Multi-sensor fusion and segmentation for autonomous vehicle multi-object tracking using deep Q networks

Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 31130 - 32
Hlavní autoři: Vinoth, K., Sasikumar, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 28.12.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car’s sensors’ ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks. So, we have presented a multi-sensor fusion and segmentation for multi-object tracking using DQN in self-driving cars. Our proposed scheme incorporates the handling of pipelines for camera and LiDAR data and the development of an autonomous solution for object detection by handling sensor images. An Improved Adaptive Extended Kalman Filter (IAEKF) was used for noise reduction. The Contrast enhancement was done using a Normalised Gamma Transformation based CLAHE (NGT-CLAHE), and the adaptive thresholding was implemented using an Improved Adaptive Weighted Mean Filter (IAWMF) which was used for preprocessing. The multi-segmentation based on orientation employs various segmentation techniques and degrees. The dense net-based multi-image fusion gives more efficiency and a high memory in terms of fast processing time. The Energy Valley Optimizer (EVO) approach is used to select grid map-based paths and lanes. This strategy solves complicated tasks in a simple manner, which leads to ease of flexibility, resilience, and scalability. In addition, the YOLO V7 model is used for detection and categorization. The proposed work is evaluated using metrics such as velocity, accuracy rate, success rate, success ratio, mean squared error, loss rate, and accumulated reward.
AbstractList Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car’s sensors’ ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks. So, we have presented a multi-sensor fusion and segmentation for multi-object tracking using DQN in self-driving cars. Our proposed scheme incorporates the handling of pipelines for camera and LiDAR data and the development of an autonomous solution for object detection by handling sensor images. An Improved Adaptive Extended Kalman Filter (IAEKF) was used for noise reduction. The Contrast enhancement was done using a Normalised Gamma Transformation based CLAHE (NGT-CLAHE), and the adaptive thresholding was implemented using an Improved Adaptive Weighted Mean Filter (IAWMF) which was used for preprocessing. The multi-segmentation based on orientation employs various segmentation techniques and degrees. The dense net-based multi-image fusion gives more efficiency and a high memory in terms of fast processing time. The Energy Valley Optimizer (EVO) approach is used to select grid map-based paths and lanes. This strategy solves complicated tasks in a simple manner, which leads to ease of flexibility, resilience, and scalability. In addition, the YOLO V7 model is used for detection and categorization. The proposed work is evaluated using metrics such as velocity, accuracy rate, success rate, success ratio, mean squared error, loss rate, and accumulated reward.
Abstract Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car’s sensors’ ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks. So, we have presented a multi-sensor fusion and segmentation for multi-object tracking using DQN in self-driving cars. Our proposed scheme incorporates the handling of pipelines for camera and LiDAR data and the development of an autonomous solution for object detection by handling sensor images. An Improved Adaptive Extended Kalman Filter (IAEKF) was used for noise reduction. The Contrast enhancement was done using a Normalised Gamma Transformation based CLAHE (NGT-CLAHE), and the adaptive thresholding was implemented using an Improved Adaptive Weighted Mean Filter (IAWMF) which was used for preprocessing. The multi-segmentation based on orientation employs various segmentation techniques and degrees. The dense net-based multi-image fusion gives more efficiency and a high memory in terms of fast processing time. The Energy Valley Optimizer (EVO) approach is used to select grid map-based paths and lanes. This strategy solves complicated tasks in a simple manner, which leads to ease of flexibility, resilience, and scalability. In addition, the YOLO V7 model is used for detection and categorization. The proposed work is evaluated using metrics such as velocity, accuracy rate, success rate, success ratio, mean squared error, loss rate, and accumulated reward.
Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car's sensors' ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks. So, we have presented a multi-sensor fusion and segmentation for multi-object tracking using DQN in self-driving cars. Our proposed scheme incorporates the handling of pipelines for camera and LiDAR data and the development of an autonomous solution for object detection by handling sensor images. An Improved Adaptive Extended Kalman Filter (IAEKF) was used for noise reduction. The Contrast enhancement was done using a Normalised Gamma Transformation based CLAHE (NGT-CLAHE), and the adaptive thresholding was implemented using an Improved Adaptive Weighted Mean Filter (IAWMF) which was used for preprocessing. The multi-segmentation based on orientation employs various segmentation techniques and degrees. The dense net-based multi-image fusion gives more efficiency and a high memory in terms of fast processing time. The Energy Valley Optimizer (EVO) approach is used to select grid map-based paths and lanes. This strategy solves complicated tasks in a simple manner, which leads to ease of flexibility, resilience, and scalability. In addition, the YOLO V7 model is used for detection and categorization. The proposed work is evaluated using metrics such as velocity, accuracy rate, success rate, success ratio, mean squared error, loss rate, and accumulated reward.Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car's sensors' ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks. So, we have presented a multi-sensor fusion and segmentation for multi-object tracking using DQN in self-driving cars. Our proposed scheme incorporates the handling of pipelines for camera and LiDAR data and the development of an autonomous solution for object detection by handling sensor images. An Improved Adaptive Extended Kalman Filter (IAEKF) was used for noise reduction. The Contrast enhancement was done using a Normalised Gamma Transformation based CLAHE (NGT-CLAHE), and the adaptive thresholding was implemented using an Improved Adaptive Weighted Mean Filter (IAWMF) which was used for preprocessing. The multi-segmentation based on orientation employs various segmentation techniques and degrees. The dense net-based multi-image fusion gives more efficiency and a high memory in terms of fast processing time. The Energy Valley Optimizer (EVO) approach is used to select grid map-based paths and lanes. This strategy solves complicated tasks in a simple manner, which leads to ease of flexibility, resilience, and scalability. In addition, the YOLO V7 model is used for detection and categorization. The proposed work is evaluated using metrics such as velocity, accuracy rate, success rate, success ratio, mean squared error, loss rate, and accumulated reward.
ArticleNumber 31130
Author Sasikumar, P.
Vinoth, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Vinoth
  fullname: Vinoth, K.
  organization: School of Electronics Engineering, Vellore Institute of Technology
– sequence: 2
  givenname: P.
  surname: Sasikumar
  fullname: Sasikumar, P.
  email: sasikumar.p@vit.ac.in
  organization: School of Electronics Engineering, Vellore Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39732930$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1TAQjFARLaV_gAOKxIVLwJ-JfUKoolCpCCHB2do46zSvif2wkyL-ff1eWmh7qA-2tTszGu3Oy-LAB49F8ZqS95Rw9SEJKrWqCBOVYlzWFXlWHDEiZMU4Ywf3_ofFSUobko9kWlD9ojjkuuFMc3JU9N-WcR6qhD6FWLolDcGX4LsyYT-hn2HeFVzuwTIHH6awpPIaLwc7YjntuaHdoJ3LOYK9GnxfZo18d4jb8kfpcf4T4lV6VTx3MCY8uX2Pi19nn3-efq0uvn85P_10UVkp6FxB4wCEloBco1AdSFq7GrrWukYRDZ3smGaWa7CcudbWVLkahXROWUJlw4-L81W3C7Ax2zhMEP-aAIPZF0LsDcR55940hDQoWMuJ0IJAraQTipFWQNOo1uqs9XHV2i7thJ3N44gwPhB92PHDpenDtaG0ViyvJyu8u1WI4feCaTbTkCyOI3jMgzScCq0UZTXP0LePoJuwRJ9ntUc1WkmlMurNfUv_vNwtNAPUCrAxpBTRGTusS8wOh9FQYnbxMWt8TI6P2cfH7KjsEfVO_UkSX0kpg32P8b_tJ1g3pXHYrw
CitedBy_id crossref_primary_10_12677_csa_2025_155123
crossref_primary_10_3390_s25113411
crossref_primary_10_1109_MVT_2025_3552887
crossref_primary_10_3390_su17167284
crossref_primary_10_1038_s41597_025_04636_2
Cites_doi 10.3390/app122010221
10.3390/s23083794
10.1007/s11760-022-02222-2
10.3390/s22062252
10.1109/LRA.2020.2972865
10.1155/2021/9218137
10.1016/j.robot.2018.11.002
10.1109/IVS.2018.8500511
10.1186/s10033-022-00745-w
10.1016/j.cviu.2020.102907
10.1109/TITS.2019.2909066
10.3390/s22239108
10.1109/CVPR.2012.6248074
10.3390/electronics11192993
10.3390/app11010035
10.1109/WACV48630.2021.00157
10.1109/JAS.2020.1003033
10.1016/j.patcog.2022.108956
10.1109/SDF.2019.8916629
10.1109/SP40001.2021.00076
10.3390/app11073018
10.1109/IVS.2019.8813778
10.3390/app13042094
10.3390/s19204357
10.1016/j.rineng.2024.102510
10.1109/IVS.2018.8500464
10.3390/s23031613
10.3390/jimaging8110306
10.1109/TITS.2021.3059674
10.1109/TIP.2019.2913079
10.1007/s11042-021-11437-3
10.3390/app11041514
10.3390/s23063335
10.3390/s23115110
10.3390/rs15051210
10.1109/TITS.2022.3231259
10.3390/su15032628
10.1016/j.image.2022.116667
10.1007/978-3-031-61066-0_14
10.3390/s22135061
10.3390/s23052845
10.3390/s22165946
10.1109/WACV48630.2021.00232
10.1109/TIV.2023.3235007
10.3390/s21227461
10.3390/app11010029
10.1016/j.oceaneng.2024.119368
10.1007/s11042-023-17456-6
10.1016/j.inffus.2021.07.004
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-82356-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 32
ExternalDocumentID oai_doaj_org_article_7007e42b304940a685f4820b4a778bc9
PMC11682159
39732930
10_1038_s41598_024_82356_0
Genre Journal Article
GrantInformation_xml – fundername: Vellore Institute of Technology, Vellore
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c541t-a7faa495ae39e48da516f6adbcf7809ad5d292c39ac32fbc618f6e45ff8c01573
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001385898400048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:43:24 EDT 2025
Tue Nov 04 02:03:31 EST 2025
Sun Nov 09 13:11:40 EST 2025
Tue Oct 07 07:43:40 EDT 2025
Wed Feb 19 02:01:34 EST 2025
Sat Nov 29 03:22:02 EST 2025
Tue Nov 18 21:53:57 EST 2025
Fri Feb 21 02:36:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-sensor fusion
Segmentation
Self-driving vehicles
Energy Valley Optimizer (EVO)
Dense net (D net)
YOLO V7 model
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-a7faa495ae39e48da516f6adbcf7809ad5d292c39ac32fbc618f6e45ff8c01573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/7007e42b304940a685f4820b4a778bc9
PMID 39732930
PQID 3149798588
PQPubID 2041939
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_7007e42b304940a685f4820b4a778bc9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11682159
proquest_miscellaneous_3149881263
proquest_journals_3149798588
pubmed_primary_39732930
crossref_citationtrail_10_1038_s41598_024_82356_0
crossref_primary_10_1038_s41598_024_82356_0
springer_journals_10_1038_s41598_024_82356_0
PublicationCentury 2000
PublicationDate 2024-12-28
PublicationDateYYYYMMDD 2024-12-28
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References cr-split#-82356_CR45.1
cr-split#-82356_CR45.2
W Zhou (82356_CR4) 2019; 21
82356_CR40
H Shi (82356_CR39) 2023; 15
82356_CR41
X Chen (82356_CR24) 2024; 83
Z Lv (82356_CR23) 2022; 132
C Sun (82356_CR5) 2020; 7
J Kim (82356_CR2) 2021; 21
B Shahian Jahromi (82356_CR44) 2019; 19
Y Ji (82356_CR48) 2023; 24
QD Tran (82356_CR10) 2021; 11
M Abdou (82356_CR34) 2022; 22
cr-split#-82356_CR15.2
cr-split#-82356_CR13.2
R Heinzler (82356_CR16) 2020; 5
cr-split#-82356_CR15.1
R Wang (82356_CR3) 2021; 2021
DH Lee (82356_CR49) 2023; 17
82356_CR8
C Wang (82356_CR47) 2022; 35
S Wu (82356_CR38) 2023; 23
K Vinoth (82356_CR17) 2024; 23
82356_CR31
82356_CR32
MH Le (82356_CR30) 2022; 11
Z Ouyang (82356_CR43) 2022; 77
MA Butt (82356_CR18) 2022; 104
Y Zhang (82356_CR26) 2023; 2023
N Lopac (82356_CR6) 2022; 22
X Chen (82356_CR25) 2024; 313
M Hasanujjaman (82356_CR37) 2023; 23
S Masood (82356_CR27) 2022; 2022
A Tampuu (82356_CR36) 2023; 23
Ó Pérez-Gil (82356_CR50) 2022; 81
KC Hung (82356_CR28) 2022; 12
L Caltagirone (82356_CR46) 2019; 111
S Riedmaier (82356_CR12) 2020; 11
82356_CR29
SL Lin (82356_CR9) 2021; 11
W Hou (82356_CR7) 2023; 23
X Ma (82356_CR11) 2020; 11
Z Li (82356_CR33) 2023; 15
82356_CR14
cr-split#-82356_CR13.1
N Defauw (82356_CR35) 2023; 23
82356_CR52
L Wen (82356_CR1) 2020; 193
82356_CR19
L Chen (82356_CR42) 2019; 28
Z Liu (82356_CR20) 2021; 23
G Chen (82356_CR51) 2023; 8
H Florea (82356_CR21) 2022; 22
M Ivanovs (82356_CR22) 2022; 22
References_xml – ident: 82356_CR14
– volume: 12
  start-page: 10221
  issue: 20
  year: 2022
  ident: 82356_CR28
  publication-title: Appl. Sci.
  doi: 10.3390/app122010221
– volume: 23
  start-page: 3794
  issue: 8
  year: 2023
  ident: 82356_CR38
  publication-title: Sensors
  doi: 10.3390/s23083794
– volume: 17
  start-page: 199
  issue: 1
  year: 2023
  ident: 82356_CR49
  publication-title: Signal. Image Video Process.
  doi: 10.1007/s11760-022-02222-2
– volume: 22
  start-page: 2252
  issue: 6
  year: 2022
  ident: 82356_CR22
  publication-title: Sensors
  doi: 10.3390/s22062252
– volume: 5
  start-page: 2514
  issue: 2
  year: 2020
  ident: 82356_CR16
  publication-title: IEEE Rob. Autom. Lett.
  doi: 10.1109/LRA.2020.2972865
– volume: 2021
  start-page: 9218137
  issue: 1
  year: 2021
  ident: 82356_CR3
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/9218137
– volume: 111
  start-page: 125
  year: 2019
  ident: 82356_CR46
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2018.11.002
– ident: #cr-split#-82356_CR13.1
  doi: 10.1109/IVS.2018.8500511
– volume: 35
  start-page: 54
  issue: 1
  year: 2022
  ident: 82356_CR47
  publication-title: Chin. J. Mech. Eng.
  doi: 10.1186/s10033-022-00745-w
– ident: #cr-split#-82356_CR13.2
– volume: 193
  start-page: 102907
  year: 2020
  ident: 82356_CR1
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2020.102907
– volume: 21
  start-page: 1951
  issue: 5
  year: 2019
  ident: 82356_CR4
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2909066
– volume: 22
  start-page: 9108
  issue: 23
  year: 2022
  ident: 82356_CR34
  publication-title: Sensors
  doi: 10.3390/s22239108
– ident: 82356_CR52
  doi: 10.1109/CVPR.2012.6248074
– volume: 11
  start-page: 2993
  issue: 19
  year: 2022
  ident: 82356_CR30
  publication-title: Electronics
  doi: 10.3390/electronics11192993
– volume: 11
  start-page: 35
  issue: 1
  year: 2020
  ident: 82356_CR12
  publication-title: Appl. Sci.
  doi: 10.3390/app11010035
– ident: 82356_CR40
  doi: 10.1109/WACV48630.2021.00157
– volume: 7
  start-page: 395
  issue: 2
  year: 2020
  ident: 82356_CR5
  publication-title: IEEE/CAA J. Automatica Sinica
  doi: 10.1109/JAS.2020.1003033
– volume: 132
  start-page: 108956
  year: 2022
  ident: 82356_CR23
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2022.108956
– volume: 2022
  start-page: 8684138
  issue: 1
  year: 2022
  ident: 82356_CR27
  publication-title: Wirel. Commun. Mob. Comput.
– ident: 82356_CR41
  doi: 10.1109/SDF.2019.8916629
– ident: 82356_CR31
  doi: 10.1109/SP40001.2021.00076
– volume: 11
  start-page: 3018
  issue: 7
  year: 2021
  ident: 82356_CR9
  publication-title: Appl. Sci.
  doi: 10.3390/app11073018
– ident: #cr-split#-82356_CR45.1
  doi: 10.1109/IVS.2019.8813778
– ident: 82356_CR29
  doi: 10.3390/app13042094
– volume: 19
  start-page: 4357
  issue: 20
  year: 2019
  ident: 82356_CR44
  publication-title: Sensors
  doi: 10.3390/s19204357
– volume: 23
  start-page: 102510
  year: 2024
  ident: 82356_CR17
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102510
– ident: #cr-split#-82356_CR15.1
  doi: 10.1109/IVS.2018.8500464
– volume: 23
  start-page: 1613
  issue: 3
  year: 2023
  ident: 82356_CR35
  publication-title: Sensors
  doi: 10.3390/s23031613
– ident: 82356_CR32
  doi: 10.3390/jimaging8110306
– volume: 23
  start-page: 6640
  issue: 7
  year: 2021
  ident: 82356_CR20
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3059674
– volume: 28
  start-page: 4883
  issue: 10
  year: 2019
  ident: 82356_CR42
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2913079
– volume: 81
  start-page: 3553
  issue: 3
  year: 2022
  ident: 82356_CR50
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-11437-3
– volume: 11
  start-page: 1514
  issue: 4
  year: 2021
  ident: 82356_CR10
  publication-title: Appl. Sci.
  doi: 10.3390/app11041514
– volume: 23
  start-page: 3335
  issue: 6
  year: 2023
  ident: 82356_CR37
  publication-title: Sensors
  doi: 10.3390/s23063335
– volume: 23
  start-page: 5110
  issue: 11
  year: 2023
  ident: 82356_CR7
  publication-title: Sensors
  doi: 10.3390/s23115110
– volume: 15
  start-page: 1210
  issue: 5
  year: 2023
  ident: 82356_CR33
  publication-title: Remote Sens.
  doi: 10.3390/rs15051210
– volume: 24
  start-page: 3541
  issue: 3
  year: 2023
  ident: 82356_CR48
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3231259
– volume: 15
  start-page: 2628
  issue: 3
  year: 2023
  ident: 82356_CR39
  publication-title: Sustainability
  doi: 10.3390/su15032628
– volume: 104
  start-page: 116667
  year: 2022
  ident: 82356_CR18
  publication-title: Sig. Process. Image Commun.
  doi: 10.1016/j.image.2022.116667
– ident: 82356_CR19
  doi: 10.1007/978-3-031-61066-0_14
– volume: 22
  start-page: 5061
  issue: 13
  year: 2022
  ident: 82356_CR21
  publication-title: Sensors
  doi: 10.3390/s22135061
– volume: 23
  start-page: 2845
  issue: 5
  year: 2023
  ident: 82356_CR36
  publication-title: Sensors
  doi: 10.3390/s23052845
– ident: #cr-split#-82356_CR15.2
– volume: 22
  start-page: 5946
  issue: 16
  year: 2022
  ident: 82356_CR6
  publication-title: Sensors
  doi: 10.3390/s22165946
– ident: 82356_CR8
  doi: 10.1109/WACV48630.2021.00232
– volume: 8
  start-page: 2527
  issue: 3
  year: 2023
  ident: 82356_CR51
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2023.3235007
– volume: 21
  start-page: 7461
  issue: 22
  year: 2021
  ident: 82356_CR2
  publication-title: Sensors
  doi: 10.3390/s21227461
– volume: 11
  start-page: 29
  issue: 1
  year: 2020
  ident: 82356_CR11
  publication-title: Appl. Sci.
  doi: 10.3390/app11010029
– volume: 313
  start-page: 119368
  year: 2024
  ident: 82356_CR25
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.119368
– volume: 2023
  start-page: 5349965
  issue: 1
  year: 2023
  ident: 82356_CR26
  publication-title: J. Adv. Transp.
– volume: 83
  start-page: 48907
  issue: 16
  year: 2024
  ident: 82356_CR24
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-17456-6
– volume: 77
  start-page: 172
  year: 2022
  ident: 82356_CR43
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2021.07.004
– ident: #cr-split#-82356_CR45.2
SSID ssj0000529419
Score 2.4899936
Snippet Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient...
Abstract Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31130
SubjectTerms 639/166
639/705/117
Autonomous vehicles
Dense net (D net)
Dust storms
Energy Valley Optimizer (EVO)
Fog
Humanities and Social Sciences
Image processing
Information processing
Lidar
Multi-sensor fusion
multidisciplinary
Noise reduction
Pedestrians
Pipelines
Rainfall
Science
Science (multidisciplinary)
Segmentation
Self-driving vehicles
Sensors
YOLO V7 model
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJG4gdX4kdg-IUBUXKiKBFJvkePY20qQLJvdSvx7ZhxvquXRC9fYicaZGfvzPAl5iTXb8NxmXSUiU6aVzHrjWO2jBPwAkCE3m9BHR-bkxB5ng9uYwyq3e2LaqLvBo438QAKU19ZUxrxZ_mDYNQq9q7mFxlVyDZANx5CuT-J4trGgF0txm3NlgKyDEc4rzCkTihkBxLBy5zxKZfv_hjX_DJn8zW-ajqPD2_-7kDvkVgai9O0kOXfJldDfIzem1pQ_75NFysxlI9xyhxWNGzSqUdd3dAyL7zlfqaeAeKnbrDExYtiM9Dyc4sdoilJkQ4s2HgoL8WiPpxhiv6BdCEv6mfZT-Pn4gHw9_PDl_UeWmzIwXym-Zk5H5-BW5YK0QZnOVbyOtetaH7UpreuqTljhpXVeitj6mptYB1XFaDxADy0fkr1-6MNjQoPRQQlXlZicq6rWGBUit20q0WqFLgjfsqbxuWI5Ns741iTPuTTNxM4G2NkkdjZlQV7N7yyneh2Xzn6HHJ9nYq3t9GBYLZqsuo0GGAV0tuiQVKWrTRUV4KZWOa1N621B9reMbvIGMDYXXC7Ii3kYVBf9Ma4PwJQ0xwDAqmVBHk3iNVMisYqSlUCh2RG8HVJ3R_qz01QenPPaAJADul5vZfSCrn__iyeXL-MpuSlQbThm8--TvfVqE56R6_58fTaunie9-wUPeDRx
  priority: 102
  providerName: ProQuest
Title Multi-sensor fusion and segmentation for autonomous vehicle multi-object tracking using deep Q networks
URI https://link.springer.com/article/10.1038/s41598-024-82356-0
https://www.ncbi.nlm.nih.gov/pubmed/39732930
https://www.proquest.com/docview/3149798588
https://www.proquest.com/docview/3149881263
https://pubmed.ncbi.nlm.nih.gov/PMC11682159
https://doaj.org/article/7007e42b304940a685f4820b4a778bc9
Volume 14
WOSCitedRecordID wos001385898400048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgFyQuiDeFpTISN7A2sZ14fGTRruCwVUEglVPkOHZ3JUhXTbsS_54ZJy1bnhcuPiRO9Mkz1szYM98w9oI428hui6aQUWiolbAenCh9VOg_oMswNJswkwnMZnZ6pdUX5YT19MD9wh0aNGJBy5qug3TmSiiiRqtVa2cM1D6V7mXGXgmmelZvaXVuhyoZBHTYoaWiajKpBUiEIbIdS5QI-3_nZf6aLPnTjWkyRCd32O3Bg-Sve-R32bXQ3mM3-56S3-6zeSqpFR2Gp4slj2s6DeOubXgX5l-HQqOWo6vK3XpFFQ0Y-vPLcEY_4ym9UCxqOpzhiMPTQTqn3Pg5b0K44O952-eNdw_Yp5Pjj2_eiqGbgvCFzlfCmegchkMuKBs0NK7Iy1i6pvbRQGZdUzTSSq-s80rG2pc5xDLoIkbw6DMY9ZDttYs2PGY8AInEFRlV1eqiBtAh5rZO3KpWmhHLNytb-YFqnDpefKnSlbeCqpdGhdKokjSqbMRebr-56Ik2_jr7iAS2nUkk2ekBqk41qE71L9UZsYONuKth53aVwpDRWCgARuz59jXuObpIcW1AoaQ5gJ5RqUbsUa8dWySK6I-sQoSwozc7UHfftOdnidc7z0tADwxxvdqo2A9cf16LJ_9jLZ6yW5L2Rk7F-gdsb7Vch2fshr9cnXfLMbtuZiaNMGb7R8eT6Ydx2nA4nsopjQbH_em70-nn77E6K8I
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGFN2WhgJHgBFY3tpPYB4R4Va1aVkUqUm_GcextJZosm92i_il-IzNOstXy6K0HrhtvNHa-GX_2vAh5jjXbcN9mZcoDk6oQTDtlWeaCAP4AlKFrNpGPRurgQO-tkJ99LgyGVfY2MRrqsnZ4R74hgMrnWqVKvZl8Z9g1Cr2rfQuNFhY7_vQHHNma19sf4Pu-4Hzz4_77LdZ1FWAulcmM2TxYC8cC64X2UpU2TbKQ2bJwIVdDbcu05Jo7oa0TPBQuS1TIvExDUA72zlzAey-RyxIri2GoIN9b3Omg10wmusvNgWXYaGB_xBw2LpniMHk2XNr_YpuAv3HbP0M0f_PTxu1v8-b_tnC3yI2OaNO3rWbcJiu-ukOutq03T--Sccw8Zg2c4uspDXO8NKS2Kmnjx8ddPlZFgdFTO59h4kc9b-iJP8SX0RiFyeoC77AoLJxDfwPFFIIxLb2f0M-0asPrm3vky4XM8j5ZrerKPyDUq9xLbtMhJh_LtFBK-pDoIpag1TwfkKSHgnFdRXZsDPLNxMgAoUwLHwPwMRE-ZjggLxf_mbT1SM4d_Q4RthiJtcTjD_V0bDrTZHKgiSBngQ5XObSZSoMEXlhIm-eqcHpA1ntgmc7ANeYMVQPybPEYTBP6m2zl4aPEMQoIZCYGZK2F80ISgVWitAAJ1RLQl0RdflIdHcby50mSKSCqINerXifO5Pr3Wjw8fxpPybWt_U-7Znd7tPOIXOeosglWLlgnq7Pp3D8mV9zJ7KiZPok6T8nXi9aVX7K6lAU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4gX7ozCACPBE1hrHCexHxACRkU1qIoE0ngyjmN3k0ZSmnZof41fxzlO0qlc9rYHXhMnOjk5l88-N0KeYM829NusSLhnQuYxU1YallofA34AyNAOm8jGY7m_ryYb5GdXC4NplZ1NDIa6qCyeke_EAOUzJRPYsPk2LWKyO3w5-85wghRGWrtxGo2I7LmTH7B9q1-MduFfP-V8-PbTm3esnTDAbCKiBTOZNwa2CMbFyglZmCRKfWqK3PpMDpQpkoIrbmNlbMx9btNI-tSJxHtpwY9mMbz3AtkESC54j2xORh8mX1YnPBhDE5FqK3WAKTs1eEusaOOCSQ6sYIM1bxiGBvwN6f6ZsPlb1DY4w-G1_5mN18nVFoLTV43O3CAbrrxJLjVDOU9ukWmoSWY17O-rOfVLPE6kpixo7abf2kqtkgLWp2a5wJKQalnTY3eAL6MhP5NVOZ5uUWCixUgExeKCKS2cm9GPtGwS7-vb5PO5fOUd0iur0t0l1MnMCW6SAZYliySXUjgfqTw0p1U865OoEwtt217tODLkSIecgVjqRpQ0iJIOoqQHffJs9cys6VRy5urXKG2rldhlPFyo5lPdGi2dAYAEOnMMxYqBSWXiBSDGXJgsk7lVfbLdCZluTV-tTyWsTx6vboPRwkiUKR38lLBGArRM4z7ZakR7RUmM_aNUDBTKNaFfI3X9Tnl4EBqjR1EqAcICXc87_Til69-8uHf2Zzwil0FF9PvReO8-ucJReyNsabBNeov50j0gF-3x4rCeP2wNACVfz1tZfgGSPJ5O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-sensor+fusion+and+segmentation+for+autonomous+vehicle+multi-object+tracking+using+deep+Q+networks&rft.jtitle=Scientific+reports&rft.au=K.+Vinoth&rft.au=P.+Sasikumar&rft.date=2024-12-28&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=32&rft_id=info:doi/10.1038%2Fs41598-024-82356-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7007e42b304940a685f4820b4a778bc9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon