Soft computing models for prediction of bentonite plastic concrete strength

Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 14; číslo 1; s. 18145 - 24
Hlavní autori: Inqiad, Waleed Bin, Javed, Muhammad Faisal, Onyelowe, Kennedy, Siddique, Muhammad Shahid, Asif, Usama, Alkhattabi, Loai, Aslam, Fahid
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 05.08.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength.
AbstractList Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength.Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength.
Abstract Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength.
Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength.
ArticleNumber 18145
Author Javed, Muhammad Faisal
Siddique, Muhammad Shahid
Alkhattabi, Loai
Aslam, Fahid
Onyelowe, Kennedy
Inqiad, Waleed Bin
Asif, Usama
Author_xml – sequence: 1
  givenname: Waleed Bin
  surname: Inqiad
  fullname: Inqiad, Waleed Bin
  organization: Military College of Engineering (MCE), National University of Science and Technology (NUST)
– sequence: 2
  givenname: Muhammad Faisal
  surname: Javed
  fullname: Javed, Muhammad Faisal
  email: arbabfaisal@giki.edu.pk
  organization: Department of Civil Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Western Caspian University
– sequence: 3
  givenname: Kennedy
  surname: Onyelowe
  fullname: Onyelowe, Kennedy
  email: kennedychibuzor@kiu.ac.ug
  organization: Department of Civil Engineering, Michael Okpara University of Agriculture, Department of Civil Engineering, Kampala International University
– sequence: 4
  givenname: Muhammad Shahid
  surname: Siddique
  fullname: Siddique, Muhammad Shahid
  organization: Military College of Engineering (MCE), National University of Science and Technology (NUST)
– sequence: 5
  givenname: Usama
  surname: Asif
  fullname: Asif, Usama
  organization: Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University
– sequence: 6
  givenname: Loai
  surname: Alkhattabi
  fullname: Alkhattabi, Loai
  organization: Department of Civil and Environmental Engineering, College of Engineering, University of Jeddah
– sequence: 7
  givenname: Fahid
  surname: Aslam
  fullname: Aslam, Fahid
  organization: Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39103567$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vFSEUxSemxtbaL-DCTOLGzejlAjOwMqbxT2MTF-qaMAy88jIDT2BM_PbS91ptuygbyOWcXw7c-7w5CjHYpnlJ4C0BKt5lRrgUHSDreokD6eBJc4LAeIcU8ejO-bg5y3kLdXGUjMhnzTGVlcH74aT5-j260pq47Nbiw6Zd4mTn3LqY2l2ykzfFx9BG1442lBh8se1u1rl4U03BJFsLuSQbNuXqRfPU6Tnbs5v9tPn56eOP8y_d5bfPF-cfLjvDGSmdpr2ASYzMgZgYBZB24ECc4dw4cI6hQzsOQNENAhBHy2Q_auwH0eMgND1tLg7cKeqt2iW_6PRHRe3VvhDTRulUE85WcRxHYdkoDKdM94N0UgxkQtRIrCO0st4fWLt1XOxk6iuTnu9B798Ef6U28bcipCbvsa-ENzeEFH-tNhe1-GzsPOtg45oVBSE5cAaySl8_kG7jmkL9q70KAEGKqnp1N9K_LLdNqwJxEJgUc07WKeOLvm5UTehnRUBdj4g6jIiqI6L2I6KgWvGB9Zb-qIkeTLmKw8am_7Efcf0FIvvM8g
CitedBy_id crossref_primary_10_1016_j_cscm_2024_e04112
crossref_primary_10_1007_s41062_025_02212_6
crossref_primary_10_1007_s40996_025_01852_z
crossref_primary_10_1016_j_mtcomm_2025_112181
crossref_primary_10_1038_s41598_024_77490_8
crossref_primary_10_1007_s41939_025_00812_4
crossref_primary_10_1515_rams_2024_0081
crossref_primary_10_1080_10589759_2024_2431634
crossref_primary_10_1002_suco_70302
crossref_primary_10_1007_s12145_024_01520_2
crossref_primary_10_1016_j_rineng_2025_106279
crossref_primary_10_1007_s11760_025_04200_w
crossref_primary_10_1002_eng2_70224
crossref_primary_10_3390_ma18133123
crossref_primary_10_1038_s41598_025_01327_1
crossref_primary_10_1038_s41598_025_05288_3
Cites_doi 10.1016/j.knosys.2023.110706
10.3390/ma14154222
10.1016/j.jhydrol.2023.129969
10.1680/gein.8.0189
10.1016/j.conbuildmat.2023.130898
10.1016/j.cscm.2024.e03135
10.1016/j.jmrt.2023.02.180
10.4028/www.scientific.net/AMR.382.200
10.1007/s40789-023-00612-6
10.47852/bonviewaaes32021606
10.1016/0958-9465(94)90041-8
10.1016/j.conbuildmat.2021.125021
10.3390/s17061344
10.3390/ma14092297
10.1016/j.jngse.2020.103644
10.1007/s00521-015-1997-6
10.1007/s40789-024-00667-z
10.1016/j.mtcomm.2023.107639
10.3390/molecules28207151
10.1016/j.rineng.2024.101837
10.1007/BF00116037
10.1016/j.cplett.2022.139478
10.1177/13694332221131153
10.1002/advs.202206264
10.1007/s40789-023-00588-3
10.1016/j.jobe.2024.108978
10.1007/s40789-024-00682-0
10.3390/s21175682
10.1007/s40789-023-00575-8
10.1007/s40789-023-00595-4
10.1016/j.mtcomm.2023.106467
10.1007/s42107-023-00966-x
10.4028/www.scientific.net/AMR.250-253.664
10.1007/s40789-023-00650-0
10.1016/j.jclepro.2022.131285
10.1007/s40789-023-00622-4
10.3390/buildings14040896
10.1109/TGRS.2024.3432993
10.1016/j.patcog.2023.110084
10.1007/s11709-018-0489-z
10.1038/s41598-023-47196-4
10.1007/s40789-024-00666-0
10.1080/09540091.2023.2227780
10.3390/buildings11080324
10.1007/s40789-023-00637-x
10.1016/j.asej.2021.03.018
10.1016/S1874-1029(13)60052-X
10.1016/j.mtcomm.2023.105901
10.1007/s40789-023-00616-2
10.1007/s40789-022-00491-3
10.3390/buildings14041091
10.1061/(ASCE)EM.1943-7889.0001854
10.1016/j.enggeo.2020.105758
10.3390/ma14040794
10.1007/BF00175355
10.1007/s40789-023-00657-7
10.1587/transinf.2022DLP0073
10.1007/s40789-022-00504-1
10.1016/j.advengsoft.2015.05.007
10.1016/j.mtcomm.2024.109222
10.1016/j.carbon.2023.118200
10.1016/j.conbuildmat.2009.02.012
10.1061/JENMDT.EMENG-7206
10.1016/j.scitotenv.2021.146524
10.1109/TVCG.2024.3370551
10.1016/j.istruc.2024.106837
10.1016/j.cmpb.2021.106584
10.1016/j.jmrt.2023.06.006
10.1016/j.desal.2006.05.049
10.3390/polym14091789
10.1016/j.rser.2015.11.058
10.3390/axioms12100954
10.1016/j.mtcomm.2023.106335
10.1108/EC-10-2021-0583
10.1016/j.trgeo.2021.100608
10.1016/j.mtcomm.2024.108789
10.1016/j.heliyon.2023.e22036
10.1007/s40789-023-00601-9
10.1016/j.jfranklin.2023.08.037
10.1016/j.jclepro.2019.05.168
10.1038/s41598-024-65547-7
10.1016/j.cscm.2022.e01059
10.1016/j.conbuildmat.2016.10.114
10.1007/s40789-024-00689-7
10.1016/j.jclepro.2021.126032
10.1007/s11431-022-2394-4
10.1109/ACCESS.2023.3304992
10.1080/09540091.2023.2257399
10.1007/s40789-023-00579-4
10.1071/WF23044
10.1007/s40789-023-00582-9
10.1016/j.conbuildmat.2016.08.116
10.12989/sem.2010.36.6.759
10.1016/j.jhazmat.2007.12.080
10.1007/s11269-024-03848-2
10.1016/j.heliyon.2023.e17107
10.48550/arXiv.2406.02291
10.1016/j.geothermics.2024.102974
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-69271-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 24
ExternalDocumentID oai_doaj_org_article_52bb8e4b8c534a679f9871d22a21ef13
PMC11300626
39103567
10_1038_s41598_024_69271_0
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-a3680d8b4f08d43009e7501fc55cf0ff42f2eb7032f78022be496ba26786278a3
IEDL.DBID M7P
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284942100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:35:31 EST 2025
Tue Nov 04 02:06:24 EST 2025
Thu Oct 02 10:58:22 EDT 2025
Tue Oct 07 07:54:06 EDT 2025
Mon Jul 21 06:05:16 EDT 2025
Sat Nov 29 02:13:44 EST 2025
Tue Nov 18 22:04:21 EST 2025
Fri Feb 21 02:39:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bentonite
AdaBoost
Compressive strength
Shapley additive explanation
Plastic concrete
Genetic programming
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-a3680d8b4f08d43009e7501fc55cf0ff42f2eb7032f78022be496ba26786278a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3089002098?pq-origsite=%requestingapplication%
PMID 39103567
PQID 3089002098
PQPubID 2041939
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_52bb8e4b8c534a679f9871d22a21ef13
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300626
proquest_miscellaneous_3089505409
proquest_journals_3089002098
pubmed_primary_39103567
crossref_citationtrail_10_1038_s41598_024_69271_0
crossref_primary_10_1038_s41598_024_69271_0
springer_journals_10_1038_s41598_024_69271_0
PublicationCentury 2000
PublicationDate 2024-08-05
PublicationDateYYYYMMDD 2024-08-05
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang (CR39) 2022; 9
Lu, Zhao, Song, Chang, Shu (CR67) 2023
Iftikhar (CR86) 2022; 348
Jiang (CR107) 2024
He, Qiao, Sun, Yang, He (CR8) 2024
Liao (CR75) 2023; 12
Cai (CR5) 2023
CR38
Despotovic, Nedic, Despotovic, Cvetanovic (CR91) 2016; 56
Deng, He, Huang, Sun, Deng (CR99) 2013
Asif, Javed, Alyami, Hammad (CR19) 2024; 39
Fei, Guo, Li, Hu, Yang (CR28) 2023; E106.D
Iqbal (CR44) 2021; 780
Sarveghadi, Gandomi, Bolandi, Alavi (CR87) 2019; 31
Wang (CR102) 2024; 11
Ying, Qi-Guang, Jia-Chen, Lin (CR83) 2013; 39
Bin Inqiad, Ali Raza, Asim (CR52) 2023
Asif, Memon, Javed, Kim (CR27) 2024; 14
Li (CR89) 2022; 793
Ahmad, Farooq, Ostrowski, Śliwa-Wieczorek, Czarnecki (CR47) 2021; 14
Rostami (CR90) 2020; 84
Dou (CR17) 2023; 28
Wang, Guo, Yu, Shi, Zhang (CR104) 2023; 10
Chen, Zhao, Qin (CR30) 2023; 66
Shahab (CR45) 2024; 38
Zhu, Li, Wang, Zhang, Li (CR32) 2024; 62
Song (CR50) 2021; 308
Lu (CR54) 2023; 149
Wang, Yin (CR77) 2020; 276
Ahmad (CR49) 2021; 14
Jalal (CR34) 2024
Zheng (CR25) 2023; 35
Li (CR4) 2023; 19
Nazar (CR42) 2023; 24
Schapire (CR79) 1990; 5
Chaari, Fakhfakh, Chakroun, Bouzid (CR2) 2008; 156
Thiruchittampalam, Singh, Banerjee, Glenn, Raval (CR12) 2023
Wang, Han, Cui, Chen (CR14) 2023; 35
Farooq, Ahmed, Akbar, Aslam, Alyousef (CR23) 2021; 292
Freund, Schapire (CR82) 1999; 14
Nohara, Matsumoto, Soejima, Nakashima (CR103) 2022; 214
Mahmood (CR43) 2023; 19
Shi, Han, Cui (CR10) 2023
Hu, Gao, Li (CR18) 2012; 382
Amin (CR40) 2023; 25
Ahmad (CR46) 2021; 14
Wang, Xu, Yang (CR64) 2021; 21
Shi, Lv, Xu (CR57) 2023; 40
Inqiad (CR97) 2023; 56
Zheng, Jiang, Wang, Zheng (CR15) 2024
Ahmad (CR33) 2021; 11
Huang (CR63) 2023; 10
CR68
Ilyas (CR88) 2022; 14
Wu (CR51) 2022
CR66
Abbaslou, Ghanizadeh, Amlashi (CR106) 2016; 124
Zhang, Wang, Wang, Chen, Li (CR109) 2023
Jiao (CR24) 2023; 35
Inqiad (CR84) 2023; 9
Karunaratne, Chew (CR22) 2001; 8
Koza (CR65) 1994; 4
Lu, Zhou, Du, Wang (CR56) 2020
Saberi, Hosseini-Barzi (CR96) 2024
Jalal, Xu, Iqbal, Jamhiri, Javed (CR92) 2021; 30
Khawaja (CR26) 2024; 66
Sun (CR11) 2022
Asif (CR16) 2024; 20
Wang (CR58) 2023
Chang (CR70) 2024
Zare Naghadehi, Samaei, Ranjbarnia, Nourani (CR37) 2018; 126
Zhang (CR36) 2023
Sonebi, Cevik (CR71) 2009; 23
Wu (CR61) 2024; 14
Chu (CR98) 2021; 12
Meng, Meng, Chi, Chen, Pang (CR55) 2023; 360
CR74
CR72
Mousavi, Alavi, Gandomi, Esmaeili, Gandomi (CR78) 2010; 36
Asteris, Roussis, Douvika (CR94) 2017; 17
Khan (CR100) 2024; 21
Eldin, Senouci (CR31) 1994; 16
Hu (CR48) 2023; 36
CR3
Li (CR41) 2023
He (CR80) 2023; 213
Inglezakis, Stylianou, Gkantzou, Loizidou (CR1) 2007; 210
Chen, Han, Chang (CR6) 2024; 147
Gholampour, Gandomi, Ozbakkaloglu (CR73) 2017; 130
Chen, Han, Shen (CR9) 2023; 275
Soleimani, Si, Roshan, Zhang (CR62) 2023
Bin Inqiad (CR76) 2024; 39
Gandomi, Roke (CR93) 2015; 88
Guo (CR81) 2023; 624
Zhao (CR29) 2023; 11
Ma (CR95) 2023
Luo (CR101) 2024; 11
Thapa, Kumar, Ghani, Kumar, Gupta (CR85) 2024
Ghanizadeh, Abbaslou, Amlashi, Alidoust (CR108) 2019; 13
CR21
CR20
Yao (CR53) 2023; 375
Alyousef (CR35) 2023; 19
Qi, Yue, Duo, Xu, Li (CR60) 2023
Ekanayake, Meddage, Rathnayake (CR105) 2022; 16
Amlashi, Abdollahi, Goodarzi, Ghanizadeh (CR7) 2019; 230
Li, Tang, Li, Dou, Li (CR69) 2023
Guan (CR110) 2011
Xie (CR59) 2024
Liu (CR13) 2023
69271_CR74
M Zare Naghadehi (69271_CR37) 2018; 126
69271_CR72
A Rostami (69271_CR90) 2020; 84
69271_CR3
C Zhu (69271_CR32) 2024; 62
X Chang (69271_CR70) 2024
L Hu (69271_CR18) 2012; 382
MF Iqbal (69271_CR44) 2021; 780
L Liao (69271_CR75) 2023; 12
J Guo (69271_CR81) 2023; 624
M Sarveghadi (69271_CR87) 2019; 31
MS Mahmood (69271_CR43) 2023; 19
69271_CR68
69271_CR66
H He (69271_CR8) 2024
W Inqiad (69271_CR97) 2023; 56
C Wang (69271_CR64) 2021; 21
D Ma (69271_CR95) 2023
J Li (69271_CR69) 2023
H Zheng (69271_CR15) 2024
Y Zhao (69271_CR29) 2023; 11
X Yao (69271_CR53) 2023; 375
S Lu (69271_CR67) 2023
H Jiao (69271_CR24) 2023; 35
H Song (69271_CR50) 2021; 308
HL Wang (69271_CR77) 2020; 276
SM Mousavi (69271_CR78) 2010; 36
S Meng (69271_CR55) 2023; 360
R Fei (69271_CR28) 2023; E106.D
Y Jiang (69271_CR107) 2024
J Dou (69271_CR17) 2023; 28
S Nazar (69271_CR42) 2023; 24
P Li (69271_CR89) 2022; 793
DL Chen (69271_CR30) 2023; 66
Y Nohara (69271_CR103) 2022; 214
AT Amlashi (69271_CR7) 2019; 230
Y Hu (69271_CR48) 2023; 36
H Abbaslou (69271_CR106) 2016; 124
W Deng (69271_CR99) 2013
Q Li (69271_CR41) 2023
HH Chu (69271_CR98) 2021; 12
S Shi (69271_CR10) 2023
C Chen (69271_CR6) 2024; 147
C Chen (69271_CR9) 2023; 275
B Iftikhar (69271_CR86) 2022; 348
M Despotovic (69271_CR91) 2016; 56
U Asif (69271_CR16) 2024; 20
Y Wu (69271_CR61) 2024; 14
Q Guan (69271_CR110) 2011
IU Ekanayake (69271_CR105) 2022; 16
L Sun (69271_CR11) 2022
69271_CR38
I Thapa (69271_CR85) 2024
A Ahmad (69271_CR46) 2021; 14
F Farooq (69271_CR23) 2021; 292
W Zheng (69271_CR25) 2023; 35
U Asif (69271_CR19) 2024; 39
C Ying (69271_CR83) 2013; 39
Y Cai (69271_CR5) 2023
69271_CR20
RE Schapire (69271_CR79) 1990; 5
G Karunaratne (69271_CR22) 2001; 8
Y Freund (69271_CR82) 1999; 14
L Wang (69271_CR102) 2024; 11
L Khawaja (69271_CR26) 2024; 66
69271_CR21
D Lu (69271_CR56) 2020
W Bin Inqiad (69271_CR52) 2023
X He (69271_CR80) 2023; 213
AR Ghanizadeh (69271_CR108) 2019; 13
Z Li (69271_CR4) 2023; 19
Z Shahab (69271_CR45) 2024; 38
A Gholampour (69271_CR73) 2017; 130
FE Jalal (69271_CR92) 2021; 30
G Zhang (69271_CR36) 2023
A Ahmad (69271_CR47) 2021; 14
I Ilyas (69271_CR88) 2022; 14
WB Inqiad (69271_CR84) 2023; 9
W Bin Inqiad (69271_CR76) 2024; 39
MN Amin (69271_CR40) 2023; 25
R Alyousef (69271_CR35) 2023; 19
M Wang (69271_CR58) 2023
S Wang (69271_CR104) 2023; 10
H Wang (69271_CR14) 2023; 35
PG Asteris (69271_CR94) 2017; 17
A Ahmad (69271_CR33) 2021; 11
VJ Inglezakis (69271_CR1) 2007; 210
S Thiruchittampalam (69271_CR12) 2023
C Zhang (69271_CR109) 2023
U Asif (69271_CR27) 2024; 14
AH Gandomi (69271_CR93) 2015; 88
T Luo (69271_CR101) 2024; 11
JR Koza (69271_CR65) 1994; 4
F Soleimani (69271_CR62) 2023
F Saberi (69271_CR96) 2024
Q Qi (69271_CR60) 2023
I Chaari (69271_CR2) 2008; 156
M Sonebi (69271_CR71) 2009; 23
G Wang (69271_CR39) 2022; 9
A Ahmad (69271_CR49) 2021; 14
D Lu (69271_CR54) 2023; 149
H Wu (69271_CR51) 2022
Y Liu (69271_CR13) 2023
X Xie (69271_CR59) 2024
M Khan (69271_CR100) 2024; 21
FE Jalal (69271_CR34) 2024
ML Shi (69271_CR57) 2023; 40
F Huang (69271_CR63) 2023; 10
NN Eldin (69271_CR31) 1994; 16
References_xml – volume: 275
  start-page: 110706
  year: 2023
  ident: CR9
  article-title: CLVIN: Complete language-vision interaction network for visual question answering
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110706
– volume: 14
  start-page: 4222
  year: 2021
  ident: CR46
  article-title: Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature
  publication-title: Materials
  doi: 10.3390/ma14154222
– volume: 624
  start-page: 129969
  year: 2023
  ident: CR81
  article-title: Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM
  publication-title: J. Hydrol. (Amst.)
  doi: 10.1016/j.jhydrol.2023.129969
– volume: 8
  start-page: 113
  year: 2001
  end-page: 133
  ident: CR22
  article-title: Bentonite: Kaolinite clay liner
  publication-title: Geosynth. Int.
  doi: 10.1680/gein.8.0189
– ident: CR68
– ident: CR74
– volume: 375
  start-page: 130898
  year: 2023
  ident: CR53
  article-title: AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.130898
– volume: 20
  start-page: e03135
  year: 2024
  ident: CR16
  article-title: Predicting the mechanical properties of plastic concrete: An optimization method by using genetic programming and ensemble learners
  publication-title: Case Stud. Construction Mater.
  doi: 10.1016/j.cscm.2024.e03135
– volume: 24
  start-page: 100
  year: 2023
  end-page: 124
  ident: CR42
  article-title: Machine learning interpretable-prediction models to evaluate the slump and strength of fly ash-based geopolymer
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.02.180
– volume: 382
  start-page: 200
  year: 2012
  end-page: 203
  ident: CR18
  article-title: Analysis of the influence of long curing age on the compressive strength of plastic concrete
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.382.200
– year: 2023
  ident: CR95
  article-title: Water–rock two-phase flow model for water inrush and instability of fault rocks during mine tunnelling
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00612-6
– year: 2023
  ident: CR52
  article-title: Predicting 28-day compressive strength of self-compacting concrete (SCC) using gene expression programming (GEP)
  publication-title: Arch. Adv. Eng. Sci.
  doi: 10.47852/bonviewaaes32021606
– volume: 16
  start-page: 287
  year: 1994
  end-page: 298
  ident: CR31
  article-title: Measurement and prediction of the strength of rubberized concrete
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/0958-9465(94)90041-8
– volume: 308
  start-page: 125021
  year: 2021
  ident: CR50
  article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125021
– volume: 17
  start-page: 1344
  year: 2017
  ident: CR94
  article-title: Feed-forward neural network prediction of the mechanical properties of sandcrete materials
  publication-title: Sensors
  doi: 10.3390/s17061344
– volume: 14
  start-page: 2297
  year: 2021
  ident: CR47
  article-title: Application of novel machine learning techniques for predicting the surface chloride concentration in concrete containing waste material
  publication-title: Materials
  doi: 10.3390/ma14092297
– volume: 19
  start-page: e02459
  year: 2023
  ident: CR35
  article-title: Forecasting the strength characteristics of concrete incorporating waste foundry sand using advance machine algorithms including deep learning
  publication-title: Case Stud. Constr. Mater.
– volume: 19
  start-page: e02410
  year: 2023
  ident: CR4
  article-title: Ternary cementless composite based on red mud, ultra-fine fly ash, and GGBS: Synergistic utilization and geopolymerization mechanism
  publication-title: Case Stud. Constr. Mater.
– volume: 84
  start-page: 103644
  year: 2020
  ident: CR90
  article-title: Rigorous framework determining residual gas saturations during spontaneous and forced imbibition using gene expression programming
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103644
– volume: 31
  start-page: 2085
  year: 2019
  end-page: 2094
  ident: CR87
  article-title: Development of prediction models for shear strength of SFRCB using a machine learning approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1997-6
– year: 2024
  ident: CR15
  article-title: Experimental and numerical simulation study on forced ventilation and dust removal of coal mine heading surface
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-024-00667-z
– volume: 14
  start-page: 771
  year: 1999
  end-page: 780
  ident: CR82
  article-title: A short introduction to boosting
  publication-title: J. Jpn. Soc. Artif. Intell.
– volume: 38
  start-page: 107639
  year: 2024
  ident: CR45
  article-title: Experimental investigation and predictive modeling of compressive strength and electrical resistivity of graphene nanoplatelets modified concrete
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.107639
– volume: 28
  start-page: 7151
  year: 2023
  ident: CR17
  article-title: Surface activity, wetting, and aggregation of a perfluoropolyether quaternary ammonium salt surfactant with a hydroxyethyl group
  publication-title: Molecules
  doi: 10.3390/molecules28207151
– volume: 21
  start-page: 101837
  year: 2024
  ident: CR100
  article-title: Forecasting the strength of graphene nanoparticles-reinforced cementitious composites using ensemble learning algorithms
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.101837
– volume: 5
  start-page: 197
  year: 1990
  end-page: 227
  ident: CR79
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116037
– volume: 793
  start-page: 139478
  year: 2022
  ident: CR89
  article-title: Sustainable use of chemically modified tyre rubber in concrete: Machine learning based novel predictive model
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2022.139478
– year: 2022
  ident: CR11
  article-title: Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments
  publication-title: Adv. Str. Eng.
  doi: 10.1177/13694332221131153
– year: 2023
  ident: CR36
  article-title: Electric-field-driven printed 3D highly ordered microstructure with cell feature size promotes the maturation of engineered cardiac tissues
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206264
– year: 2023
  ident: CR60
  article-title: Spatial prediction of soil organic carbon in coal mining subsidence areas based on RBF neural network
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00588-3
– ident: CR66
– year: 2024
  ident: CR8
  article-title: Research progress in mechanisms, influence factors and improvement routes of chloride binding for cement composites
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2024.108978
– ident: CR72
– year: 2024
  ident: CR107
  article-title: Mechanical properties and acoustic emission characteristics of soft rock with different water contents under dynamic disturbance
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-024-00682-0
– volume: 21
  start-page: 5682
  year: 2021
  ident: CR64
  article-title: Adaboost algorithm in artificial intelligence for optimizing the IRI prediction accuracy of asphalt concrete pavement
  publication-title: Sensors
  doi: 10.3390/s21175682
– year: 2023
  ident: CR58
  article-title: Sulfate diffusion in coal pillar: Experimental data and prediction model
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00575-8
– year: 2023
  ident: CR5
  article-title: A review of monitoring, calculation, and simulation methods for ground subsidence induced by coal mining
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00595-4
– volume: 36
  start-page: 106467
  year: 2023
  ident: CR48
  article-title: Strength evaluation sustainable concrete with waste ingredients at elevated temperature by employing interpretable algorithms: Optimization and hyper tuning
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.106467
– year: 2024
  ident: CR85
  article-title: Applications of bentonite in plastic concrete: A comprehensive study on enhancing workability and predicting compressive strength using hybridized AI models
  publication-title: Asian J. Civil Eng.
  doi: 10.1007/s42107-023-00966-x
– volume: 56
  start-page: 212
  year: 2023
  ident: CR97
  article-title: Estimation of 28-day compressive strength of self-compacting concrete using multi expression programming (MEP): An artificial intelligence approach †
  publication-title: Eng. Proc.
– year: 2011
  ident: CR110
  article-title: Effect of clay dosage on mechanical properties of plastic concrete
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.250-253.664
– year: 2023
  ident: CR67
  article-title: Apparent activation energy of mineral in open pit mine based upon the evolution of active functional groups
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00650-0
– volume: 348
  start-page: 131285
  year: 2022
  ident: CR86
  article-title: Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131285
– year: 2023
  ident: CR12
  article-title: Spoil characterisation using UAV-based optical remote sensing in coal mine dumps
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00622-4
– volume: 14
  start-page: 896
  issue: 4
  year: 2024
  ident: CR61
  article-title: A study on the ultimate span of a concrete-filled steel tube arch bridge
  publication-title: Buildings
  doi: 10.3390/buildings14040896
– volume: 62
  start-page: 1
  year: 2024
  end-page: 10
  ident: CR32
  article-title: Deep learning-based coseismic deformation estimation from InSAR interferograms
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3432993
– volume: 147
  start-page: 110084
  year: 2024
  ident: CR6
  article-title: MPCCT: Multimodal vision-language learning paradigm with context-based compact transformer
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.110084
– volume: 13
  start-page: 215
  year: 2019
  end-page: 239
  ident: CR108
  article-title: Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine
  publication-title: Front. Struct. Civil Eng.
  doi: 10.1007/s11709-018-0489-z
– year: 2023
  ident: CR41
  article-title: Splitting tensile strength prediction of Metakaolin concrete using machine learning techniques
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-47196-4
– ident: CR3
– ident: CR38
– year: 2024
  ident: CR96
  article-title: Effect of thermal maturation and organic matter content on oil shale fracturing
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-024-00666-0
– year: 2023
  ident: CR10
  article-title: A multimodal hybrid parallel network intrusion detection model
  publication-title: Conn Sci.
  doi: 10.1080/09540091.2023.2227780
– volume: 11
  start-page: 324
  year: 2021
  ident: CR33
  article-title: Compressive strength prediction via gene expression programming (Gep) and artificial neural network (ann) for concrete containing rca
  publication-title: Buildings
  doi: 10.3390/buildings11080324
– volume: 11
  start-page: 1
  year: 2024
  end-page: 13
  ident: CR101
  article-title: Quantitative characterization of the brittleness of deep shales by integrating mineral content, elastic parameters, in situ stress conditions and logging analysis
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00637-x
– volume: 12
  start-page: 3603
  year: 2021
  end-page: 3617
  ident: CR98
  article-title: Sustainable use of fly-ash: Use of gene-expression programming (GEP) and multi-expression programming (MEP) for forecasting the compressive strength geopolymer concrete
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2021.03.018
– volume: 39
  start-page: 745
  year: 2013
  end-page: 758
  ident: CR83
  article-title: Advance and prospects of AdaBoost algorithm
  publication-title: Acta Automat. Sin.
  doi: 10.1016/S1874-1029(13)60052-X
– volume: 35
  start-page: 105901
  year: 2023
  ident: CR25
  article-title: Sustainable predictive model of concrete utilizing waste ingredient: Individual alogrithms with optimized ensemble approaches
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.105901
– year: 2023
  ident: CR13
  article-title: Time-shift effect of spontaneous combustion characteristics and microstructure difference of dry-soaked coal
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00616-2
– volume: 9
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR39
  article-title: Research and practice of intelligent coal mine technology systems in China
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-022-00491-3
– volume: 14
  start-page: 1091
  issue: 4
  year: 2024
  ident: CR27
  article-title: Predictive modeling and experimental validation for assessing the mechanical properties of cementitious composites made with silica fume and ground granulated blast furnace slag
  publication-title: Buildings
  doi: 10.3390/buildings14041091
– year: 2020
  ident: CR56
  article-title: 3D dynamic elastoplastic constitutive model of concrete within the framework of rate-dependent consistency condition
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001854
– volume: 276
  start-page: 105758
  year: 2020
  ident: CR77
  article-title: High performance prediction of soil compaction parameters using multi expression programming
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105758
– volume: 14
  start-page: 1
  year: 2021
  end-page: 21
  ident: CR49
  article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm
  publication-title: Materials
  doi: 10.3390/ma14040794
– volume: 4
  start-page: 87
  year: 1994
  end-page: 112
  ident: CR65
  article-title: Genetic programming as a means for programming computers by natural selection
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175355
– year: 2023
  ident: CR62
  article-title: Numerical modelling of gas outburst from coal: a review from control parameters to the initiation process
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00657-7
– volume: E106.D
  start-page: 773
  year: 2023
  end-page: 785
  ident: CR28
  article-title: An Improved BPNN method based on probability density for indoor location
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.2022DLP0073
– year: 2022
  ident: CR51
  article-title: Stability analysis of rib pillars in highwall mining under dynamic and static loads in open-pit coal mine
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-022-00504-1
– volume: 88
  start-page: 63
  year: 2015
  end-page: 72
  ident: CR93
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.05.007
– volume: 39
  start-page: 109222
  year: 2024
  ident: CR76
  article-title: Comparison of boosting and genetic programming techniques for prediction of tensile strain capacity of engineered cementitious composites (ECC)
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2024.109222
– volume: 213
  start-page: 118200
  year: 2023
  ident: CR80
  article-title: Excellent microwave absorption performance of LaFeO3/Fe3O4/C perovskite composites with optimized structure and impedance matching
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.118200
– volume: 23
  start-page: 2614
  year: 2009
  end-page: 2622
  ident: CR71
  article-title: Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.02.012
– volume: 149
  start-page: 04023102
  year: 2023
  ident: CR54
  article-title: A dynamic elastoplastic model of concrete based on a modeling method with environmental factors as constitutive variables
  publication-title: J. Eng. Mech.
  doi: 10.1061/JENMDT.EMENG-7206
– volume: 780
  start-page: 146524
  year: 2021
  ident: CR44
  article-title: Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146524
– year: 2024
  ident: CR59
  article-title: Fluid inverse volumetric modeling and applications from surface motion
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2024.3370551
– ident: CR21
– volume: 66
  start-page: 106837
  year: 2024
  ident: CR26
  article-title: Indirect estimation of resilient modulus (Mr) of subgrade soil: Gene expression programming vs multi expression programming
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.106837
– volume: 214
  start-page: 106584
  year: 2022
  ident: CR103
  article-title: Explanation of machine learning models using shapley additive explanation and application for real data in hospital
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2021.106584
– volume: 25
  start-page: 1495
  year: 2023
  end-page: 1536
  ident: CR40
  article-title: Prediction of sustainable concrete utilizing rice husk ash (RHA) as supplementary cementitious material (SCM): Optimization and hyper-tuning
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.06.006
– volume: 210
  start-page: 248
  year: 2007
  end-page: 256
  ident: CR1
  article-title: Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.05.049
– volume: 14
  start-page: 1789
  year: 2022
  ident: CR88
  article-title: Advanced machine learning modeling approach for prediction of compressive strength of FRP confined concrete using multiphysics genetic expression programming
  publication-title: Polymers (Basel)
  doi: 10.3390/polym14091789
– volume: 56
  start-page: 246
  year: 2016
  end-page: 260
  ident: CR91
  article-title: Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.058
– volume: 12
  start-page: 954
  year: 2023
  ident: CR75
  article-title: Color image recovery using generalized matrix completion over higher-order finite dimensional algebra
  publication-title: Axioms
  doi: 10.3390/axioms12100954
– volume: 35
  start-page: 106335
  year: 2023
  ident: CR24
  article-title: A novel approach in forecasting compressive strength of concrete with carbon nanotubes as nanomaterials
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.106335
– volume: 126
  start-page: 46
  year: 2018
  end-page: 57
  ident: CR37
  article-title: State-of-the-art predictive modeling of TBM performance in changing geological conditions through gene expression programming
  publication-title: Meas. (Lond.)
– volume: 40
  start-page: 473
  year: 2023
  end-page: 493
  ident: CR57
  article-title: A multi-fidelity surrogate model based on extreme support vector regression: Fusing different fidelity data for engineering design
  publication-title: Eng. Comput.
  doi: 10.1108/EC-10-2021-0583
– volume: 30
  start-page: 100608
  year: 2021
  ident: CR92
  article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2021.100608
– volume: 39
  start-page: 108789
  year: 2024
  ident: CR19
  article-title: Performance evaluation of concrete made with plastic waste using multi-expression programming
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2024.108789
– year: 2013
  ident: CR99
  article-title: Multi-expression based gene expression programming
  publication-title: Lecture Notes in Electrical Engineering
– volume: 9
  start-page: 22036
  year: 2023
  ident: CR84
  article-title: Comparative analysis of various machine learning algorithms to predict 28-day compressive strength of Self-compacting concrete
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e22036
– volume: 10
  start-page: 1
  year: 2023
  end-page: 10
  ident: CR104
  article-title: Quality evaluation of land reclamation in mining area based on remote sensing
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00601-9
– volume: 360
  start-page: 11397
  year: 2023
  end-page: 11413
  ident: CR55
  article-title: A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2023.08.037
– volume: 230
  start-page: 1197
  year: 2019
  end-page: 1216
  ident: CR7
  article-title: Soft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concrete
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.168
– year: 2024
  ident: CR34
  article-title: ANN-based swarm intelligence for predicting expansive soil swell pressure and compression strength
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-65547-7
– volume: 16
  start-page: 01059
  year: 2022
  ident: CR105
  article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP)
  publication-title: Case Stud. Constr. Materials
  doi: 10.1016/j.cscm.2022.e01059
– volume: 130
  start-page: 122
  year: 2017
  end-page: 145
  ident: CR73
  article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.10.114
– volume: 11
  start-page: 1
  year: 2024
  end-page: 18
  ident: CR102
  article-title: Effect of long reaction distance on gas composition from organic-rich shale pyrolysis under high-temperature steam environment
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-024-00689-7
– volume: 292
  start-page: 126032
  year: 2021
  ident: CR23
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126032
– volume: 19
  start-page: e02557
  year: 2023
  ident: CR43
  article-title: Enhancing compressive strength prediction in self-compacting concrete using machine learning and deep learning techniques with incorporation of rice husk ash and marble powder
  publication-title: Case Stud. Constr. Mater.
– volume: 66
  start-page: 2996
  year: 2023
  end-page: 3010
  ident: CR30
  article-title: SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio
  publication-title: Sci. Ch. Technol. Sci.
  doi: 10.1007/s11431-022-2394-4
– volume: 11
  start-page: 86645
  year: 2023
  end-page: 86685
  ident: CR29
  article-title: Intelligent control of multilegged robot smooth motion: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3304992
– volume: 35
  start-page: 1
  year: 2023
  end-page: 32
  ident: CR14
  article-title: NAS-YOLOX: A SAR ship detection using neural architecture search and multi-scale attention
  publication-title: Conn. Sci.
  doi: 10.1080/09540091.2023.2257399
– volume: 10
  start-page: 18
  issue: 1
  year: 2023
  ident: CR63
  article-title: Slope stability prediction based on a long short-term memory neural network: comparisons with convolutional neural networks, support vector machines and random forest models
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00579-4
– year: 2023
  ident: CR69
  article-title: LEF-YOLO: A lightweight method for intelligent detection of four extreme wildfires based on the YOLO framework
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF23044
– year: 2023
  ident: CR109
  article-title: Characteristics of coal resources in China and statistical analysis and preventive measures for coal mine accidents
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00582-9
– volume: 124
  start-page: 1165
  year: 2016
  end-page: 1173
  ident: CR106
  article-title: The compatibility of bentonite/sepiolite plastic concrete cut-off wall material
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.08.116
– volume: 36
  start-page: 759
  issue: 6
  year: 2010
  end-page: 783
  ident: CR78
  article-title: A Data mining approach to compressive strength of CFRP-confined concrete cylinders
  publication-title: Str. Eng. Mech.
  doi: 10.12989/sem.2010.36.6.759
– volume: 156
  start-page: 545
  year: 2008
  end-page: 551
  ident: CR2
  article-title: Lead removal from aqueous solutions by a Tunisian smectitic clay
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.12.080
– ident: CR20
– year: 2024
  ident: CR70
  article-title: Single-objective and multi-objective flood interval forecasting considering interval fitting coefficients
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-024-03848-2
– year: 2023
  ident: 69271_CR36
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206264
– volume: 66
  start-page: 106837
  year: 2024
  ident: 69271_CR26
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.106837
– volume: 275
  start-page: 110706
  year: 2023
  ident: 69271_CR9
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110706
– volume: 8
  start-page: 113
  year: 2001
  ident: 69271_CR22
  publication-title: Geosynth. Int.
  doi: 10.1680/gein.8.0189
– year: 2024
  ident: 69271_CR15
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-024-00667-z
– volume: 360
  start-page: 11397
  year: 2023
  ident: 69271_CR55
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2023.08.037
– volume: 214
  start-page: 106584
  year: 2022
  ident: 69271_CR103
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2021.106584
– year: 2024
  ident: 69271_CR85
  publication-title: Asian J. Civil Eng.
  doi: 10.1007/s42107-023-00966-x
– volume: 35
  start-page: 1
  year: 2023
  ident: 69271_CR14
  publication-title: Conn. Sci.
  doi: 10.1080/09540091.2023.2257399
– year: 2020
  ident: 69271_CR56
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001854
– volume: 19
  start-page: e02557
  year: 2023
  ident: 69271_CR43
  publication-title: Case Stud. Constr. Mater.
– volume: 126
  start-page: 46
  year: 2018
  ident: 69271_CR37
  publication-title: Meas. (Lond.)
– year: 2024
  ident: 69271_CR107
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-024-00682-0
– volume: 21
  start-page: 101837
  year: 2024
  ident: 69271_CR100
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.101837
– year: 2023
  ident: 69271_CR13
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00616-2
– year: 2023
  ident: 69271_CR12
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00622-4
– volume: 12
  start-page: 954
  year: 2023
  ident: 69271_CR75
  publication-title: Axioms
  doi: 10.3390/axioms12100954
– year: 2023
  ident: 69271_CR52
  publication-title: Arch. Adv. Eng. Sci.
  doi: 10.47852/bonviewaaes32021606
– volume: 13
  start-page: 215
  year: 2019
  ident: 69271_CR108
  publication-title: Front. Struct. Civil Eng.
  doi: 10.1007/s11709-018-0489-z
– volume: 12
  start-page: 3603
  year: 2021
  ident: 69271_CR98
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2021.03.018
– ident: 69271_CR20
  doi: 10.1016/j.heliyon.2023.e17107
– volume: 11
  start-page: 1
  year: 2024
  ident: 69271_CR101
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00637-x
– volume: 11
  start-page: 1
  year: 2024
  ident: 69271_CR102
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-024-00689-7
– year: 2023
  ident: 69271_CR62
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00657-7
– volume: 624
  start-page: 129969
  year: 2023
  ident: 69271_CR81
  publication-title: J. Hydrol. (Amst.)
  doi: 10.1016/j.jhydrol.2023.129969
– volume: 39
  start-page: 108789
  year: 2024
  ident: 69271_CR19
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2024.108789
– volume: 308
  start-page: 125021
  year: 2021
  ident: 69271_CR50
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125021
– year: 2022
  ident: 69271_CR51
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-022-00504-1
– volume: 14
  start-page: 2297
  year: 2021
  ident: 69271_CR47
  publication-title: Materials
  doi: 10.3390/ma14092297
– year: 2024
  ident: 69271_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-65547-7
– volume: 230
  start-page: 1197
  year: 2019
  ident: 69271_CR7
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.168
– volume: 9
  start-page: 1
  year: 2022
  ident: 69271_CR39
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-022-00491-3
– volume: 28
  start-page: 7151
  year: 2023
  ident: 69271_CR17
  publication-title: Molecules
  doi: 10.3390/molecules28207151
– year: 2022
  ident: 69271_CR11
  publication-title: Adv. Str. Eng.
  doi: 10.1177/13694332221131153
– year: 2024
  ident: 69271_CR59
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2024.3370551
– volume: 124
  start-page: 1165
  year: 2016
  ident: 69271_CR106
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.08.116
– volume: 56
  start-page: 212
  year: 2023
  ident: 69271_CR97
  publication-title: Eng. Proc.
– ident: 69271_CR74
  doi: 10.48550/arXiv.2406.02291
– volume: 40
  start-page: 473
  year: 2023
  ident: 69271_CR57
  publication-title: Eng. Comput.
  doi: 10.1108/EC-10-2021-0583
– ident: 69271_CR21
– volume: 36
  start-page: 106467
  year: 2023
  ident: 69271_CR48
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.106467
– volume: 39
  start-page: 109222
  year: 2024
  ident: 69271_CR76
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2024.109222
– year: 2023
  ident: 69271_CR109
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00582-9
– volume: 9
  start-page: 22036
  year: 2023
  ident: 69271_CR84
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e22036
– volume: 66
  start-page: 2996
  year: 2023
  ident: 69271_CR30
  publication-title: Sci. Ch. Technol. Sci.
  doi: 10.1007/s11431-022-2394-4
– volume: 84
  start-page: 103644
  year: 2020
  ident: 69271_CR90
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103644
– year: 2023
  ident: 69271_CR10
  publication-title: Conn Sci.
  doi: 10.1080/09540091.2023.2227780
– volume: 19
  start-page: e02410
  year: 2023
  ident: 69271_CR4
  publication-title: Case Stud. Constr. Mater.
– ident: 69271_CR68
– volume: 14
  start-page: 4222
  year: 2021
  ident: 69271_CR46
  publication-title: Materials
  doi: 10.3390/ma14154222
– volume: 16
  start-page: 287
  year: 1994
  ident: 69271_CR31
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/0958-9465(94)90041-8
– volume: 10
  start-page: 18
  issue: 1
  year: 2023
  ident: 69271_CR63
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00579-4
– volume: 14
  start-page: 1091
  issue: 4
  year: 2024
  ident: 69271_CR27
  publication-title: Buildings
  doi: 10.3390/buildings14041091
– volume: 36
  start-page: 759
  issue: 6
  year: 2010
  ident: 69271_CR78
  publication-title: Str. Eng. Mech.
  doi: 10.12989/sem.2010.36.6.759
– volume: 62
  start-page: 1
  year: 2024
  ident: 69271_CR32
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3432993
– volume: 25
  start-page: 1495
  year: 2023
  ident: 69271_CR40
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.06.006
– volume: E106.D
  start-page: 773
  year: 2023
  ident: 69271_CR28
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.2022DLP0073
– volume: 39
  start-page: 745
  year: 2013
  ident: 69271_CR83
  publication-title: Acta Automat. Sin.
  doi: 10.1016/S1874-1029(13)60052-X
– volume: 20
  start-page: e03135
  year: 2024
  ident: 69271_CR16
  publication-title: Case Stud. Construction Mater.
  doi: 10.1016/j.cscm.2024.e03135
– volume: 35
  start-page: 106335
  year: 2023
  ident: 69271_CR24
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.106335
– volume: 780
  start-page: 146524
  year: 2021
  ident: 69271_CR44
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146524
– volume: 88
  start-page: 63
  year: 2015
  ident: 69271_CR93
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.05.007
– volume: 10
  start-page: 1
  year: 2023
  ident: 69271_CR104
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00601-9
– volume: 130
  start-page: 122
  year: 2017
  ident: 69271_CR73
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.10.114
– volume: 292
  start-page: 126032
  year: 2021
  ident: 69271_CR23
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126032
– year: 2024
  ident: 69271_CR96
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-024-00666-0
– volume: 30
  start-page: 100608
  year: 2021
  ident: 69271_CR92
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2021.100608
– volume: 156
  start-page: 545
  year: 2008
  ident: 69271_CR2
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.12.080
– volume: 14
  start-page: 771
  year: 1999
  ident: 69271_CR82
  publication-title: J. Jpn. Soc. Artif. Intell.
– year: 2023
  ident: 69271_CR41
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-47196-4
– ident: 69271_CR66
– volume: 24
  start-page: 100
  year: 2023
  ident: 69271_CR42
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.02.180
– volume: 375
  start-page: 130898
  year: 2023
  ident: 69271_CR53
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.130898
– year: 2023
  ident: 69271_CR58
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00575-8
– volume: 19
  start-page: e02459
  year: 2023
  ident: 69271_CR35
  publication-title: Case Stud. Constr. Mater.
– ident: 69271_CR3
  doi: 10.1016/j.geothermics.2024.102974
– year: 2023
  ident: 69271_CR67
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00650-0
– volume: 149
  start-page: 04023102
  year: 2023
  ident: 69271_CR54
  publication-title: J. Eng. Mech.
  doi: 10.1061/JENMDT.EMENG-7206
– volume: 17
  start-page: 1344
  year: 2017
  ident: 69271_CR94
  publication-title: Sensors
  doi: 10.3390/s17061344
– volume: 5
  start-page: 197
  year: 1990
  ident: 69271_CR79
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116037
– year: 2011
  ident: 69271_CR110
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.250-253.664
– ident: 69271_CR72
– year: 2024
  ident: 69271_CR8
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2024.108978
– volume: 348
  start-page: 131285
  year: 2022
  ident: 69271_CR86
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131285
– volume: 382
  start-page: 200
  year: 2012
  ident: 69271_CR18
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.382.200
– volume: 35
  start-page: 105901
  year: 2023
  ident: 69271_CR25
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.105901
– volume: 23
  start-page: 2614
  year: 2009
  ident: 69271_CR71
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.02.012
– ident: 69271_CR38
– volume: 14
  start-page: 1789
  year: 2022
  ident: 69271_CR88
  publication-title: Polymers (Basel)
  doi: 10.3390/polym14091789
– volume: 11
  start-page: 86645
  year: 2023
  ident: 69271_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3304992
– year: 2024
  ident: 69271_CR70
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-024-03848-2
– volume: 14
  start-page: 1
  year: 2021
  ident: 69271_CR49
  publication-title: Materials
  doi: 10.3390/ma14040794
– volume: 793
  start-page: 139478
  year: 2022
  ident: 69271_CR89
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2022.139478
– year: 2023
  ident: 69271_CR60
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00588-3
– volume: 210
  start-page: 248
  year: 2007
  ident: 69271_CR1
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.05.049
– volume: 38
  start-page: 107639
  year: 2024
  ident: 69271_CR45
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.107639
– volume: 21
  start-page: 5682
  year: 2021
  ident: 69271_CR64
  publication-title: Sensors
  doi: 10.3390/s21175682
– volume: 11
  start-page: 324
  year: 2021
  ident: 69271_CR33
  publication-title: Buildings
  doi: 10.3390/buildings11080324
– year: 2023
  ident: 69271_CR95
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00612-6
– volume-title: Lecture Notes in Electrical Engineering
  year: 2013
  ident: 69271_CR99
– volume: 147
  start-page: 110084
  year: 2024
  ident: 69271_CR6
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.110084
– year: 2023
  ident: 69271_CR5
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00595-4
– volume: 276
  start-page: 105758
  year: 2020
  ident: 69271_CR77
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105758
– volume: 14
  start-page: 896
  issue: 4
  year: 2024
  ident: 69271_CR61
  publication-title: Buildings
  doi: 10.3390/buildings14040896
– volume: 56
  start-page: 246
  year: 2016
  ident: 69271_CR91
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.058
– volume: 4
  start-page: 87
  year: 1994
  ident: 69271_CR65
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175355
– volume: 16
  start-page: 01059
  year: 2022
  ident: 69271_CR105
  publication-title: Case Stud. Constr. Materials
  doi: 10.1016/j.cscm.2022.e01059
– year: 2023
  ident: 69271_CR69
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF23044
– volume: 213
  start-page: 118200
  year: 2023
  ident: 69271_CR80
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.118200
– volume: 31
  start-page: 2085
  year: 2019
  ident: 69271_CR87
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1997-6
SSID ssj0000529419
Score 2.5083783
Snippet Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high...
Abstract Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18145
SubjectTerms 639/166/986
704/172/4081
AdaBoost
Algorithms
Bentonite
Civil engineering
Compressive strength
Concrete
Concrete mixes
Correlation coefficient
Gene expression
Genetic programming
Humanities and Social Sciences
Metals
multidisciplinary
Objective function
Plastic concrete
Plasticity
Predictions
Science
Science (multidisciplinary)
Shapley additive explanation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxwxDBYltNBLSd_TpGUKvbVDZvwY28e0NBRaQqEPcjO2x24CZXbZ3QTy7yPZs9tsn5dex5YRsjT6hCwJ4IVHJxeE8Y3wQ2oE96HRZuCNoyxnUtyr3Hbx6wd1fKxPTszHa6O-6E1YaQ9cBHcgmfc6Cq-D5ML1yiSMkruBMce6mPK8Woao51owVbp6MyM6M1XJtFwfLNFTUTUZE01vmMIYessT5Yb9v0OZvz6W_Cljmh3R0S7cmRBkfVg4vws34ngPbpWZkpf34f0n_LHWIQ9rQPo6j7pZ1ohN6_mCsjJ0E_Us1T7S-GBEnPUcETQehkQjYkj8QAUk47fV6QP4cvT285t3zTQxoQlSdKvG8V63g_YitXoQHPFTRETQpSBlSG1KgiUWPRo5S4pqbH0UpveOocfqmdKOP4SdcTbGx1AnNyBBpEOYkCrpKKUTgfe9k4bpWEG3lp4NUztxmmrx3ea0Nte2SNwiuc0St20FLzc089JM46-7X9OlbHZSI-z8AdXDTuph_6UeFeyvr9RO1rm0vNWGcLLRFTzfLKNdUbLEjXF2XvZIwrOmgkdFAzaccMRYXPaqAr2lG1usbq-MZ6e5d3dH6UMMIit4tVajH3z9WRZP_ocs9uA2I_2nBy9yH3ZWi_P4FG6Gi9XZcvEsG9AVeaUb_Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Soft computing models for prediction of bentonite plastic concrete strength
URI https://link.springer.com/article/10.1038/s41598-024-69271-0
https://www.ncbi.nlm.nih.gov/pubmed/39103567
https://www.proquest.com/docview/3089002098
https://www.proquest.com/docview/3089505409
https://pubmed.ncbi.nlm.nih.gov/PMC11300626
https://doaj.org/article/52bb8e4b8c534a679f9871d22a21ef13
Volume 14
WOSCitedRecordID wos001284942100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsgoSN4ia-BHbJ0RRKxB0FfHScopix24roex2d4vEv2fGyW61PHrh4oNfsj0ez-cZewbguUUh54SxmbBtyAS3LtOm5VlDVs6guFXR7eLXD2o81pOJqQaF22J4Vrk6E-NB3U4d6cj3ea4NYRujX83OM4oaRdbVIYTGFuyQlwQen-5Vax0LWbFEYYa_MjnX-wuUV_SnjImsNEzhTXpDHkW3_X_Dmn8-mfzNbhrF0dHt_53IHbg1ANH0db9z7sI1392DG31oyp_34f0nPJ9TF2M-4ADSGDFnkSLETWdzMu4QQdNpSK2nKMTYdzpDII6dYaMOoShm0D-U7mR5-gC-HB1-fvM2GwIvZE6KYpk1vNR5q60IuW4FRxjmEVgUwUnpQh6CYIF5i2cFC4q-6lovTGkbhoKvZEo3_CFsd9PO70IamhYbeOqECamC9lI2wvGybKRh2idQrJa_doNXcgqO8b2O1nGu655kNTavI8nqPIEX6zaz3ifHlbUPiKrrmuRPO2ZM5yf1wJ61ZNZqL6x2koumVCYYvEm2jDWs8KHgCeytiFkPTL6oLymZwLN1MbIn2Vyazk8v-jqSYLFJ4FG_hdYj4QjVuCxVAnpjc20MdbOkOzuNLsALskLiXTSBl6t9eDmuf6_F46un8QRuMmINehEj92B7Ob_wT-G6-7E8W8xHsKUmKqZ6BDsHh-Pq4yiqMDA9ZtUo8h6WVO-Oq2-_AE7DMU0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFAQv3BRDASPBE1i197B3HxDiqholjSJRUHky3vVuW6lyQpKC-qf4jcz4SBWOvvWB1720a39z7ezMADwzKOSs0CYSpvSR4MZGSpc8KsjL6TNusjrt4udhNhqp_X09XoOfXSwMPavseGLNqMuJpTvyLR4rTbqNVq-n3yKqGkXe1a6ERgOLgTv9gSbb_FX_Pf7f54xtf9h7txO1VQUiK0WyiAqeqrhURvhYlYKjjuFQaibeSml97L1gnjmDhMB8RnGoxgmdmoIhV09ZpgqO616CdYFgVz1YH_d3x1-WtzrkNxOJbqNzYq625ighKYqNiSjVLEPbfUUC1oUC_qbd_vlI8zdPbS0At2_8b5_uJlxvVe3wTUMbt2DNVbfhSlN88_QODD6iBAptXdUCDxzWNYHmISrx4XRG7iuCbDjxoXFUZxnPEk7R1MDFcFKFyjY2UKRNdbA4vAufLuQk96BXTSp3H0JflDjB0SJMyMwrJ2UhLE_TQmqmXABJ97tz2-Zdp_Ifx3nt_-cqbyCS4_S8hkgeB_BiOWfaZB05d_RbQtFyJGUMrxsms4O8ZUC5ZMYoJ4yykosizbTXaCuXjBUscT7hAWx24MlbNjbPz5ATwNNlNzIg8ioVlZucNGMkKf46gI0GssudcFRGuUyzANQKmFe2utpTHR3WSc4T8rOitR3Ayw73Z_v697d4cP4xnsDVnb3dYT7sjwYP4RojsqT3P3ITeovZiXsEl-33xdF89ril7BC-XjRF_AKr9Ia4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQIEhwgmgSL4l9QAgoI6qpRiOxqLc0duy2EsoMM1NQ_xq_jvecZKph6a0Hrolt2clb_ZYP4JlBJWeFNokwtU8ENzZRuuZJRVFOX3BThLaLX3aL8Vjt7enJBvzsa2EorbKXiUFQ11NLd-QDnipNto1WA9-lRUy2h69n3xJCkKJIaw-n0ZLIyJ38QPdt8WpnG__1c8aG7z-9-5B0CAOJlSJbJhXPVVorI3yqasHR3nCoQTNvpbQ-9V4wz5xBpmC-oJpU44TOTcVQwuesUBXHdS_AxYKaloe0wcnqfociaCLTXZ1OytVggbqS6tmYSHLNCvTi13RhgAz4m537Z7rmbzHboAqH1__nj3gDrnUGePym5ZibsOGaW3C5heQ8uQ2jj6iXYhuwLvDwcUAKWsRo2sezOQW1iJDjqY-NI_RlPEs8QwcEF8NJDZrg-IDqb5qD5eEd-HwuJ7kLm820cfch9lWNExwtwoQsvHJSVsLyPK-kZspFkPW_vrRdN3YCBflahqwArsqWXEqcXgZyKdMIXqzmzNpeJGeOfksUtRpJfcTDg-n8oOzEUimZMcoJo6zkosoL7TV60DVjFcucz3gEWz0hlZ1wW5SnVBTB09VrFEsUa6oaNz1ux0hyB3QE91ryXe2Eo4nKZV5EoNYIe22r62-ao8PQ-jyj6Cv64BG87HngdF___hYPzj7GE7iCbFDu7oxHD-EqIw6lpCC5BZvL-bF7BJfs9-XRYv44sHgM--fNDr8AX8uN9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+computing+models+for+prediction+of+bentonite+plastic+concrete+strength&rft.jtitle=Scientific+reports&rft.au=Inqiad%2C+Waleed+Bin&rft.au=Javed%2C+Muhammad+Faisal&rft.au=Onyelowe%2C+Kennedy&rft.au=Siddique%2C+Muhammad+Shahid&rft.date=2024-08-05&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=18145&rft_id=info:doi/10.1038%2Fs41598-024-69271-0&rft_id=info%3Apmid%2F39103567&rft.externalDocID=39103567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon