Soft computing models for prediction of bentonite plastic concrete strength
Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified d...
Uložené v:
| Vydané v: | Scientific reports Ročník 14; číslo 1; s. 18145 - 24 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
05.08.2024
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength. |
|---|---|
| AbstractList | Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength.Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength. Abstract Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength. Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength. |
| ArticleNumber | 18145 |
| Author | Javed, Muhammad Faisal Siddique, Muhammad Shahid Alkhattabi, Loai Aslam, Fahid Onyelowe, Kennedy Inqiad, Waleed Bin Asif, Usama |
| Author_xml | – sequence: 1 givenname: Waleed Bin surname: Inqiad fullname: Inqiad, Waleed Bin organization: Military College of Engineering (MCE), National University of Science and Technology (NUST) – sequence: 2 givenname: Muhammad Faisal surname: Javed fullname: Javed, Muhammad Faisal email: arbabfaisal@giki.edu.pk organization: Department of Civil Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Western Caspian University – sequence: 3 givenname: Kennedy surname: Onyelowe fullname: Onyelowe, Kennedy email: kennedychibuzor@kiu.ac.ug organization: Department of Civil Engineering, Michael Okpara University of Agriculture, Department of Civil Engineering, Kampala International University – sequence: 4 givenname: Muhammad Shahid surname: Siddique fullname: Siddique, Muhammad Shahid organization: Military College of Engineering (MCE), National University of Science and Technology (NUST) – sequence: 5 givenname: Usama surname: Asif fullname: Asif, Usama organization: Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University – sequence: 6 givenname: Loai surname: Alkhattabi fullname: Alkhattabi, Loai organization: Department of Civil and Environmental Engineering, College of Engineering, University of Jeddah – sequence: 7 givenname: Fahid surname: Aslam fullname: Aslam, Fahid organization: Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39103567$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk9vFSEUxSemxtbaL-DCTOLGzejlAjOwMqbxT2MTF-qaMAy88jIDT2BM_PbS91ptuygbyOWcXw7c-7w5CjHYpnlJ4C0BKt5lRrgUHSDreokD6eBJc4LAeIcU8ejO-bg5y3kLdXGUjMhnzTGVlcH74aT5-j260pq47Nbiw6Zd4mTn3LqY2l2ykzfFx9BG1442lBh8se1u1rl4U03BJFsLuSQbNuXqRfPU6Tnbs5v9tPn56eOP8y_d5bfPF-cfLjvDGSmdpr2ASYzMgZgYBZB24ECc4dw4cI6hQzsOQNENAhBHy2Q_auwH0eMgND1tLg7cKeqt2iW_6PRHRe3VvhDTRulUE85WcRxHYdkoDKdM94N0UgxkQtRIrCO0st4fWLt1XOxk6iuTnu9B798Ef6U28bcipCbvsa-ENzeEFH-tNhe1-GzsPOtg45oVBSE5cAaySl8_kG7jmkL9q70KAEGKqnp1N9K_LLdNqwJxEJgUc07WKeOLvm5UTehnRUBdj4g6jIiqI6L2I6KgWvGB9Zb-qIkeTLmKw8am_7Efcf0FIvvM8g |
| CitedBy_id | crossref_primary_10_1016_j_cscm_2024_e04112 crossref_primary_10_1007_s41062_025_02212_6 crossref_primary_10_1007_s40996_025_01852_z crossref_primary_10_1016_j_mtcomm_2025_112181 crossref_primary_10_1038_s41598_024_77490_8 crossref_primary_10_1007_s41939_025_00812_4 crossref_primary_10_1515_rams_2024_0081 crossref_primary_10_1080_10589759_2024_2431634 crossref_primary_10_1002_suco_70302 crossref_primary_10_1007_s12145_024_01520_2 crossref_primary_10_1016_j_rineng_2025_106279 crossref_primary_10_1007_s11760_025_04200_w crossref_primary_10_1002_eng2_70224 crossref_primary_10_3390_ma18133123 crossref_primary_10_1038_s41598_025_01327_1 crossref_primary_10_1038_s41598_025_05288_3 |
| Cites_doi | 10.1016/j.knosys.2023.110706 10.3390/ma14154222 10.1016/j.jhydrol.2023.129969 10.1680/gein.8.0189 10.1016/j.conbuildmat.2023.130898 10.1016/j.cscm.2024.e03135 10.1016/j.jmrt.2023.02.180 10.4028/www.scientific.net/AMR.382.200 10.1007/s40789-023-00612-6 10.47852/bonviewaaes32021606 10.1016/0958-9465(94)90041-8 10.1016/j.conbuildmat.2021.125021 10.3390/s17061344 10.3390/ma14092297 10.1016/j.jngse.2020.103644 10.1007/s00521-015-1997-6 10.1007/s40789-024-00667-z 10.1016/j.mtcomm.2023.107639 10.3390/molecules28207151 10.1016/j.rineng.2024.101837 10.1007/BF00116037 10.1016/j.cplett.2022.139478 10.1177/13694332221131153 10.1002/advs.202206264 10.1007/s40789-023-00588-3 10.1016/j.jobe.2024.108978 10.1007/s40789-024-00682-0 10.3390/s21175682 10.1007/s40789-023-00575-8 10.1007/s40789-023-00595-4 10.1016/j.mtcomm.2023.106467 10.1007/s42107-023-00966-x 10.4028/www.scientific.net/AMR.250-253.664 10.1007/s40789-023-00650-0 10.1016/j.jclepro.2022.131285 10.1007/s40789-023-00622-4 10.3390/buildings14040896 10.1109/TGRS.2024.3432993 10.1016/j.patcog.2023.110084 10.1007/s11709-018-0489-z 10.1038/s41598-023-47196-4 10.1007/s40789-024-00666-0 10.1080/09540091.2023.2227780 10.3390/buildings11080324 10.1007/s40789-023-00637-x 10.1016/j.asej.2021.03.018 10.1016/S1874-1029(13)60052-X 10.1016/j.mtcomm.2023.105901 10.1007/s40789-023-00616-2 10.1007/s40789-022-00491-3 10.3390/buildings14041091 10.1061/(ASCE)EM.1943-7889.0001854 10.1016/j.enggeo.2020.105758 10.3390/ma14040794 10.1007/BF00175355 10.1007/s40789-023-00657-7 10.1587/transinf.2022DLP0073 10.1007/s40789-022-00504-1 10.1016/j.advengsoft.2015.05.007 10.1016/j.mtcomm.2024.109222 10.1016/j.carbon.2023.118200 10.1016/j.conbuildmat.2009.02.012 10.1061/JENMDT.EMENG-7206 10.1016/j.scitotenv.2021.146524 10.1109/TVCG.2024.3370551 10.1016/j.istruc.2024.106837 10.1016/j.cmpb.2021.106584 10.1016/j.jmrt.2023.06.006 10.1016/j.desal.2006.05.049 10.3390/polym14091789 10.1016/j.rser.2015.11.058 10.3390/axioms12100954 10.1016/j.mtcomm.2023.106335 10.1108/EC-10-2021-0583 10.1016/j.trgeo.2021.100608 10.1016/j.mtcomm.2024.108789 10.1016/j.heliyon.2023.e22036 10.1007/s40789-023-00601-9 10.1016/j.jfranklin.2023.08.037 10.1016/j.jclepro.2019.05.168 10.1038/s41598-024-65547-7 10.1016/j.cscm.2022.e01059 10.1016/j.conbuildmat.2016.10.114 10.1007/s40789-024-00689-7 10.1016/j.jclepro.2021.126032 10.1007/s11431-022-2394-4 10.1109/ACCESS.2023.3304992 10.1080/09540091.2023.2257399 10.1007/s40789-023-00579-4 10.1071/WF23044 10.1007/s40789-023-00582-9 10.1016/j.conbuildmat.2016.08.116 10.12989/sem.2010.36.6.759 10.1016/j.jhazmat.2007.12.080 10.1007/s11269-024-03848-2 10.1016/j.heliyon.2023.e17107 10.48550/arXiv.2406.02291 10.1016/j.geothermics.2024.102974 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-69271-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_52bb8e4b8c534a679f9871d22a21ef13 PMC11300626 39103567 10_1038_s41598_024_69271_0 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-a3680d8b4f08d43009e7501fc55cf0ff42f2eb7032f78022be496ba26786278a3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284942100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:35:31 EST 2025 Tue Nov 04 02:06:24 EST 2025 Thu Oct 02 10:58:22 EDT 2025 Tue Oct 07 07:54:06 EDT 2025 Mon Jul 21 06:05:16 EDT 2025 Sat Nov 29 02:13:44 EST 2025 Tue Nov 18 22:04:21 EST 2025 Fri Feb 21 02:39:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Bentonite AdaBoost Compressive strength Shapley additive explanation Plastic concrete Genetic programming |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-a3680d8b4f08d43009e7501fc55cf0ff42f2eb7032f78022be496ba26786278a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3089002098?pq-origsite=%requestingapplication% |
| PMID | 39103567 |
| PQID | 3089002098 |
| PQPubID | 2041939 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_52bb8e4b8c534a679f9871d22a21ef13 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300626 proquest_miscellaneous_3089505409 proquest_journals_3089002098 pubmed_primary_39103567 crossref_citationtrail_10_1038_s41598_024_69271_0 crossref_primary_10_1038_s41598_024_69271_0 springer_journals_10_1038_s41598_024_69271_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-05 |
| PublicationDateYYYYMMDD | 2024-08-05 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Wang (CR39) 2022; 9 Lu, Zhao, Song, Chang, Shu (CR67) 2023 Iftikhar (CR86) 2022; 348 Jiang (CR107) 2024 He, Qiao, Sun, Yang, He (CR8) 2024 Liao (CR75) 2023; 12 Cai (CR5) 2023 CR38 Despotovic, Nedic, Despotovic, Cvetanovic (CR91) 2016; 56 Deng, He, Huang, Sun, Deng (CR99) 2013 Asif, Javed, Alyami, Hammad (CR19) 2024; 39 Fei, Guo, Li, Hu, Yang (CR28) 2023; E106.D Iqbal (CR44) 2021; 780 Sarveghadi, Gandomi, Bolandi, Alavi (CR87) 2019; 31 Wang (CR102) 2024; 11 Ying, Qi-Guang, Jia-Chen, Lin (CR83) 2013; 39 Bin Inqiad, Ali Raza, Asim (CR52) 2023 Asif, Memon, Javed, Kim (CR27) 2024; 14 Li (CR89) 2022; 793 Ahmad, Farooq, Ostrowski, Śliwa-Wieczorek, Czarnecki (CR47) 2021; 14 Rostami (CR90) 2020; 84 Dou (CR17) 2023; 28 Wang, Guo, Yu, Shi, Zhang (CR104) 2023; 10 Chen, Zhao, Qin (CR30) 2023; 66 Shahab (CR45) 2024; 38 Zhu, Li, Wang, Zhang, Li (CR32) 2024; 62 Song (CR50) 2021; 308 Lu (CR54) 2023; 149 Wang, Yin (CR77) 2020; 276 Ahmad (CR49) 2021; 14 Jalal (CR34) 2024 Zheng (CR25) 2023; 35 Li (CR4) 2023; 19 Nazar (CR42) 2023; 24 Schapire (CR79) 1990; 5 Chaari, Fakhfakh, Chakroun, Bouzid (CR2) 2008; 156 Thiruchittampalam, Singh, Banerjee, Glenn, Raval (CR12) 2023 Wang, Han, Cui, Chen (CR14) 2023; 35 Farooq, Ahmed, Akbar, Aslam, Alyousef (CR23) 2021; 292 Freund, Schapire (CR82) 1999; 14 Nohara, Matsumoto, Soejima, Nakashima (CR103) 2022; 214 Mahmood (CR43) 2023; 19 Shi, Han, Cui (CR10) 2023 Hu, Gao, Li (CR18) 2012; 382 Amin (CR40) 2023; 25 Ahmad (CR46) 2021; 14 Wang, Xu, Yang (CR64) 2021; 21 Shi, Lv, Xu (CR57) 2023; 40 Inqiad (CR97) 2023; 56 Zheng, Jiang, Wang, Zheng (CR15) 2024 Ahmad (CR33) 2021; 11 Huang (CR63) 2023; 10 CR68 Ilyas (CR88) 2022; 14 Wu (CR51) 2022 CR66 Abbaslou, Ghanizadeh, Amlashi (CR106) 2016; 124 Zhang, Wang, Wang, Chen, Li (CR109) 2023 Jiao (CR24) 2023; 35 Inqiad (CR84) 2023; 9 Karunaratne, Chew (CR22) 2001; 8 Koza (CR65) 1994; 4 Lu, Zhou, Du, Wang (CR56) 2020 Saberi, Hosseini-Barzi (CR96) 2024 Jalal, Xu, Iqbal, Jamhiri, Javed (CR92) 2021; 30 Khawaja (CR26) 2024; 66 Sun (CR11) 2022 Asif (CR16) 2024; 20 Wang (CR58) 2023 Chang (CR70) 2024 Zare Naghadehi, Samaei, Ranjbarnia, Nourani (CR37) 2018; 126 Zhang (CR36) 2023 Sonebi, Cevik (CR71) 2009; 23 Wu (CR61) 2024; 14 Chu (CR98) 2021; 12 Meng, Meng, Chi, Chen, Pang (CR55) 2023; 360 CR74 CR72 Mousavi, Alavi, Gandomi, Esmaeili, Gandomi (CR78) 2010; 36 Asteris, Roussis, Douvika (CR94) 2017; 17 Khan (CR100) 2024; 21 Eldin, Senouci (CR31) 1994; 16 Hu (CR48) 2023; 36 CR3 Li (CR41) 2023 He (CR80) 2023; 213 Inglezakis, Stylianou, Gkantzou, Loizidou (CR1) 2007; 210 Chen, Han, Chang (CR6) 2024; 147 Gholampour, Gandomi, Ozbakkaloglu (CR73) 2017; 130 Chen, Han, Shen (CR9) 2023; 275 Soleimani, Si, Roshan, Zhang (CR62) 2023 Bin Inqiad (CR76) 2024; 39 Gandomi, Roke (CR93) 2015; 88 Guo (CR81) 2023; 624 Zhao (CR29) 2023; 11 Ma (CR95) 2023 Luo (CR101) 2024; 11 Thapa, Kumar, Ghani, Kumar, Gupta (CR85) 2024 Ghanizadeh, Abbaslou, Amlashi, Alidoust (CR108) 2019; 13 CR21 CR20 Yao (CR53) 2023; 375 Alyousef (CR35) 2023; 19 Qi, Yue, Duo, Xu, Li (CR60) 2023 Ekanayake, Meddage, Rathnayake (CR105) 2022; 16 Amlashi, Abdollahi, Goodarzi, Ghanizadeh (CR7) 2019; 230 Li, Tang, Li, Dou, Li (CR69) 2023 Guan (CR110) 2011 Xie (CR59) 2024 Liu (CR13) 2023 69271_CR74 M Zare Naghadehi (69271_CR37) 2018; 126 69271_CR72 A Rostami (69271_CR90) 2020; 84 69271_CR3 C Zhu (69271_CR32) 2024; 62 X Chang (69271_CR70) 2024 L Hu (69271_CR18) 2012; 382 MF Iqbal (69271_CR44) 2021; 780 L Liao (69271_CR75) 2023; 12 J Guo (69271_CR81) 2023; 624 M Sarveghadi (69271_CR87) 2019; 31 MS Mahmood (69271_CR43) 2023; 19 69271_CR68 69271_CR66 H He (69271_CR8) 2024 W Inqiad (69271_CR97) 2023; 56 C Wang (69271_CR64) 2021; 21 D Ma (69271_CR95) 2023 J Li (69271_CR69) 2023 H Zheng (69271_CR15) 2024 Y Zhao (69271_CR29) 2023; 11 X Yao (69271_CR53) 2023; 375 S Lu (69271_CR67) 2023 H Jiao (69271_CR24) 2023; 35 H Song (69271_CR50) 2021; 308 HL Wang (69271_CR77) 2020; 276 SM Mousavi (69271_CR78) 2010; 36 S Meng (69271_CR55) 2023; 360 R Fei (69271_CR28) 2023; E106.D Y Jiang (69271_CR107) 2024 J Dou (69271_CR17) 2023; 28 S Nazar (69271_CR42) 2023; 24 P Li (69271_CR89) 2022; 793 DL Chen (69271_CR30) 2023; 66 Y Nohara (69271_CR103) 2022; 214 AT Amlashi (69271_CR7) 2019; 230 Y Hu (69271_CR48) 2023; 36 H Abbaslou (69271_CR106) 2016; 124 W Deng (69271_CR99) 2013 Q Li (69271_CR41) 2023 HH Chu (69271_CR98) 2021; 12 S Shi (69271_CR10) 2023 C Chen (69271_CR6) 2024; 147 C Chen (69271_CR9) 2023; 275 B Iftikhar (69271_CR86) 2022; 348 M Despotovic (69271_CR91) 2016; 56 U Asif (69271_CR16) 2024; 20 Y Wu (69271_CR61) 2024; 14 Q Guan (69271_CR110) 2011 IU Ekanayake (69271_CR105) 2022; 16 L Sun (69271_CR11) 2022 69271_CR38 I Thapa (69271_CR85) 2024 A Ahmad (69271_CR46) 2021; 14 F Farooq (69271_CR23) 2021; 292 W Zheng (69271_CR25) 2023; 35 U Asif (69271_CR19) 2024; 39 C Ying (69271_CR83) 2013; 39 Y Cai (69271_CR5) 2023 69271_CR20 RE Schapire (69271_CR79) 1990; 5 G Karunaratne (69271_CR22) 2001; 8 Y Freund (69271_CR82) 1999; 14 L Wang (69271_CR102) 2024; 11 L Khawaja (69271_CR26) 2024; 66 69271_CR21 D Lu (69271_CR56) 2020 W Bin Inqiad (69271_CR52) 2023 X He (69271_CR80) 2023; 213 AR Ghanizadeh (69271_CR108) 2019; 13 Z Li (69271_CR4) 2023; 19 Z Shahab (69271_CR45) 2024; 38 A Gholampour (69271_CR73) 2017; 130 FE Jalal (69271_CR92) 2021; 30 G Zhang (69271_CR36) 2023 A Ahmad (69271_CR47) 2021; 14 I Ilyas (69271_CR88) 2022; 14 WB Inqiad (69271_CR84) 2023; 9 W Bin Inqiad (69271_CR76) 2024; 39 MN Amin (69271_CR40) 2023; 25 R Alyousef (69271_CR35) 2023; 19 M Wang (69271_CR58) 2023 S Wang (69271_CR104) 2023; 10 H Wang (69271_CR14) 2023; 35 PG Asteris (69271_CR94) 2017; 17 A Ahmad (69271_CR33) 2021; 11 VJ Inglezakis (69271_CR1) 2007; 210 S Thiruchittampalam (69271_CR12) 2023 C Zhang (69271_CR109) 2023 U Asif (69271_CR27) 2024; 14 AH Gandomi (69271_CR93) 2015; 88 T Luo (69271_CR101) 2024; 11 JR Koza (69271_CR65) 1994; 4 F Soleimani (69271_CR62) 2023 F Saberi (69271_CR96) 2024 Q Qi (69271_CR60) 2023 I Chaari (69271_CR2) 2008; 156 M Sonebi (69271_CR71) 2009; 23 G Wang (69271_CR39) 2022; 9 A Ahmad (69271_CR49) 2021; 14 D Lu (69271_CR54) 2023; 149 H Wu (69271_CR51) 2022 Y Liu (69271_CR13) 2023 X Xie (69271_CR59) 2024 M Khan (69271_CR100) 2024; 21 FE Jalal (69271_CR34) 2024 ML Shi (69271_CR57) 2023; 40 F Huang (69271_CR63) 2023; 10 NN Eldin (69271_CR31) 1994; 16 |
| References_xml | – volume: 275 start-page: 110706 year: 2023 ident: CR9 article-title: CLVIN: Complete language-vision interaction network for visual question answering publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110706 – volume: 14 start-page: 4222 year: 2021 ident: CR46 article-title: Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature publication-title: Materials doi: 10.3390/ma14154222 – volume: 624 start-page: 129969 year: 2023 ident: CR81 article-title: Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM publication-title: J. Hydrol. (Amst.) doi: 10.1016/j.jhydrol.2023.129969 – volume: 8 start-page: 113 year: 2001 end-page: 133 ident: CR22 article-title: Bentonite: Kaolinite clay liner publication-title: Geosynth. Int. doi: 10.1680/gein.8.0189 – ident: CR68 – ident: CR74 – volume: 375 start-page: 130898 year: 2023 ident: CR53 article-title: AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.130898 – volume: 20 start-page: e03135 year: 2024 ident: CR16 article-title: Predicting the mechanical properties of plastic concrete: An optimization method by using genetic programming and ensemble learners publication-title: Case Stud. Construction Mater. doi: 10.1016/j.cscm.2024.e03135 – volume: 24 start-page: 100 year: 2023 end-page: 124 ident: CR42 article-title: Machine learning interpretable-prediction models to evaluate the slump and strength of fly ash-based geopolymer publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.02.180 – volume: 382 start-page: 200 year: 2012 end-page: 203 ident: CR18 article-title: Analysis of the influence of long curing age on the compressive strength of plastic concrete publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.382.200 – year: 2023 ident: CR95 article-title: Water–rock two-phase flow model for water inrush and instability of fault rocks during mine tunnelling publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00612-6 – year: 2023 ident: CR52 article-title: Predicting 28-day compressive strength of self-compacting concrete (SCC) using gene expression programming (GEP) publication-title: Arch. Adv. Eng. Sci. doi: 10.47852/bonviewaaes32021606 – volume: 16 start-page: 287 year: 1994 end-page: 298 ident: CR31 article-title: Measurement and prediction of the strength of rubberized concrete publication-title: Cem. Concr. Compos. doi: 10.1016/0958-9465(94)90041-8 – volume: 308 start-page: 125021 year: 2021 ident: CR50 article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125021 – volume: 17 start-page: 1344 year: 2017 ident: CR94 article-title: Feed-forward neural network prediction of the mechanical properties of sandcrete materials publication-title: Sensors doi: 10.3390/s17061344 – volume: 14 start-page: 2297 year: 2021 ident: CR47 article-title: Application of novel machine learning techniques for predicting the surface chloride concentration in concrete containing waste material publication-title: Materials doi: 10.3390/ma14092297 – volume: 19 start-page: e02459 year: 2023 ident: CR35 article-title: Forecasting the strength characteristics of concrete incorporating waste foundry sand using advance machine algorithms including deep learning publication-title: Case Stud. Constr. Mater. – volume: 19 start-page: e02410 year: 2023 ident: CR4 article-title: Ternary cementless composite based on red mud, ultra-fine fly ash, and GGBS: Synergistic utilization and geopolymerization mechanism publication-title: Case Stud. Constr. Mater. – volume: 84 start-page: 103644 year: 2020 ident: CR90 article-title: Rigorous framework determining residual gas saturations during spontaneous and forced imbibition using gene expression programming publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103644 – volume: 31 start-page: 2085 year: 2019 end-page: 2094 ident: CR87 article-title: Development of prediction models for shear strength of SFRCB using a machine learning approach publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1997-6 – year: 2024 ident: CR15 article-title: Experimental and numerical simulation study on forced ventilation and dust removal of coal mine heading surface publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-024-00667-z – volume: 14 start-page: 771 year: 1999 end-page: 780 ident: CR82 article-title: A short introduction to boosting publication-title: J. Jpn. Soc. Artif. Intell. – volume: 38 start-page: 107639 year: 2024 ident: CR45 article-title: Experimental investigation and predictive modeling of compressive strength and electrical resistivity of graphene nanoplatelets modified concrete publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.107639 – volume: 28 start-page: 7151 year: 2023 ident: CR17 article-title: Surface activity, wetting, and aggregation of a perfluoropolyether quaternary ammonium salt surfactant with a hydroxyethyl group publication-title: Molecules doi: 10.3390/molecules28207151 – volume: 21 start-page: 101837 year: 2024 ident: CR100 article-title: Forecasting the strength of graphene nanoparticles-reinforced cementitious composites using ensemble learning algorithms publication-title: Results Eng. doi: 10.1016/j.rineng.2024.101837 – volume: 5 start-page: 197 year: 1990 end-page: 227 ident: CR79 article-title: The strength of weak learnability publication-title: Mach. Learn. doi: 10.1007/BF00116037 – volume: 793 start-page: 139478 year: 2022 ident: CR89 article-title: Sustainable use of chemically modified tyre rubber in concrete: Machine learning based novel predictive model publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2022.139478 – year: 2022 ident: CR11 article-title: Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments publication-title: Adv. Str. Eng. doi: 10.1177/13694332221131153 – year: 2023 ident: CR36 article-title: Electric-field-driven printed 3D highly ordered microstructure with cell feature size promotes the maturation of engineered cardiac tissues publication-title: Adv. Sci. doi: 10.1002/advs.202206264 – year: 2023 ident: CR60 article-title: Spatial prediction of soil organic carbon in coal mining subsidence areas based on RBF neural network publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00588-3 – ident: CR66 – year: 2024 ident: CR8 article-title: Research progress in mechanisms, influence factors and improvement routes of chloride binding for cement composites publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2024.108978 – ident: CR72 – year: 2024 ident: CR107 article-title: Mechanical properties and acoustic emission characteristics of soft rock with different water contents under dynamic disturbance publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-024-00682-0 – volume: 21 start-page: 5682 year: 2021 ident: CR64 article-title: Adaboost algorithm in artificial intelligence for optimizing the IRI prediction accuracy of asphalt concrete pavement publication-title: Sensors doi: 10.3390/s21175682 – year: 2023 ident: CR58 article-title: Sulfate diffusion in coal pillar: Experimental data and prediction model publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00575-8 – year: 2023 ident: CR5 article-title: A review of monitoring, calculation, and simulation methods for ground subsidence induced by coal mining publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00595-4 – volume: 36 start-page: 106467 year: 2023 ident: CR48 article-title: Strength evaluation sustainable concrete with waste ingredients at elevated temperature by employing interpretable algorithms: Optimization and hyper tuning publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.106467 – year: 2024 ident: CR85 article-title: Applications of bentonite in plastic concrete: A comprehensive study on enhancing workability and predicting compressive strength using hybridized AI models publication-title: Asian J. Civil Eng. doi: 10.1007/s42107-023-00966-x – volume: 56 start-page: 212 year: 2023 ident: CR97 article-title: Estimation of 28-day compressive strength of self-compacting concrete using multi expression programming (MEP): An artificial intelligence approach † publication-title: Eng. Proc. – year: 2011 ident: CR110 article-title: Effect of clay dosage on mechanical properties of plastic concrete publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.250-253.664 – year: 2023 ident: CR67 article-title: Apparent activation energy of mineral in open pit mine based upon the evolution of active functional groups publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00650-0 – volume: 348 start-page: 131285 year: 2022 ident: CR86 article-title: Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131285 – year: 2023 ident: CR12 article-title: Spoil characterisation using UAV-based optical remote sensing in coal mine dumps publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00622-4 – volume: 14 start-page: 896 issue: 4 year: 2024 ident: CR61 article-title: A study on the ultimate span of a concrete-filled steel tube arch bridge publication-title: Buildings doi: 10.3390/buildings14040896 – volume: 62 start-page: 1 year: 2024 end-page: 10 ident: CR32 article-title: Deep learning-based coseismic deformation estimation from InSAR interferograms publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3432993 – volume: 147 start-page: 110084 year: 2024 ident: CR6 article-title: MPCCT: Multimodal vision-language learning paradigm with context-based compact transformer publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.110084 – volume: 13 start-page: 215 year: 2019 end-page: 239 ident: CR108 article-title: Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine publication-title: Front. Struct. Civil Eng. doi: 10.1007/s11709-018-0489-z – year: 2023 ident: CR41 article-title: Splitting tensile strength prediction of Metakaolin concrete using machine learning techniques publication-title: Sci. Rep. doi: 10.1038/s41598-023-47196-4 – ident: CR3 – ident: CR38 – year: 2024 ident: CR96 article-title: Effect of thermal maturation and organic matter content on oil shale fracturing publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-024-00666-0 – year: 2023 ident: CR10 article-title: A multimodal hybrid parallel network intrusion detection model publication-title: Conn Sci. doi: 10.1080/09540091.2023.2227780 – volume: 11 start-page: 324 year: 2021 ident: CR33 article-title: Compressive strength prediction via gene expression programming (Gep) and artificial neural network (ann) for concrete containing rca publication-title: Buildings doi: 10.3390/buildings11080324 – volume: 11 start-page: 1 year: 2024 end-page: 13 ident: CR101 article-title: Quantitative characterization of the brittleness of deep shales by integrating mineral content, elastic parameters, in situ stress conditions and logging analysis publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00637-x – volume: 12 start-page: 3603 year: 2021 end-page: 3617 ident: CR98 article-title: Sustainable use of fly-ash: Use of gene-expression programming (GEP) and multi-expression programming (MEP) for forecasting the compressive strength geopolymer concrete publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2021.03.018 – volume: 39 start-page: 745 year: 2013 end-page: 758 ident: CR83 article-title: Advance and prospects of AdaBoost algorithm publication-title: Acta Automat. Sin. doi: 10.1016/S1874-1029(13)60052-X – volume: 35 start-page: 105901 year: 2023 ident: CR25 article-title: Sustainable predictive model of concrete utilizing waste ingredient: Individual alogrithms with optimized ensemble approaches publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.105901 – year: 2023 ident: CR13 article-title: Time-shift effect of spontaneous combustion characteristics and microstructure difference of dry-soaked coal publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00616-2 – volume: 9 start-page: 1 year: 2022 end-page: 17 ident: CR39 article-title: Research and practice of intelligent coal mine technology systems in China publication-title: Int J Coal Sci Technol doi: 10.1007/s40789-022-00491-3 – volume: 14 start-page: 1091 issue: 4 year: 2024 ident: CR27 article-title: Predictive modeling and experimental validation for assessing the mechanical properties of cementitious composites made with silica fume and ground granulated blast furnace slag publication-title: Buildings doi: 10.3390/buildings14041091 – year: 2020 ident: CR56 article-title: 3D dynamic elastoplastic constitutive model of concrete within the framework of rate-dependent consistency condition publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001854 – volume: 276 start-page: 105758 year: 2020 ident: CR77 article-title: High performance prediction of soil compaction parameters using multi expression programming publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105758 – volume: 14 start-page: 1 year: 2021 end-page: 21 ident: CR49 article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm publication-title: Materials doi: 10.3390/ma14040794 – volume: 4 start-page: 87 year: 1994 end-page: 112 ident: CR65 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat. Comput. doi: 10.1007/BF00175355 – year: 2023 ident: CR62 article-title: Numerical modelling of gas outburst from coal: a review from control parameters to the initiation process publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00657-7 – volume: E106.D start-page: 773 year: 2023 end-page: 785 ident: CR28 article-title: An Improved BPNN method based on probability density for indoor location publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2022DLP0073 – year: 2022 ident: CR51 article-title: Stability analysis of rib pillars in highwall mining under dynamic and static loads in open-pit coal mine publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-022-00504-1 – volume: 88 start-page: 63 year: 2015 end-page: 72 ident: CR93 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.05.007 – volume: 39 start-page: 109222 year: 2024 ident: CR76 article-title: Comparison of boosting and genetic programming techniques for prediction of tensile strain capacity of engineered cementitious composites (ECC) publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2024.109222 – volume: 213 start-page: 118200 year: 2023 ident: CR80 article-title: Excellent microwave absorption performance of LaFeO3/Fe3O4/C perovskite composites with optimized structure and impedance matching publication-title: Carbon doi: 10.1016/j.carbon.2023.118200 – volume: 23 start-page: 2614 year: 2009 end-page: 2622 ident: CR71 article-title: Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.02.012 – volume: 149 start-page: 04023102 year: 2023 ident: CR54 article-title: A dynamic elastoplastic model of concrete based on a modeling method with environmental factors as constitutive variables publication-title: J. Eng. Mech. doi: 10.1061/JENMDT.EMENG-7206 – volume: 780 start-page: 146524 year: 2021 ident: CR44 article-title: Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146524 – year: 2024 ident: CR59 article-title: Fluid inverse volumetric modeling and applications from surface motion publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2024.3370551 – ident: CR21 – volume: 66 start-page: 106837 year: 2024 ident: CR26 article-title: Indirect estimation of resilient modulus (Mr) of subgrade soil: Gene expression programming vs multi expression programming publication-title: Structures doi: 10.1016/j.istruc.2024.106837 – volume: 214 start-page: 106584 year: 2022 ident: CR103 article-title: Explanation of machine learning models using shapley additive explanation and application for real data in hospital publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2021.106584 – volume: 25 start-page: 1495 year: 2023 end-page: 1536 ident: CR40 article-title: Prediction of sustainable concrete utilizing rice husk ash (RHA) as supplementary cementitious material (SCM): Optimization and hyper-tuning publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.06.006 – volume: 210 start-page: 248 year: 2007 end-page: 256 ident: CR1 article-title: Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents publication-title: Desalination doi: 10.1016/j.desal.2006.05.049 – volume: 14 start-page: 1789 year: 2022 ident: CR88 article-title: Advanced machine learning modeling approach for prediction of compressive strength of FRP confined concrete using multiphysics genetic expression programming publication-title: Polymers (Basel) doi: 10.3390/polym14091789 – volume: 56 start-page: 246 year: 2016 end-page: 260 ident: CR91 article-title: Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.11.058 – volume: 12 start-page: 954 year: 2023 ident: CR75 article-title: Color image recovery using generalized matrix completion over higher-order finite dimensional algebra publication-title: Axioms doi: 10.3390/axioms12100954 – volume: 35 start-page: 106335 year: 2023 ident: CR24 article-title: A novel approach in forecasting compressive strength of concrete with carbon nanotubes as nanomaterials publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.106335 – volume: 126 start-page: 46 year: 2018 end-page: 57 ident: CR37 article-title: State-of-the-art predictive modeling of TBM performance in changing geological conditions through gene expression programming publication-title: Meas. (Lond.) – volume: 40 start-page: 473 year: 2023 end-page: 493 ident: CR57 article-title: A multi-fidelity surrogate model based on extreme support vector regression: Fusing different fidelity data for engineering design publication-title: Eng. Comput. doi: 10.1108/EC-10-2021-0583 – volume: 30 start-page: 100608 year: 2021 ident: CR92 article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2021.100608 – volume: 39 start-page: 108789 year: 2024 ident: CR19 article-title: Performance evaluation of concrete made with plastic waste using multi-expression programming publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2024.108789 – year: 2013 ident: CR99 article-title: Multi-expression based gene expression programming publication-title: Lecture Notes in Electrical Engineering – volume: 9 start-page: 22036 year: 2023 ident: CR84 article-title: Comparative analysis of various machine learning algorithms to predict 28-day compressive strength of Self-compacting concrete publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e22036 – volume: 10 start-page: 1 year: 2023 end-page: 10 ident: CR104 article-title: Quality evaluation of land reclamation in mining area based on remote sensing publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00601-9 – volume: 360 start-page: 11397 year: 2023 end-page: 11413 ident: CR55 article-title: A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2023.08.037 – volume: 230 start-page: 1197 year: 2019 end-page: 1216 ident: CR7 article-title: Soft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concrete publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.168 – year: 2024 ident: CR34 article-title: ANN-based swarm intelligence for predicting expansive soil swell pressure and compression strength publication-title: Sci. Rep. doi: 10.1038/s41598-024-65547-7 – volume: 16 start-page: 01059 year: 2022 ident: CR105 article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP) publication-title: Case Stud. Constr. Materials doi: 10.1016/j.cscm.2022.e01059 – volume: 130 start-page: 122 year: 2017 end-page: 145 ident: CR73 article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.10.114 – volume: 11 start-page: 1 year: 2024 end-page: 18 ident: CR102 article-title: Effect of long reaction distance on gas composition from organic-rich shale pyrolysis under high-temperature steam environment publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-024-00689-7 – volume: 292 start-page: 126032 year: 2021 ident: CR23 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126032 – volume: 19 start-page: e02557 year: 2023 ident: CR43 article-title: Enhancing compressive strength prediction in self-compacting concrete using machine learning and deep learning techniques with incorporation of rice husk ash and marble powder publication-title: Case Stud. Constr. Mater. – volume: 66 start-page: 2996 year: 2023 end-page: 3010 ident: CR30 article-title: SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio publication-title: Sci. Ch. Technol. Sci. doi: 10.1007/s11431-022-2394-4 – volume: 11 start-page: 86645 year: 2023 end-page: 86685 ident: CR29 article-title: Intelligent control of multilegged robot smooth motion: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3304992 – volume: 35 start-page: 1 year: 2023 end-page: 32 ident: CR14 article-title: NAS-YOLOX: A SAR ship detection using neural architecture search and multi-scale attention publication-title: Conn. Sci. doi: 10.1080/09540091.2023.2257399 – volume: 10 start-page: 18 issue: 1 year: 2023 ident: CR63 article-title: Slope stability prediction based on a long short-term memory neural network: comparisons with convolutional neural networks, support vector machines and random forest models publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00579-4 – year: 2023 ident: CR69 article-title: LEF-YOLO: A lightweight method for intelligent detection of four extreme wildfires based on the YOLO framework publication-title: Int. J. Wildland Fire doi: 10.1071/WF23044 – year: 2023 ident: CR109 article-title: Characteristics of coal resources in China and statistical analysis and preventive measures for coal mine accidents publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00582-9 – volume: 124 start-page: 1165 year: 2016 end-page: 1173 ident: CR106 article-title: The compatibility of bentonite/sepiolite plastic concrete cut-off wall material publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.08.116 – volume: 36 start-page: 759 issue: 6 year: 2010 end-page: 783 ident: CR78 article-title: A Data mining approach to compressive strength of CFRP-confined concrete cylinders publication-title: Str. Eng. Mech. doi: 10.12989/sem.2010.36.6.759 – volume: 156 start-page: 545 year: 2008 end-page: 551 ident: CR2 article-title: Lead removal from aqueous solutions by a Tunisian smectitic clay publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.12.080 – ident: CR20 – year: 2024 ident: CR70 article-title: Single-objective and multi-objective flood interval forecasting considering interval fitting coefficients publication-title: Water Resour. Manag. doi: 10.1007/s11269-024-03848-2 – year: 2023 ident: 69271_CR36 publication-title: Adv. Sci. doi: 10.1002/advs.202206264 – volume: 66 start-page: 106837 year: 2024 ident: 69271_CR26 publication-title: Structures doi: 10.1016/j.istruc.2024.106837 – volume: 275 start-page: 110706 year: 2023 ident: 69271_CR9 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110706 – volume: 8 start-page: 113 year: 2001 ident: 69271_CR22 publication-title: Geosynth. Int. doi: 10.1680/gein.8.0189 – year: 2024 ident: 69271_CR15 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-024-00667-z – volume: 360 start-page: 11397 year: 2023 ident: 69271_CR55 publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2023.08.037 – volume: 214 start-page: 106584 year: 2022 ident: 69271_CR103 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2021.106584 – year: 2024 ident: 69271_CR85 publication-title: Asian J. Civil Eng. doi: 10.1007/s42107-023-00966-x – volume: 35 start-page: 1 year: 2023 ident: 69271_CR14 publication-title: Conn. Sci. doi: 10.1080/09540091.2023.2257399 – year: 2020 ident: 69271_CR56 publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001854 – volume: 19 start-page: e02557 year: 2023 ident: 69271_CR43 publication-title: Case Stud. Constr. Mater. – volume: 126 start-page: 46 year: 2018 ident: 69271_CR37 publication-title: Meas. (Lond.) – year: 2024 ident: 69271_CR107 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-024-00682-0 – volume: 21 start-page: 101837 year: 2024 ident: 69271_CR100 publication-title: Results Eng. doi: 10.1016/j.rineng.2024.101837 – year: 2023 ident: 69271_CR13 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00616-2 – year: 2023 ident: 69271_CR12 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00622-4 – volume: 12 start-page: 954 year: 2023 ident: 69271_CR75 publication-title: Axioms doi: 10.3390/axioms12100954 – year: 2023 ident: 69271_CR52 publication-title: Arch. Adv. Eng. Sci. doi: 10.47852/bonviewaaes32021606 – volume: 13 start-page: 215 year: 2019 ident: 69271_CR108 publication-title: Front. Struct. Civil Eng. doi: 10.1007/s11709-018-0489-z – volume: 12 start-page: 3603 year: 2021 ident: 69271_CR98 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2021.03.018 – ident: 69271_CR20 doi: 10.1016/j.heliyon.2023.e17107 – volume: 11 start-page: 1 year: 2024 ident: 69271_CR101 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00637-x – volume: 11 start-page: 1 year: 2024 ident: 69271_CR102 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-024-00689-7 – year: 2023 ident: 69271_CR62 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00657-7 – volume: 624 start-page: 129969 year: 2023 ident: 69271_CR81 publication-title: J. Hydrol. (Amst.) doi: 10.1016/j.jhydrol.2023.129969 – volume: 39 start-page: 108789 year: 2024 ident: 69271_CR19 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2024.108789 – volume: 308 start-page: 125021 year: 2021 ident: 69271_CR50 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125021 – year: 2022 ident: 69271_CR51 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-022-00504-1 – volume: 14 start-page: 2297 year: 2021 ident: 69271_CR47 publication-title: Materials doi: 10.3390/ma14092297 – year: 2024 ident: 69271_CR34 publication-title: Sci. Rep. doi: 10.1038/s41598-024-65547-7 – volume: 230 start-page: 1197 year: 2019 ident: 69271_CR7 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.168 – volume: 9 start-page: 1 year: 2022 ident: 69271_CR39 publication-title: Int J Coal Sci Technol doi: 10.1007/s40789-022-00491-3 – volume: 28 start-page: 7151 year: 2023 ident: 69271_CR17 publication-title: Molecules doi: 10.3390/molecules28207151 – year: 2022 ident: 69271_CR11 publication-title: Adv. Str. Eng. doi: 10.1177/13694332221131153 – year: 2024 ident: 69271_CR59 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2024.3370551 – volume: 124 start-page: 1165 year: 2016 ident: 69271_CR106 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.08.116 – volume: 56 start-page: 212 year: 2023 ident: 69271_CR97 publication-title: Eng. Proc. – ident: 69271_CR74 doi: 10.48550/arXiv.2406.02291 – volume: 40 start-page: 473 year: 2023 ident: 69271_CR57 publication-title: Eng. Comput. doi: 10.1108/EC-10-2021-0583 – ident: 69271_CR21 – volume: 36 start-page: 106467 year: 2023 ident: 69271_CR48 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.106467 – volume: 39 start-page: 109222 year: 2024 ident: 69271_CR76 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2024.109222 – year: 2023 ident: 69271_CR109 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00582-9 – volume: 9 start-page: 22036 year: 2023 ident: 69271_CR84 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e22036 – volume: 66 start-page: 2996 year: 2023 ident: 69271_CR30 publication-title: Sci. Ch. Technol. Sci. doi: 10.1007/s11431-022-2394-4 – volume: 84 start-page: 103644 year: 2020 ident: 69271_CR90 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103644 – year: 2023 ident: 69271_CR10 publication-title: Conn Sci. doi: 10.1080/09540091.2023.2227780 – volume: 19 start-page: e02410 year: 2023 ident: 69271_CR4 publication-title: Case Stud. Constr. Mater. – ident: 69271_CR68 – volume: 14 start-page: 4222 year: 2021 ident: 69271_CR46 publication-title: Materials doi: 10.3390/ma14154222 – volume: 16 start-page: 287 year: 1994 ident: 69271_CR31 publication-title: Cem. Concr. Compos. doi: 10.1016/0958-9465(94)90041-8 – volume: 10 start-page: 18 issue: 1 year: 2023 ident: 69271_CR63 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00579-4 – volume: 14 start-page: 1091 issue: 4 year: 2024 ident: 69271_CR27 publication-title: Buildings doi: 10.3390/buildings14041091 – volume: 36 start-page: 759 issue: 6 year: 2010 ident: 69271_CR78 publication-title: Str. Eng. Mech. doi: 10.12989/sem.2010.36.6.759 – volume: 62 start-page: 1 year: 2024 ident: 69271_CR32 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3432993 – volume: 25 start-page: 1495 year: 2023 ident: 69271_CR40 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.06.006 – volume: E106.D start-page: 773 year: 2023 ident: 69271_CR28 publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2022DLP0073 – volume: 39 start-page: 745 year: 2013 ident: 69271_CR83 publication-title: Acta Automat. Sin. doi: 10.1016/S1874-1029(13)60052-X – volume: 20 start-page: e03135 year: 2024 ident: 69271_CR16 publication-title: Case Stud. Construction Mater. doi: 10.1016/j.cscm.2024.e03135 – volume: 35 start-page: 106335 year: 2023 ident: 69271_CR24 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.106335 – volume: 780 start-page: 146524 year: 2021 ident: 69271_CR44 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146524 – volume: 88 start-page: 63 year: 2015 ident: 69271_CR93 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.05.007 – volume: 10 start-page: 1 year: 2023 ident: 69271_CR104 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00601-9 – volume: 130 start-page: 122 year: 2017 ident: 69271_CR73 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.10.114 – volume: 292 start-page: 126032 year: 2021 ident: 69271_CR23 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126032 – year: 2024 ident: 69271_CR96 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-024-00666-0 – volume: 30 start-page: 100608 year: 2021 ident: 69271_CR92 publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2021.100608 – volume: 156 start-page: 545 year: 2008 ident: 69271_CR2 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.12.080 – volume: 14 start-page: 771 year: 1999 ident: 69271_CR82 publication-title: J. Jpn. Soc. Artif. Intell. – year: 2023 ident: 69271_CR41 publication-title: Sci. Rep. doi: 10.1038/s41598-023-47196-4 – ident: 69271_CR66 – volume: 24 start-page: 100 year: 2023 ident: 69271_CR42 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.02.180 – volume: 375 start-page: 130898 year: 2023 ident: 69271_CR53 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.130898 – year: 2023 ident: 69271_CR58 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00575-8 – volume: 19 start-page: e02459 year: 2023 ident: 69271_CR35 publication-title: Case Stud. Constr. Mater. – ident: 69271_CR3 doi: 10.1016/j.geothermics.2024.102974 – year: 2023 ident: 69271_CR67 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00650-0 – volume: 149 start-page: 04023102 year: 2023 ident: 69271_CR54 publication-title: J. Eng. Mech. doi: 10.1061/JENMDT.EMENG-7206 – volume: 17 start-page: 1344 year: 2017 ident: 69271_CR94 publication-title: Sensors doi: 10.3390/s17061344 – volume: 5 start-page: 197 year: 1990 ident: 69271_CR79 publication-title: Mach. Learn. doi: 10.1007/BF00116037 – year: 2011 ident: 69271_CR110 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.250-253.664 – ident: 69271_CR72 – year: 2024 ident: 69271_CR8 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2024.108978 – volume: 348 start-page: 131285 year: 2022 ident: 69271_CR86 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131285 – volume: 382 start-page: 200 year: 2012 ident: 69271_CR18 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.382.200 – volume: 35 start-page: 105901 year: 2023 ident: 69271_CR25 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.105901 – volume: 23 start-page: 2614 year: 2009 ident: 69271_CR71 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.02.012 – ident: 69271_CR38 – volume: 14 start-page: 1789 year: 2022 ident: 69271_CR88 publication-title: Polymers (Basel) doi: 10.3390/polym14091789 – volume: 11 start-page: 86645 year: 2023 ident: 69271_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3304992 – year: 2024 ident: 69271_CR70 publication-title: Water Resour. Manag. doi: 10.1007/s11269-024-03848-2 – volume: 14 start-page: 1 year: 2021 ident: 69271_CR49 publication-title: Materials doi: 10.3390/ma14040794 – volume: 793 start-page: 139478 year: 2022 ident: 69271_CR89 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2022.139478 – year: 2023 ident: 69271_CR60 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00588-3 – volume: 210 start-page: 248 year: 2007 ident: 69271_CR1 publication-title: Desalination doi: 10.1016/j.desal.2006.05.049 – volume: 38 start-page: 107639 year: 2024 ident: 69271_CR45 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.107639 – volume: 21 start-page: 5682 year: 2021 ident: 69271_CR64 publication-title: Sensors doi: 10.3390/s21175682 – volume: 11 start-page: 324 year: 2021 ident: 69271_CR33 publication-title: Buildings doi: 10.3390/buildings11080324 – year: 2023 ident: 69271_CR95 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00612-6 – volume-title: Lecture Notes in Electrical Engineering year: 2013 ident: 69271_CR99 – volume: 147 start-page: 110084 year: 2024 ident: 69271_CR6 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.110084 – year: 2023 ident: 69271_CR5 publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00595-4 – volume: 276 start-page: 105758 year: 2020 ident: 69271_CR77 publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105758 – volume: 14 start-page: 896 issue: 4 year: 2024 ident: 69271_CR61 publication-title: Buildings doi: 10.3390/buildings14040896 – volume: 56 start-page: 246 year: 2016 ident: 69271_CR91 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.11.058 – volume: 4 start-page: 87 year: 1994 ident: 69271_CR65 publication-title: Stat. Comput. doi: 10.1007/BF00175355 – volume: 16 start-page: 01059 year: 2022 ident: 69271_CR105 publication-title: Case Stud. Constr. Materials doi: 10.1016/j.cscm.2022.e01059 – year: 2023 ident: 69271_CR69 publication-title: Int. J. Wildland Fire doi: 10.1071/WF23044 – volume: 213 start-page: 118200 year: 2023 ident: 69271_CR80 publication-title: Carbon doi: 10.1016/j.carbon.2023.118200 – volume: 31 start-page: 2085 year: 2019 ident: 69271_CR87 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1997-6 |
| SSID | ssj0000529419 |
| Score | 2.5083783 |
| Snippet | Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high... Abstract Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 18145 |
| SubjectTerms | 639/166/986 704/172/4081 AdaBoost Algorithms Bentonite Civil engineering Compressive strength Concrete Concrete mixes Correlation coefficient Gene expression Genetic programming Humanities and Social Sciences Metals multidisciplinary Objective function Plastic concrete Plasticity Predictions Science Science (multidisciplinary) Shapley additive explanation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxwxDBYltNBLSd_TpGUKvbVDZvwY28e0NBRaQqEPcjO2x24CZXbZ3QTy7yPZs9tsn5dex5YRsjT6hCwJ4IVHJxeE8Y3wQ2oE96HRZuCNoyxnUtyr3Hbx6wd1fKxPTszHa6O-6E1YaQ9cBHcgmfc6Cq-D5ML1yiSMkruBMce6mPK8Woao51owVbp6MyM6M1XJtFwfLNFTUTUZE01vmMIYessT5Yb9v0OZvz6W_Cljmh3R0S7cmRBkfVg4vws34ngPbpWZkpf34f0n_LHWIQ9rQPo6j7pZ1ohN6_mCsjJ0E_Us1T7S-GBEnPUcETQehkQjYkj8QAUk47fV6QP4cvT285t3zTQxoQlSdKvG8V63g_YitXoQHPFTRETQpSBlSG1KgiUWPRo5S4pqbH0UpveOocfqmdKOP4SdcTbGx1AnNyBBpEOYkCrpKKUTgfe9k4bpWEG3lp4NUztxmmrx3ea0Nte2SNwiuc0St20FLzc089JM46-7X9OlbHZSI-z8AdXDTuph_6UeFeyvr9RO1rm0vNWGcLLRFTzfLKNdUbLEjXF2XvZIwrOmgkdFAzaccMRYXPaqAr2lG1usbq-MZ6e5d3dH6UMMIit4tVajH3z9WRZP_ocs9uA2I_2nBy9yH3ZWi_P4FG6Gi9XZcvEsG9AVeaUb_Q priority: 102 providerName: Directory of Open Access Journals |
| Title | Soft computing models for prediction of bentonite plastic concrete strength |
| URI | https://link.springer.com/article/10.1038/s41598-024-69271-0 https://www.ncbi.nlm.nih.gov/pubmed/39103567 https://www.proquest.com/docview/3089002098 https://www.proquest.com/docview/3089505409 https://pubmed.ncbi.nlm.nih.gov/PMC11300626 https://doaj.org/article/52bb8e4b8c534a679f9871d22a21ef13 |
| Volume | 14 |
| WOSCitedRecordID | wos001284942100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsgoSN4ia-BHbJ0RRKxB0FfHScopix24roex2d4vEv2fGyW61PHrh4oNfsj0ez-cZewbguUUh54SxmbBtyAS3LtOm5VlDVs6guFXR7eLXD2o81pOJqQaF22J4Vrk6E-NB3U4d6cj3ea4NYRujX83OM4oaRdbVIYTGFuyQlwQen-5Vax0LWbFEYYa_MjnX-wuUV_SnjImsNEzhTXpDHkW3_X_Dmn8-mfzNbhrF0dHt_53IHbg1ANH0db9z7sI1392DG31oyp_34f0nPJ9TF2M-4ADSGDFnkSLETWdzMu4QQdNpSK2nKMTYdzpDII6dYaMOoShm0D-U7mR5-gC-HB1-fvM2GwIvZE6KYpk1vNR5q60IuW4FRxjmEVgUwUnpQh6CYIF5i2cFC4q-6lovTGkbhoKvZEo3_CFsd9PO70IamhYbeOqECamC9lI2wvGybKRh2idQrJa_doNXcgqO8b2O1nGu655kNTavI8nqPIEX6zaz3ifHlbUPiKrrmuRPO2ZM5yf1wJ61ZNZqL6x2koumVCYYvEm2jDWs8KHgCeytiFkPTL6oLymZwLN1MbIn2Vyazk8v-jqSYLFJ4FG_hdYj4QjVuCxVAnpjc20MdbOkOzuNLsALskLiXTSBl6t9eDmuf6_F46un8QRuMmINehEj92B7Ob_wT-G6-7E8W8xHsKUmKqZ6BDsHh-Pq4yiqMDA9ZtUo8h6WVO-Oq2-_AE7DMU0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFAQv3BRDASPBE1i197B3HxDiqholjSJRUHky3vVuW6lyQpKC-qf4jcz4SBWOvvWB1720a39z7ezMADwzKOSs0CYSpvSR4MZGSpc8KsjL6TNusjrt4udhNhqp_X09XoOfXSwMPavseGLNqMuJpTvyLR4rTbqNVq-n3yKqGkXe1a6ERgOLgTv9gSbb_FX_Pf7f54xtf9h7txO1VQUiK0WyiAqeqrhURvhYlYKjjuFQaibeSml97L1gnjmDhMB8RnGoxgmdmoIhV09ZpgqO616CdYFgVz1YH_d3x1-WtzrkNxOJbqNzYq625ighKYqNiSjVLEPbfUUC1oUC_qbd_vlI8zdPbS0At2_8b5_uJlxvVe3wTUMbt2DNVbfhSlN88_QODD6iBAptXdUCDxzWNYHmISrx4XRG7iuCbDjxoXFUZxnPEk7R1MDFcFKFyjY2UKRNdbA4vAufLuQk96BXTSp3H0JflDjB0SJMyMwrJ2UhLE_TQmqmXABJ97tz2-Zdp_Ifx3nt_-cqbyCS4_S8hkgeB_BiOWfaZB05d_RbQtFyJGUMrxsms4O8ZUC5ZMYoJ4yykosizbTXaCuXjBUscT7hAWx24MlbNjbPz5ATwNNlNzIg8ioVlZucNGMkKf46gI0GssudcFRGuUyzANQKmFe2utpTHR3WSc4T8rOitR3Ayw73Z_v697d4cP4xnsDVnb3dYT7sjwYP4RojsqT3P3ITeovZiXsEl-33xdF89ril7BC-XjRF_AKr9Ia4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQIEhwgmgSL4l9QAgoI6qpRiOxqLc0duy2EsoMM1NQ_xq_jvecZKph6a0Hrolt2clb_ZYP4JlBJWeFNokwtU8ENzZRuuZJRVFOX3BThLaLX3aL8Vjt7enJBvzsa2EorbKXiUFQ11NLd-QDnipNto1WA9-lRUy2h69n3xJCkKJIaw-n0ZLIyJ38QPdt8WpnG__1c8aG7z-9-5B0CAOJlSJbJhXPVVorI3yqasHR3nCoQTNvpbQ-9V4wz5xBpmC-oJpU44TOTcVQwuesUBXHdS_AxYKaloe0wcnqfociaCLTXZ1OytVggbqS6tmYSHLNCvTi13RhgAz4m537Z7rmbzHboAqH1__nj3gDrnUGePym5ZibsOGaW3C5heQ8uQ2jj6iXYhuwLvDwcUAKWsRo2sezOQW1iJDjqY-NI_RlPEs8QwcEF8NJDZrg-IDqb5qD5eEd-HwuJ7kLm820cfch9lWNExwtwoQsvHJSVsLyPK-kZspFkPW_vrRdN3YCBflahqwArsqWXEqcXgZyKdMIXqzmzNpeJGeOfksUtRpJfcTDg-n8oOzEUimZMcoJo6zkosoL7TV60DVjFcucz3gEWz0hlZ1wW5SnVBTB09VrFEsUa6oaNz1ux0hyB3QE91ryXe2Eo4nKZV5EoNYIe22r62-ao8PQ-jyj6Cv64BG87HngdF___hYPzj7GE7iCbFDu7oxHD-EqIw6lpCC5BZvL-bF7BJfs9-XRYv44sHgM--fNDr8AX8uN9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+computing+models+for+prediction+of+bentonite+plastic+concrete+strength&rft.jtitle=Scientific+reports&rft.au=Inqiad%2C+Waleed+Bin&rft.au=Javed%2C+Muhammad+Faisal&rft.au=Onyelowe%2C+Kennedy&rft.au=Siddique%2C+Muhammad+Shahid&rft.date=2024-08-05&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=18145&rft_id=info:doi/10.1038%2Fs41598-024-69271-0&rft_id=info%3Apmid%2F39103567&rft.externalDocID=39103567 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |