahrani Ahmad et al. l-time energy optimization and scheduling of buildings integrated with renewable microgrid. Appl. Energy. 335. https://doi.org/10.1016/J.APENERGY.2023.120640 (2023). XuYLiuHSunSMI Lu. Bi-level optimal scheduling of multi-microgrid system considering demand response and shared energy storageElectr. Power Autom. Equip.20234306182610.16081/j.epae.202208039 ShuaiXMaZWangXGuoHZhangHResearch on Optimal Operation of Shared Energy Storage and Integrated Energy Microgrid based on leader-follower game theoryPower Syst. Technol.2023470267969010.13335/j.1000-3673.pst.2021.2191 YaoWWangCZhaoYZhangZGuanQDistributed Optimization of Integrated Energy System Based on Cooperative Game in Uncertain EnvironmentAutom. Electr. Power Syst.202246204353 ZhengYGongJMeiGYeYEconomic risk game model of microgrid considering wind and photovoltaic power uncertaintiesElectr. Meas. Instrum.2023600310711410.19753/j.issn1001-1390.2023.03.016 NnamdiINwuluXiaXOptimal dispatch for a microgrid incorporating renewables and demand responseRenew. Energy2017101162810.1016/j.renene.2016.08.026 NaderiEMirzaeiLPourakbariKCernaFLehtonenMOptimization of active power dispatch considering unified power flow controller: application of evolutionary algorithms in a fuzzy frameworkEvol. Intel.20231731357138710.1007/S12065-023-00826-2 Wang, S., Wang, S., Zhao, Q., Dong, S. & Li, H. Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand. Energy. 269. https://doi.org/10.1016/J.ENERGY.2023.126981 (2023). ZhouXHanXLiTWeiBLiYMaster-slave game optimal scheduling strategy for Multi-agent Integrated Energy System based on demand response and Power InteractionPower Syst. Technol.202246093333334610.13335/j.1000-3673.pst.2022.0399 DongHFuYJiaQWenXOptimal dispatch of integrated energy microgrid considering hybrid structured electric-thermal energy storageRenew. Energy202219962863910.1016/J.RENENE.2022.09.027 LiPOptimal Dispatch of Multi-microgrids Integrated Energy System Based on Integrated Demand Response and Stackelberg gameProc. CSEE202141041307132110.13334/j.0258-8013.pcsee.201845 Li, B., Wang, H., Wang, X., Negnevitsky, M. & Li, C. Tri-stage optimal scheduling for an islanded microgrid based on a quantum adaptive sparrow search algorithm. Energy. Conv. Manag. 261. https://doi.org/10.1016/J.ENCONMAN.2022.115639 (2022). DashtdarMOptimal operation of Microgrids with demand-side management based on a combination of genetic algorithm and Artificial Bee colonySustainability202214116759675910.3390/SU14116759(2022) Khaleel, M. I. Region-aware dynamic job scheduling and resource efficiency for load balancing based on adaptive chaotic sparrow search optimization and coalitional game in cloud computing environments. J. Netw. Comput. Appl. 221. https://doi.org/10.1016/J.JNCA.2023.103788 (2024). Zhang, R. et al. Network-aware energy management for microgrids in distribution market: a leader-followers approach. Appl. Energy 332. https://doi.org/10.1016/J.APENERGY.2022.120522 (2023). Jia H., Rao H., Wen C. & Mirjalili S. Crayfish optimization algorithm. Artificial Intelligence Review. 56(Suppl 2), 1919-1979. https://doi.org/10.1007/s10462-023-10567-4 (2023). SunCEnergy Storage sharing mechanism based on combinatorial double auctionPower Syst. Technol.202044051732173910.13335/j.1000-3673.pst.2020.0186a Li, J. et al. Distributed quantum multiagent deep meta reinforcement learning for area autonomy energy management of a multiarea microgrid. Appl. Energy. 343. https://doi.org/10.1016/J.APENERGY.2023.121181 (2023). LasseterRHCERTS Microgrid Laboratory Test BedIEEE Trans. Power Delivery201126132533210.1109/TPWRD.2010.2051819 LiDWuZZhaoBCooperative Game Model and Optimal Dispatch Strategy of Multi-microgrid SystemProc. CSEE202242145140515410.13334/j.0258-8013.pcsee.210582 Abdullah, M. et al. Optimum fractional tilt based cascaded frequency stabilization with MLC Algorithm for Multi-microgrid Assimilating Electric vehicles. Fractal Fract. 8 (3). https://doi.org/10.3390/FRACTALFRACT8030132 (2024). ElkholyMHOptimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithmRenew. Energy202422412024710.1016/J.RENENE.2024.120247 LiXWangMRobust optimal scheduling of multi-microgrid and bidding strategy of VCG mechanism considering renewable energy-load uncertaintyPower Syst. Technol.202347062330234510.13335/j.1000-3673.pst.2022.0843 FanTWangHWangWLiXYanSCoordinated Optimization Scheduling of Microgrid and distribution Network Based on Cooperative Game considering Active/Passive demand responsePower Syst. Technol.2022460245346310.13335/j.1000-3673.pst.2021.0889 Zhang, X., Wang, Z. & Lu, Z. Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm. Appl. Energy. 306 (PA). https://doi.org/10.1016/J.APENERGY.2021.118018 (2022). Seyednouri, S. R. et al. Optimal stochastic scheduling of a multi-carrier multi-microgrid system considering storages, demand responses, and thermal comfort. Sustainable Cities Soc. 99. https://doi.org/10.1016/J.SCS.2023.104943 (2023). YaoRA multi-agent-based microgrid day-ahead optimal operation framework with liquid air energy storage by hybrid IGDT-STAJ. Energy Storage202486PB11131810.1016/J.EST.2024.111318 C Sun (76041_CR13) 2020; 44 T Fan (76041_CR18) 2022; 46 76041_CR25 76041_CR23 76041_CR29 M Dashtdar (76041_CR22) 2022; 14 76041_CR28 76041_CR27 76041_CR26 Y Hou (76041_CR21) 2023; 47 C Zhang (76041_CR2) 2022; 50 76041_CR30 W Yao (76041_CR19) 2022; 46 P Li (76041_CR20) 2021; 41 RH Lasseter (76041_CR3) 2011; 26 X Shuai (76041_CR4) 2022; 46 76041_CR9 R Yao (76041_CR12) 2024; 86 E Naderi (76041_CR31) 2024; 52 X Li (76041_CR10) 2023; 47 76041_CR1 X Zhou (76041_CR5) 2022; 46 X Shuai (76041_CR15) 2023; 47 76041_CR11 76041_CR33 76041_CR16 Y Zheng (76041_CR8) 2023; 60 MH Elkholy (76041_CR24) 2024; 224 E Naderi (76041_CR32) 2023; 17 I Nnamdi (76041_CR7) 2017; 101 D Li (76041_CR17) 2022; 42 Y Xu (76041_CR6) 2023; 43 H Dong (76041_CR14) 2022; 199 |
| References_xml | – reference: LiPOptimal Dispatch of Multi-microgrids Integrated Energy System Based on Integrated Demand Response and Stackelberg gameProc. CSEE202141041307132110.13334/j.0258-8013.pcsee.201845 – reference: Zhang, X., Wang, Z. & Lu, Z. Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm. Appl. Energy. 306 (PA). https://doi.org/10.1016/J.APENERGY.2021.118018 (2022). – reference: NaderiEMirzaeiLPourakbariKCernaFLehtonenMOptimization of active power dispatch considering unified power flow controller: application of evolutionary algorithms in a fuzzy frameworkEvol. Intel.20231731357138710.1007/S12065-023-00826-2 – reference: YaoWWangCZhaoYZhangZGuanQDistributed Optimization of Integrated Energy System Based on Cooperative Game in Uncertain EnvironmentAutom. Electr. Power Syst.202246204353 – reference: Abdullah, M. et al. Optimum fractional tilt based cascaded frequency stabilization with MLC Algorithm for Multi-microgrid Assimilating Electric vehicles. Fractal Fract. 8 (3). https://doi.org/10.3390/FRACTALFRACT8030132 (2024). – reference: LiDWuZZhaoBCooperative Game Model and Optimal Dispatch Strategy of Multi-microgrid SystemProc. CSEE202242145140515410.13334/j.0258-8013.pcsee.210582 – reference: HouYZengJLuoYLiuJResearch on Collaborative and Optimization Methods of Active Energy Management in Community MicrogridPower Syst. Technol.202347041548155710.13335/j.1000-3673.pst.2022.1361 – reference: Liu, X., Zhao, M., Wei, Z. & Lu, M. The energy management and economic optimization scheduling of microgrid based on Colored Petri net and Quantum-PSO algorithm. Sustain. Energy Technol. Assess. 53 (PD). https://doi.org/10.1016/J.SETA.2022.102670 (2022). – reference: XuYLiuHSunSMI Lu. Bi-level optimal scheduling of multi-microgrid system considering demand response and shared energy storageElectr. Power Autom. Equip.20234306182610.16081/j.epae.202208039 – reference: Li, J. et al. Distributed quantum multiagent deep meta reinforcement learning for area autonomy energy management of a multiarea microgrid. Appl. Energy. 343. https://doi.org/10.1016/J.APENERGY.2023.121181 (2023). – reference: YaoRA multi-agent-based microgrid day-ahead optimal operation framework with liquid air energy storage by hybrid IGDT-STAJ. Energy Storage202486PB11131810.1016/J.EST.2024.111318 – reference: NnamdiINwuluXiaXOptimal dispatch for a microgrid incorporating renewables and demand responseRenew. Energy2017101162810.1016/j.renene.2016.08.026 – reference: NaderiEMirzaeiLTrimbleJCantrellDMulti-objective Optimal Power Flow incorporating flexible Alternating Current Transmission systems: application of a Wavelet-oriented evolutionary algorithmElectr. Power Compon. Syst.202452576679510.1080/15325008.2023.2234378 – reference: LiXWangMRobust optimal scheduling of multi-microgrid and bidding strategy of VCG mechanism considering renewable energy-load uncertaintyPower Syst. Technol.202347062330234510.13335/j.1000-3673.pst.2022.0843 – reference: ShuaiXCooperative Optimal Scheduling of multi-microgrids based on Cooperative Game considering conditional value at riskPower Syst. Technol.2022460113013810.13335/j.1000-3673.pst.2021.0106 – reference: ZhengYGongJMeiGYeYEconomic risk game model of microgrid considering wind and photovoltaic power uncertaintiesElectr. Meas. Instrum.2023600310711410.19753/j.issn1001-1390.2023.03.016 – reference: LasseterRHCERTS Microgrid Laboratory Test BedIEEE Trans. Power Delivery201126132533210.1109/TPWRD.2010.2051819 – reference: Wang, S., Wang, S., Zhao, Q., Dong, S. & Li, H. Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand. Energy. 269. https://doi.org/10.1016/J.ENERGY.2023.126981 (2023). – reference: ShuaiXMaZWangXGuoHZhangHResearch on Optimal Operation of Shared Energy Storage and Integrated Energy Microgrid based on leader-follower game theoryPower Syst. Technol.2023470267969010.13335/j.1000-3673.pst.2021.2191 – reference: Zhang, R. et al. Network-aware energy management for microgrids in distribution market: a leader-followers approach. Appl. Energy 332. https://doi.org/10.1016/J.APENERGY.2022.120522 (2023). – reference: Khaleel, M. I. Region-aware dynamic job scheduling and resource efficiency for load balancing based on adaptive chaotic sparrow search optimization and coalitional game in cloud computing environments. J. Netw. Comput. Appl. 221. https://doi.org/10.1016/J.JNCA.2023.103788 (2024). – reference: Seyednouri, S. R. et al. Optimal stochastic scheduling of a multi-carrier multi-microgrid system considering storages, demand responses, and thermal comfort. Sustainable Cities Soc. 99. https://doi.org/10.1016/J.SCS.2023.104943 (2023). – reference: ElkholyMHOptimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithmRenew. Energy202422412024710.1016/J.RENENE.2024.120247 – reference: Li, B., Wang, H., Wang, X., Negnevitsky, M. & Li, C. Tri-stage optimal scheduling for an islanded microgrid based on a quantum adaptive sparrow search algorithm. Energy. Conv. Manag. 261. https://doi.org/10.1016/J.ENCONMAN.2022.115639 (2022). – reference: Gümüşçü, A., Kaya, S., Tenekeci, M. E., Karaçizmeli, İ. H. & Aydilek, İ. B. The impact of local search strategies on chaotic hybrid firefly particle swarm optimization algorithm in flow-shop scheduling. Journal Of King Saud University-Computer And Information Sciences. 34(8 PB), 6432–6440. https://doi.org/10.1016/J.JKSUCI.2021.07.017 (2022) – reference: SunCEnergy Storage sharing mechanism based on combinatorial double auctionPower Syst. Technol.202044051732173910.13335/j.1000-3673.pst.2020.0186a – reference: DongHFuYJiaQWenXOptimal dispatch of integrated energy microgrid considering hybrid structured electric-thermal energy storageRenew. Energy202219962863910.1016/J.RENENE.2022.09.027 – reference: Jia H., Rao H., Wen C. & Mirjalili S. Crayfish optimization algorithm. Artificial Intelligence Review. 56(Suppl 2), 1919-1979. https://doi.org/10.1007/s10462-023-10567-4 (2023). – reference: FanTWangHWangWLiXYanSCoordinated Optimization Scheduling of Microgrid and distribution Network Based on Cooperative Game considering Active/Passive demand responsePower Syst. Technol.2022460245346310.13335/j.1000-3673.pst.2021.0889 – reference: DashtdarMOptimal operation of Microgrids with demand-side management based on a combination of genetic algorithm and Artificial Bee colonySustainability202214116759675910.3390/SU14116759(2022) – reference: ZhangCKuangYLiuJLinGJinTTwo-stage optimal scheduling of a wind, photovoltaic, gas turbine, fuel cell and storage energy microgrid considering demand-side managementPower Syst. Prot. Control20225024132210.19783/j.cnki.pspc.220333 – reference: ZhouXHanXLiTWeiBLiYMaster-slave game optimal scheduling strategy for Multi-agent Integrated Energy System based on demand response and Power InteractionPower Syst. Technol.202246093333334610.13335/j.1000-3673.pst.2022.0399 – reference: Alzahrani Ahmad et al. l-time energy optimization and scheduling of buildings integrated with renewable microgrid. Appl. Energy. 335. https://doi.org/10.1016/J.APENERGY.2023.120640 (2023). – volume: 46 start-page: 453 issue: 02 year: 2022 ident: 76041_CR18 publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2021.0889 – ident: 76041_CR23 doi: 10.1016/J.APENERGY.2021.118018 – volume: 52 start-page: 766 issue: 5 year: 2024 ident: 76041_CR31 publication-title: Electr. Power Compon. Syst. doi: 10.1080/15325008.2023.2234378 – volume: 46 start-page: 130 issue: 01 year: 2022 ident: 76041_CR4 publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2021.0106 – volume: 199 start-page: 628 year: 2022 ident: 76041_CR14 publication-title: Renew. Energy doi: 10.1016/J.RENENE.2022.09.027 – volume: 224 start-page: 120247 year: 2024 ident: 76041_CR24 publication-title: Renew. Energy doi: 10.1016/J.RENENE.2024.120247 – ident: 76041_CR16 doi: 10.1016/J.APENERGY.2022.120522 – ident: 76041_CR27 doi: 10.1016/J.JKSUCI.2021.07.017 – volume: 43 start-page: 18 issue: 06 year: 2023 ident: 76041_CR6 publication-title: Electr. Power Autom. Equip. doi: 10.16081/j.epae.202208039 – volume: 60 start-page: 107 issue: 03 year: 2023 ident: 76041_CR8 publication-title: Electr. Meas. Instrum. doi: 10.19753/j.issn1001-1390.2023.03.016 – volume: 101 start-page: 16 year: 2017 ident: 76041_CR7 publication-title: Renew. Energy doi: 10.1016/j.renene.2016.08.026 – volume: 47 start-page: 2330 issue: 06 year: 2023 ident: 76041_CR10 publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2022.0843 – volume: 47 start-page: 1548 issue: 04 year: 2023 ident: 76041_CR21 publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2022.1361 – volume: 86 start-page: 111318 issue: PB year: 2024 ident: 76041_CR12 publication-title: J. Energy Storage doi: 10.1016/J.EST.2024.111318 – volume: 46 start-page: 3333 issue: 09 year: 2022 ident: 76041_CR5 publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2022.0399 – ident: 76041_CR25 doi: 10.1016/J.JNCA.2023.103788 – ident: 76041_CR29 doi: 10.1016/J.ENCONMAN.2022.115639 – volume: 26 start-page: 325 issue: 1 year: 2011 ident: 76041_CR3 publication-title: IEEE Trans. Power Delivery doi: 10.1109/TPWRD.2010.2051819 – volume: 41 start-page: 1307 issue: 04 year: 2021 ident: 76041_CR20 publication-title: Proc. CSEE doi: 10.13334/j.0258-8013.pcsee.201845 – volume: 14 start-page: 6759 issue: 11 year: 2022 ident: 76041_CR22 publication-title: Sustainability doi: 10.3390/SU14116759 – volume: 50 start-page: 13 issue: 24 year: 2022 ident: 76041_CR2 publication-title: Power Syst. Prot. Control doi: 10.19783/j.cnki.pspc.220333 – volume: 46 start-page: 43 issue: 20 year: 2022 ident: 76041_CR19 publication-title: Autom. Electr. Power Syst. – volume: 44 start-page: 1732 issue: 05 year: 2020 ident: 76041_CR13 publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2020.0186a – ident: 76041_CR30 doi: 10.1016/J.SETA.2022.102670 – volume: 17 start-page: 1357 issue: 3 year: 2023 ident: 76041_CR32 publication-title: Evol. Intel. doi: 10.1007/S12065-023-00826-2 – ident: 76041_CR28 doi: 10.1016/J.APENERGY.2023.121181 – ident: 76041_CR26 doi: 10.3390/FRACTALFRACT8030132 – ident: 76041_CR11 doi: 10.1016/J.SCS.2023.104943 – volume: 47 start-page: 679 issue: 02 year: 2023 ident: 76041_CR15 publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2021.2191 – ident: 76041_CR1 doi: 10.1016/J.ENERGY.2023.126981 – ident: 76041_CR33 doi: 10.1007/s10462-023-10567-4 – volume: 42 start-page: 5140 issue: 14 year: 2022 ident: 76041_CR17 publication-title: Proc. CSEE doi: 10.13334/j.0258-8013.pcsee.210582 – ident: 76041_CR9 doi: 10.1016/J.APENERGY.2023.120640 |
| SSID | ssj0000529419 |
| Score | 2.4501185 |
| Snippet | In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system... Abstract In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 24871 |
| SubjectTerms | 639/166/987 639/4077/4079 639/4077/909 Algorithms Crayfish optimization algorithm Emissions Energy storage Humanities and Social Sciences Multi-microgrid system multidisciplinary Optimal scheduling Optimization algorithms Pollutants Pollution control Science Science (multidisciplinary) Shared energy storage Stackelberg game |
| SummonAdditionalLinks | – databaseName: Biological science database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJG4gdUkdmL7hCii4oCqHkDqzXIcezdVN16SLVL_PWPHm2p59MItSiaRnbHn4Zn5BqG3VDsDZqojWrOWsFowosEKITZ3tq5oU1c64sx-5cfH4vRUnqQDtzGlVW5lYhTUrTfhjPyAFmBqgHbj_MP6Bwldo0J0NbXQuIluBZQEGlP3TuYzlhDFYoVMtTI5FQcj6KtQU1YywuucFaTa0UcRtv9vtuafKZO_xU2jOjq6_78TeYDuJUMUf5xWzkN0w_aP0J2pNeXlY3R2COqtxb7HXTx2gGsz6EvXjUvsQcysUv0m1ucL-PpmucLG-7WdgMQnEvg8-M6gy0LJO_YOx-xFsgo5gIuha_EEI_0EfT_6_O3TF5L6MhBTsWJDdONqKbkVTetoaxzXxlZag3xoJOMWLE4taspKZiSl3AAFzBlkia2lNrp29Cna631vnyMsuS4KLlqZs4YBmWDa5ZXQ4AgGU9VmqNhyR5kEWh56Z5yrGDynQk0cVcBRFTmqqgy9m99ZT5Ad11IfBqbPlAFuO97ww0Kl3avAzKu5CzW9pmTOOeHAMeEiGNeuYSzP0P6W1yrJgFFdMTpDb-bHsHtDSEb31l9MNDx0VC8y9GxaYfNIqGRUgEOZIbGz9naGuvuk75YRIRycXHBjBUzu_XaZXo3r3__ixfXTeInulmHngOYuy320txku7Ct02_zcdOPwOm69X4scNys priority: 102 providerName: ProQuest |
| Title | Based on improved crayfish optimization algorithm cooperative optimal scheduling of multi-microgrid system |
| URI | https://link.springer.com/article/10.1038/s41598-024-76041-5 https://www.ncbi.nlm.nih.gov/pubmed/39438548 https://www.proquest.com/docview/3119350977 https://www.proquest.com/docview/3119722951 https://pubmed.ncbi.nlm.nih.gov/PMC11496685 https://doaj.org/article/61767f5884c24fff8f882789991fb440 |
| Volume | 14 |
| WOSCitedRecordID | wos001340425900066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological science database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4k2grIzEDawmsRPbRxa1AomuIgTScrIcx-6m6iZVdovUf8_Yzi5dnhcuVpRMImcemZnY8w1Cr6h2BsJUR7RmDWGlYERDFEJs6mxZ0LosdMCZ_chnMzGfy-paqy-_JyzCA0fGHYKHLbnz5ZQmZ8454SAm5MLHNa5mLGTrEPVcS6YiqncuWSbHKpmUisMVeCpfTZYzwsuUZaTY8UQBsP93UeavmyV_WjENjuj4Hro7RpD4bZz5fXTDdg_Q7dhT8uohOpuCX2pw3-E2_C-AYzPoK9euFriH78NyLLzE-vy0H9r1YolN31_YiAAeSeDxkPSCE_K16rh3OGw7JEu_ee90aBsc8Z8foS_HR5_fvSdjQwViCpatia5dKSW3om4cbYzj2thCazDsWjJugaValJTlzEhKuQEKmoGP47aU2ujS0cdor-s7-xRhyXWWcdHIlNUMyATTLi2EhgzOx5g2QdmGucqMaOO-6cW5CqveVKgoEAUCUUEgqkjQ6-09FxFr46_UUy-zLaXHyQ4nQHvUqD3qX9qToIONxNVovCsFLy0pBFKcJ-jl9jKYnV9L0Z3tLyMN963QswQ9iQqynQmVjArIBBMkdlRnZ6q7V7p2EaC9ITuF_FPAy73ZaNmPef2ZF8_-By-eozu5Nw9wzHl-gPbWw6V9gW6Zb-t2NUzQTT7nYRQTtD89mlWfJsHmYDzJKz9yGPerDyfV1-9-8y79 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBc2JdAASPBCaxmcWLngBAFqo46HfVQpHJyHceeGdRJhskUNH-K38hzlqmGpbceuEXJS2In39vstwC8jJTVaKZaqhTLKUsEowqtEGp8a5I4ypJY1XVmB3w4FMfH6eEG_OxyYVxYZScTa0Gdl9qtkW9HAZoaqN04fzf7Rl3XKLe72rXQaGCxb5Y_0GWr3vY_4v99FYa7n44-7NG2qwDVMQsWVGU2SVNuRJbbKNeWK21ipRDdWcq4QXtJiSRiIdPo63ONFPhq5ASTpEqrxEb43CuwyRDsogebh_2Dwy-rVR23b8aCtM3O8SOxXaGGdFlsIaM88VlA4zUNWDcK-Jt1-2eQ5m87tbUC3L31v32623CzNbXJ-4Y37sCGKe7Ctab55vIefN1BBZ6TsiCTemEFj_VcLe2kGpMSBem0zVAl6nSEs1mMp0SX5cw0pdIbEnx8hajPXTj_iJSW1PGZdOqiHEfzSU6aQtn34fOlTPQB9IqyMI-ApFwFARd56rOMIZlgyvqxUOjqOmPceBB0aJC6LcvuuoOcyjo8IBKyQZBEBMkaQTL24PXqnllTlORC6h0HshWlKyhenyjnI9nKJ4mGbMKty1rWIbPWCouuFxfOfbAZY74HWx22ZCvlKnkOLA9erC6jfHKbTqow5VlDw13P-MCDhw2iVyOJUhYJdJk9EGtYXxvq-pViMq5roKMbj466wMm96djifFz__haPL57Gc7i-d3QwkIP-cP8J3Agd16KdEoZb0FvMz8xTuKq_LybV_FnL-AROLpthfgGwXJeq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwAmuyOLFzQIhSKqpWozmA1JtxHHtmUCcZJlPQ_DV-Hc9OMtWw9NYDtyh5iWzne5v9FoAXibIazVRLlWIlZZlgVKEVQk1oTZYmRZYqX2f2iA-H4vg4H23Bzz4XxoVV9jLRC-qy1m6PfJBEaGqgduN8YLuwiNHe_tv5N-o6SLmT1r6dRguRQ7P6ge5b8-ZgD__1yzje__Dp_UfadRigOmXRkqrCZnnOjShKm5TacqVNqhQivcgZN2g7KZElLGYa_X6ukQKHgVxhslxpldkEv3sJLnNXtNyHDY7W-zvuBI1FeZenEyZi0KCudPlsMaM8C1lE0w1d6FsG_M3O_TNc87czW68K92_-z4t4C250Bjh513LMbdgy1R242rbkXN2Fr7uo1ktSV2Tqt1vwWi_Uyk6bCalRvM66vFWiTsY4m-VkRnRdz01bQL0lwc83yAulC_Ifk9oSH7VJZy72cbyYlqQtn30PPl_IRO_DdlVX5iGQnKso4qLMQ1YwJBNM2TAVCh1gZ6KbAKIeGVJ3xdpdz5AT6YMGEiFbNElEk_RokmkAr9bvzNtSJedS7zrArSldmXF_o16MZSe1JJq3Gbcul1nHzForLDpkXDinwhaMhQHs9DiTnexr5BnIAni-foxSyx1FqcrUpy0Nd53kowAetOhejyTJWSLQkQ5AbOB-Y6ibT6rpxFdGR-ce3XeBk3vds8jZuP69Fo_On8YzuIZcIo8OhoeP4XrsGBiNlzjege3l4tQ8gSv6-3LaLJ56CUDgy0Vzyy9K-p7p |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Based+on+improved+crayfish+optimization+algorithm+cooperative+optimal+scheduling+of+multi-microgrid+system&rft.jtitle=Scientific+reports&rft.au=Yan%2C+Dongmei&rft.au=Wang%2C+Hongkun&rft.au=Gao%2C+Yujie&rft.au=Tian%2C+Shiji&rft.date=2024-10-22&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=24871&rft_id=info:doi/10.1038%2Fs41598-024-76041-5&rft_id=info%3Apmid%2F39438548&rft.externalDocID=39438548 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |