Differential diagnosis of neurodegenerative dementias with the explainable MRI based machine learning algorithm MUQUBIA
Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer’s dementia, frontotempor...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 13; číslo 1; s. 17355 - 19 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
13.10.2023
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer’s dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis. |
|---|---|
| AbstractList | Abstract Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer’s dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis. Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer’s dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis. Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer's dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis.Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer's dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis. |
| ArticleNumber | 17355 |
| Author | De Francesco, Silvia Bruzzone, Maria Grazia Firbank, Michael Muscio, Cristina Tagliavini, Fabrizio Boeve, Brad Taylor, John-Paul Reid, Robert I. Tiraboschi, Pietro Redolfi, Alberto Nigri, Anna Lodi, Raffaele Archetti, Damiano D’Angelo, Egidio Crema, Claudio Kantarci, Kejal |
| Author_xml | – sequence: 1 givenname: Silvia surname: De Francesco fullname: De Francesco, Silvia email: sdefrancesco@fatebenefratelli.eu organization: Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli – sequence: 2 givenname: Claudio surname: Crema fullname: Crema, Claudio organization: Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli – sequence: 3 givenname: Damiano surname: Archetti fullname: Archetti, Damiano organization: Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli – sequence: 4 givenname: Cristina surname: Muscio fullname: Muscio, Cristina organization: ASST Bergamo Ovest, Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta – sequence: 5 givenname: Robert I. surname: Reid fullname: Reid, Robert I. organization: Department of Information Technology, Mayo Clinic and Foundation – sequence: 6 givenname: Anna surname: Nigri fullname: Nigri, Anna organization: Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta – sequence: 7 givenname: Maria Grazia surname: Bruzzone fullname: Bruzzone, Maria Grazia organization: Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta – sequence: 8 givenname: Fabrizio surname: Tagliavini fullname: Tagliavini, Fabrizio organization: Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta – sequence: 9 givenname: Raffaele surname: Lodi fullname: Lodi, Raffaele organization: Department of Biomedical and Neuromotor Sciences, University of Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna – sequence: 10 givenname: Egidio surname: D’Angelo fullname: D’Angelo, Egidio organization: Department of Brain and Behavioral Sciences, University of Pavia, IRCCS Mondino Foundation – sequence: 11 givenname: Brad surname: Boeve fullname: Boeve, Brad organization: Department of Neurology, Mayo Clinic – sequence: 12 givenname: Kejal surname: Kantarci fullname: Kantarci, Kejal organization: Department of Radiology, Mayo Clinic – sequence: 13 givenname: Michael surname: Firbank fullname: Firbank, Michael organization: Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality – sequence: 14 givenname: John-Paul surname: Taylor fullname: Taylor, John-Paul organization: Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality – sequence: 15 givenname: Pietro surname: Tiraboschi fullname: Tiraboschi, Pietro organization: Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta – sequence: 16 givenname: Alberto surname: Redolfi fullname: Redolfi, Alberto organization: Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37833302$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1vFCEYxiemxtbaf8CDIfHiZZTPmeFkav3apI3RuGfCwDuzbBioMNvqfy-722rbQ-EAgef55eHlfV4dhBigql4S_JZg1r3LnAjZ1ZiymrMWN3XzpDqimIuaMkoP7uwPq5Oc17gMQSUn8ll1yNqOMYbpUXX90Q0DJAiz0x5Zp8cQs8soDijAJkULIwRIenZXgCxMO2FG125eoXkFCH5feu2C7j2gix8L1OsMFk3arFwA5EGn4MKItB9jKp4JXSy_Lz8sTl9UTwftM5zcrMfV8vOnn2df6_NvXxZnp-e1EZzMtQQjm2EghBqspTSYDLxnDEhnRNe2hvaY4IFy0zEL1pKuIbazTW94y7sGDDuuFnuujXqtLpObdPqjonZqdxDTqHSanfGgJCGiNUQwazTXhEiK20H2ICg1gnBaWO_3rMtNP4E1pRZJ-3vQ-zfBrdQYrxTBohVdwwvhzQ0hxV8byLOaXDbgvQ4QN1nR8ibWSslxkb5-IF3HTQqlVltVs5074Ku7kf5luf3gIuj2ApNizgkGZdxcfjNuEzpfoqltO6l9O6niULt2Uk2x0gfWW_qjJrY35SIOI6T_sR9x_QUrm9z8 |
| CitedBy_id | crossref_primary_10_1186_s13195_025_01815_6 crossref_primary_10_1002_hbm_70336 crossref_primary_10_1002_mco2_778 crossref_primary_10_1038_s41582_025_01094_7 crossref_primary_10_1007_s00330_024_11257_7 crossref_primary_10_3390_diagnostics15050612 crossref_primary_10_1016_j_neurobiolaging_2024_08_008 crossref_primary_10_1093_braincomms_fcaf145 crossref_primary_10_3389_fnagi_2024_1459652 |
| Cites_doi | 10.1093/brain/awn239 10.1176/appi.focus.20170048 10.1212/WNL.0000000000009323 10.1002/dad2.12066 10.1038/s41746-021-00521-5 10.1016/j.neuroimage.2007.12.035 10.3233/JAD-170850 10.1016/j.jpsychires.2011.01.011 10.3389/fdata.2021.661110 10.1007/s10548-012-0246-x 10.1081/QEN-120001878 10.1016/j.jalz.2011.10.007 10.3389/fninf.2014.00014 10.1136/jnnp.2008.160705 10.1002/ana.25677 10.1097/WAD.0b013e318142774e 10.1371/journal.pone.0043993 10.1016/j.carj.2019.06.002 10.1002/gps.5436 10.11138/FNeur/2013.28.3.175 10.3389/fninf.2011.00023 10.1212/wnl.52.1.91 10.1093/cercor/bhg087 10.6061/clinics/2014(01)05 10.3109/09540261.2013.776523 10.1101/cshperspect.a033118 10.1186/alzrt248 10.1016/j.nicl.2016.02.019 10.1016/j.nicl.2017.06.012 10.1038/nmeth.4642 10.3389/fnagi.2015.00208 10.1177/0004867412457224 10.1212/WNL.0b013e3181cb3e25 10.1007/978-3-319-94030-4_3 10.1177/2045125317739818 10.1016/j.jalz.2018.02.018 10.1371/journal.pone.0185239 10.3389/fneur.2020.01021 10.1148/radiol.2015150220 10.3389/fdgth.2021.779091 10.1145/3344998 10.1038/s41598-019-47294-2 10.1016/j.pscychresns.2012.04.007 10.1371/journal.pone.0052531 10.1007/978-3-642-17103-1_60 10.3233/jad-2010-100138 10.1016/s0896-6273(02)00569-x 10.3233/JAD-141230 10.1097/JIM.0000000000000102 10.1371/journal.pone.0127396 10.1109/TMI.2010.2046908 10.1016/j.cortex.2019.11.022 10.1016/j.parkreldis.2020.07.025 10.1212/WNL.0b013e318266fc51 10.1016/B978-0-12-804766-8.00012-1 10.1016/j.neuroimage.2015.05.005 10.1016/j.bandl.2011.09.004 10.1038/nmeth.4526 10.1016/j.ejmp.2022.10.008 10.1016/S1474-4422(18)30499-X 10.1186/1471-244X-10-79 10.1016/j.neuroimage.2011.11.032 10.1148/rg.2017160130 10.1111/j.1440-1789.2005.00605.x 10.3389/fneur.2022.855125 10.1093/brain/awp071 10.3233/JAD-150334 10.1186/s13195-018-0350-6 10.1093/brain/awm016 10.1016/j.nicl.2019.101811 10.2147/NDT.S164058 10.1016/j.pscychresns.2007.01.001 10.3389/fnins.2021.656808 10.1017/S1041610215001805 10.1111/ejn.15854 10.1093/brain/awh493 10.1016/j.neuroscience.2015.05.049 10.1038/nrneurol.2009.215 10.1093/brain/aws324 10.1602/neurorx.1.2.182 10.1016/j.mri.2020.11.008 10.1002/hbm.23100 10.1016/j.nicl.2019.101954 10.1016/j.neuroimage.2020.117127 10.1212/01.wnl.0000091889.20347.30 10.1007/s00330-016-4691-x 10.1109/MIPRO.2015.7160458 |
| ContentType | Journal Article |
| Contributor | Demichelis, Greta Pantano, Patrizia Castellano, Antonella Napolitano, Antonio Amato, Carmelo Pirastru, Alice Ruvolo, Claudia Contarino, Valeria Elisa Laganà, Maria Marcella Lucignani, Martina Manzo, Vittorio Savini, Giovanni Tonon, Caterina Redolfi, Alberto Morelli, Claudia Peruzzo, Denis Figà Talamanca, Lorenzo Cavaliere, Carlo Nigri, Anna Padelli, Francesco Rossi, Andrea De Francesco, Silvia Bonanno, Lilla Baglio, Francesca Colnaghi, Mattia Biagi, Laura Bruzzone, Maria Grazia Grimaldi, Marco Tagliavini, Fabrizio Alberici, Elisa Tiraboschi, Pietro D'Angelo, Egidio Ferraro, Stefania Carne, Irene Iadanza, Antonella Pichiecchio, Anna Aiello, Marco Longo, Daniela Agati, Raffaele Parrillo, Chiara Pavone, Luigi Petsas, Nikolaos Tagliente, Emanuela Tosetti, Michela Arrigoni, Filippo Costagli, Mauro Muscio, Cristina Forloni, Gianluigi Gaudino, Simona Giulietti, Giovanni Fundarò, Cira Bozzali, Marco Canessa, Nicola Aquino, Domenico Lancione, Marta Triulzi, Fabio Maria Rossi-Espagnet, Maria Camilla Micotti, Edoardo Rognone, Elisa Testa, Claudia Bottino, |
| Contributor_xml | – sequence: 1 givenname: Maria Grazia surname: Bruzzone fullname: Bruzzone, Maria Grazia – sequence: 2 givenname: Pietro surname: Tiraboschi fullname: Tiraboschi, Pietro – sequence: 3 givenname: Claudia A M surname: Gandini Wheeler-Kingshott fullname: Gandini Wheeler-Kingshott, Claudia A M – sequence: 4 givenname: Michela surname: Tosetti fullname: Tosetti, Michela – sequence: 5 givenname: Gianluigi surname: Forloni fullname: Forloni, Gianluigi – sequence: 6 givenname: Alberto surname: Redolfi fullname: Redolfi, Alberto – sequence: 7 givenname: Egidio surname: D'Angelo fullname: D'Angelo, Egidio – sequence: 8 givenname: Fabrizio surname: Tagliavini fullname: Tagliavini, Fabrizio – sequence: 9 givenname: Raffaele surname: Lodi fullname: Lodi, Raffaele – sequence: 10 givenname: Raffaele surname: Agati fullname: Agati, Raffaele – sequence: 11 givenname: Marco surname: Aiello fullname: Aiello, Marco – sequence: 12 givenname: Elisa surname: Alberici fullname: Alberici, Elisa – sequence: 13 givenname: Carmelo surname: Amato fullname: Amato, Carmelo – sequence: 14 givenname: Domenico surname: Aquino fullname: Aquino, Domenico – sequence: 15 givenname: Filippo surname: Arrigoni fullname: Arrigoni, Filippo – sequence: 16 givenname: Francesca surname: Baglio fullname: Baglio, Francesca – sequence: 17 givenname: Laura surname: Biagi fullname: Biagi, Laura – sequence: 18 givenname: Lilla surname: Bonanno fullname: Bonanno, Lilla – sequence: 19 givenname: Paolo surname: Bosco fullname: Bosco, Paolo – sequence: 20 givenname: Francesca surname: Bottino fullname: Bottino, Francesca – sequence: 21 givenname: Marco surname: Bozzali fullname: Bozzali, Marco – sequence: 22 givenname: Nicola surname: Canessa fullname: Canessa, Nicola – sequence: 23 givenname: Chiara surname: Carducci fullname: Carducci, Chiara – sequence: 24 givenname: Irene surname: Carne fullname: Carne, Irene – sequence: 25 givenname: Lorenzo surname: Carnevale fullname: Carnevale, Lorenzo – sequence: 26 givenname: Antonella surname: Castellano fullname: Castellano, Antonella – sequence: 27 givenname: Carlo surname: Cavaliere fullname: Cavaliere, Carlo – sequence: 28 givenname: Mattia surname: Colnaghi fullname: Colnaghi, Mattia – sequence: 29 givenname: Valeria Elisa surname: Contarino fullname: Contarino, Valeria Elisa – sequence: 30 givenname: Giorgio surname: Conte fullname: Conte, Giorgio – sequence: 31 givenname: Mauro surname: Costagli fullname: Costagli, Mauro – sequence: 32 givenname: Greta surname: Demichelis fullname: Demichelis, Greta – sequence: 33 givenname: Silvia surname: De Francesco fullname: De Francesco, Silvia – sequence: 34 givenname: Andrea surname: Falini fullname: Falini, Andrea – sequence: 35 givenname: Stefania surname: Ferraro fullname: Ferraro, Stefania – sequence: 36 givenname: Giulio surname: Ferrazzi fullname: Ferrazzi, Giulio – sequence: 37 givenname: Lorenzo surname: Figà Talamanca fullname: Figà Talamanca, Lorenzo – sequence: 38 givenname: Cira surname: Fundarò fullname: Fundarò, Cira – sequence: 39 givenname: Simona surname: Gaudino fullname: Gaudino, Simona – sequence: 40 givenname: Francesco surname: Ghielmetti fullname: Ghielmetti, Francesco – sequence: 41 givenname: Ruben surname: Gianeri fullname: Gianeri, Ruben – sequence: 42 givenname: Giovanni surname: Giulietti fullname: Giulietti, Giovanni – sequence: 43 givenname: Marco surname: Grimaldi fullname: Grimaldi, Marco – sequence: 44 givenname: Antonella surname: Iadanza fullname: Iadanza, Antonella – sequence: 45 givenname: Matilde surname: Inglese fullname: Inglese, Matilde – sequence: 46 givenname: Maria Marcella surname: Laganà fullname: Laganà, Maria Marcella – sequence: 47 givenname: Marta surname: Lancione fullname: Lancione, Marta – sequence: 48 givenname: Fabrizio surname: Levrero fullname: Levrero, Fabrizio – sequence: 49 givenname: Daniela surname: Longo fullname: Longo, Daniela – sequence: 50 givenname: Giulia surname: Lucignani fullname: Lucignani, Giulia – sequence: 51 givenname: Martina surname: Lucignani fullname: Lucignani, Martina – sequence: 52 givenname: Maria Luisa surname: Malosio fullname: Malosio, Maria Luisa – sequence: 53 givenname: Vittorio surname: Manzo fullname: Manzo, Vittorio – sequence: 54 givenname: Silvia surname: Marino fullname: Marino, Silvia – sequence: 55 givenname: Jean Paul surname: Medina fullname: Medina, Jean Paul – sequence: 56 givenname: Edoardo surname: Micotti fullname: Micotti, Edoardo – sequence: 57 givenname: Claudia surname: Morelli fullname: Morelli, Claudia – sequence: 58 givenname: Cristina surname: Muscio fullname: Muscio, Cristina – sequence: 59 givenname: Antonio surname: Napolitano fullname: Napolitano, Antonio – sequence: 60 givenname: Anna surname: Nigri fullname: Nigri, Anna – sequence: 61 givenname: Francesco surname: Padelli fullname: Padelli, Francesco – sequence: 62 givenname: Fulvia surname: Palesi fullname: Palesi, Fulvia – sequence: 63 givenname: Patrizia surname: Pantano fullname: Pantano, Patrizia – sequence: 64 givenname: Chiara surname: Parrillo fullname: Parrillo, Chiara – sequence: 65 givenname: Luigi surname: Pavone fullname: Pavone, Luigi – sequence: 66 givenname: Denis surname: Peruzzo fullname: Peruzzo, Denis – sequence: 67 givenname: Nikolaos surname: Petsas fullname: Petsas, Nikolaos – sequence: 68 givenname: Anna surname: Pichiecchio fullname: Pichiecchio, Anna – sequence: 69 givenname: Alice surname: Pirastru fullname: Pirastru, Alice – sequence: 70 givenname: Letterio S surname: Politi fullname: Politi, Letterio S – sequence: 71 givenname: Luca surname: Roccatagliata fullname: Roccatagliata, Luca – sequence: 72 givenname: Elisa surname: Rognone fullname: Rognone, Elisa – sequence: 73 givenname: Andrea surname: Rossi fullname: Rossi, Andrea – sequence: 74 givenname: Maria Camilla surname: Rossi-Espagnet fullname: Rossi-Espagnet, Maria Camilla – sequence: 75 givenname: Claudia surname: Ruvolo fullname: Ruvolo, Claudia – sequence: 76 givenname: Marco surname: Salvatore fullname: Salvatore, Marco – sequence: 77 givenname: Giovanni surname: Savini fullname: Savini, Giovanni – sequence: 78 givenname: Emanuela surname: Tagliente fullname: Tagliente, Emanuela – sequence: 79 givenname: Claudia surname: Testa fullname: Testa, Claudia – sequence: 80 givenname: Caterina surname: Tonon fullname: Tonon, Caterina – sequence: 81 givenname: Domenico surname: Tortora fullname: Tortora, Domenico – sequence: 82 givenname: Fabio Maria surname: Triulzi fullname: Triulzi, Fabio Maria |
| Copyright | The Author(s) 2023. corrected publication 2024 2023. Springer Nature Limited. The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Springer Nature Limited 2023 |
| Copyright_xml | – notice: The Author(s) 2023. corrected publication 2024 – notice: 2023. Springer Nature Limited. – notice: The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Springer Nature Limited 2023 |
| CorporateAuthor | the RIN – Neuroimaging Network ADNI, Frontotemporal Lobar Degeneration Neuroimaging; NIA Alzheimer′s Disease Centers; and the RIN – Neuroimaging Network |
| CorporateAuthor_xml | – name: the RIN – Neuroimaging Network – name: ADNI, Frontotemporal Lobar Degeneration Neuroimaging; NIA Alzheimer′s Disease Centers; and the RIN – Neuroimaging Network |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-43706-6 |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_91157c153dca4a119207f9be522c5142 PMC10575864 37833302 10_1038_s41598_023_43706_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Italian Ministry of Economy and Finance (MEF) grantid: CCR-2017-23669078 – fundername: Italian Ministry of Health (MoH) grantid: “RETE IRCCS DI NEUROSCIENZE E NEURORIABILITAZIONE” (Imaging Project - RRC-2016-2361095; RRC-2017-2364915; RRC-2018-2365796; RRC-2019-23669119_001; RCR-2022-23682285) – fundername: NIA NIH HHS grantid: P50 AG047366 – fundername: Wellcome Trust – fundername: NIA NIH HHS grantid: P50 AG005131 – fundername: NIA NIH HHS grantid: U24 AG072122 – fundername: NIA NIH HHS grantid: P30 AG019610 – fundername: NIA NIH HHS grantid: P50 AG005136 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIA NIH HHS grantid: P50 AG008702 – fundername: NIA NIH HHS grantid: P50 AG023501 – fundername: NIA NIH HHS grantid: P50 AG047270 – fundername: ; grantid: CCR-2017-23669078 – fundername: ; grantid: “RETE IRCCS DI NEUROSCIENZE E NEURORIABILITAZIONE” (Imaging Project - RRC-2016-2361095; RRC-2017-2364915; RRC-2018-2365796; RRC-2019-23669119_001; RCR-2022-23682285) |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-9ec96ff112c0a99c01f4b33e18c5877c2b010f24c83dedd1861d8d6bc47486ec3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001086926800071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:50:29 EDT 2025 Tue Nov 04 02:06:29 EST 2025 Fri Sep 05 11:22:16 EDT 2025 Tue Oct 07 09:13:26 EDT 2025 Mon Jul 21 06:06:34 EDT 2025 Sat Nov 29 06:05:26 EST 2025 Tue Nov 18 19:52:41 EST 2025 Fri Feb 21 02:40:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. Springer Nature Limited. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-9ec96ff112c0a99c01f4b33e18c5877c2b010f24c83dedd1861d8d6bc47486ec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/91157c153dca4a119207f9be522c5142 |
| PMID | 37833302 |
| PQID | 2876767664 |
| PQPubID | 2041939 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_91157c153dca4a119207f9be522c5142 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10575864 proquest_miscellaneous_2877379940 proquest_journals_2876767664 pubmed_primary_37833302 crossref_citationtrail_10_1038_s41598_023_43706_6 crossref_primary_10_1038_s41598_023_43706_6 springer_journals_10_1038_s41598_023_43706_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-13 |
| PublicationDateYYYYMMDD | 2023-10-13 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Onyike, Diehl-Schmid (CR5) 2013; 25 Redolfi (CR26) 2020; 11 Cousins (CR65) 2003; 61 Palesi (CR28) 2022; 104 Crespi (CR75) 2020; 125 Frisoni, Fox, Jack, Scheltens, Thompson (CR10) 2010; 6 Craney, Surles (CR50) 2002; 14 Zhang (CR80) 2009; 132 Vonk (CR71) 2020; 12 Ash (CR73) 2012; 120 Abraham (CR51) 2014; 8 Bron (CR17) 2017; 8 Hyman (CR54) 2012; 8 Bozzali (CR79) 2005; 128 Acuña, Rodriguez, Banks, McMorris, Arabie, Gaul (CR46) 2004 Bzdok, Krzywinski, Altman (CR83) 2017; 14 Archetti (CR36) 2019; 24 Kim (CR20) 2019; 23 Erickson, Korfiatis, Akkus, Kline (CR24) 2017; 37 Fischl (CR13) 2002; 33 CR49 Watson, Colloby, Blamire, O'Brien (CR66) 2016; 28 Erkkinen, Kim, Geschwind (CR9) 2018; 10 Kane (CR60) 2018; 10 Muñoz-Ruiz (CR62) 2012; 7 Donaghy (CR35) 2020; 78 Redolfi (CR53) 2022 Firbank (CR33) 2010; 21 McKeith (CR3) 2020; 94 Klöppel (CR56) 2015; 47 Kiuchi (CR77) 2011; 45 Fischl (CR14) 2004; 14 Westman, Aguilar, Muehlboeck, Simmons (CR19) 2013; 26 Mak, Su, Williams, O'Brien (CR61) 2014; 6 Lillo (CR81) 2012; 7 Risacher, Saykin (CR11) 2019; 167 Armstrong, Lantos, Cairns (CR7) 2005; 25 Klöppel (CR23) 2008; 131 Mayeux (CR8) 2004; 1 Beekly (CR30) 2007; 21 Svärd (CR44) 2017; 12 Redolfi, Bosco, Manset, Frisoni (CR52) 2013; 28 Watanabe (CR42) 2018; 14 Saxton (CR59) 2009; 80 Liu (CR55) 2021; 3 Blanc (CR72) 2015; 10 Firbank (CR32) 2007; 155 Van der Flier, Scheltens (CR4) 2018; 62 (CR1) 2019; 18 Looi (CR64) 2012; 46 Tong (CR87) 2017; 15 Benussi (CR2) 2020; 87 Möller (CR63) 2015; 44 Huang, Tseng, Chen, Chen, Chiu (CR58) 2021; 36 Watson (CR78) 2012; 79 Archetti (CR21) 2021; 4 Vasconcelos (CR67) 2014; 69 Lindroth (CR38) 2019; 9 Reite (CR39) 2010; 10 Dukart, Mueller, Barthel, Villringer, Sabri, Schroeter (CR18) 2013; 212 Pedregosa (CR45) 2011; 12 Mori (CR43) 2008; 40 Ofori, Du, Babcock, Huang, Vaillancourt (CR31) 2016; 124 Sun (CR68) 2014; 62 Bzdok, Altman, Krzywinski (CR84) 2018; 15 Petersen (CR29) 2010; 74 Koikkalainen (CR86) 2016; 11 Firbank (CR34) 2016; 37 Garcia-Dias (CR89) 2020; 220 Frisoni (CR69) 1999; 52 Jack (CR88) 2018; 14 CR25 Delli Pizzi (CR76) 2015; 7 Amelio, Amelio, Tsihrintzis, Sotiropoulos, Jain (CR12) 2019 Ribaldi (CR15) 2021; 76 Young, Lavakumar, Tampi, Balachandran, Tampi (CR6) 2018; 8 Yendiki (CR16) 2011; 5 De Francesco (CR40) 2021; 15 Schmidt (CR41) 2012; 59 Lee (CR74) 2015; 301 Nigri (CR27) 2022; 13 Koenig, Nobuhara, Williams, Arnold (CR57) 2018; 16 Du (CR70) 2007; 130 Josephs (CR82) 2013; 136 Tanveer (CR85) 2020; 16 Möller (CR22) 2016; 3 Balki (CR47) 2019; 70 Berisha (CR48) 2021; 4 Tustison (CR37) 2010; 29 SH Lee (43706_CR74) 2015; 301 S Ash (43706_CR73) 2012; 120 AT Du (43706_CR70) 2007; 130 MA Muñoz-Ruiz (43706_CR62) 2012; 7 CR Jack Jr (43706_CR88) 2018; 14 A Redolfi (43706_CR52) 2013; 28 F Palesi (43706_CR28) 2022; 104 A Watanabe (43706_CR42) 2018; 14 S Klöppel (43706_CR56) 2015; 47 D Svärd (43706_CR44) 2017; 12 D Bzdok (43706_CR83) 2017; 14 X Sun (43706_CR68) 2014; 62 J Saxton (43706_CR59) 2009; 80 S Delli Pizzi (43706_CR76) 2015; 7 IG McKeith (43706_CR3) 2020; 94 JJ Young (43706_CR6) 2018; 8 KA Josephs (43706_CR82) 2013; 136 R Mayeux (43706_CR8) 2004; 1 K Kiuchi (43706_CR77) 2011; 45 SL Risacher (43706_CR11) 2019; 167 DA Cousins (43706_CR65) 2003; 61 S Klöppel (43706_CR23) 2008; 131 C Crespi (43706_CR75) 2020; 125 F Ribaldi (43706_CR15) 2021; 76 A Abraham (43706_CR51) 2014; 8 MG Erkkinen (43706_CR9) 2018; 10 E Mak (43706_CR61) 2014; 6 M Tanveer (43706_CR85) 2020; 16 J Koikkalainen (43706_CR86) 2016; 11 MJ Firbank (43706_CR32) 2007; 155 GBD 2016 Neurology Collaborators (43706_CR1) 2019; 18 EE Bron (43706_CR17) 2017; 8 JC Looi (43706_CR64) 2012; 46 I Balki (43706_CR47) 2019; 70 D Archetti (43706_CR21) 2021; 4 43706_CR49 C Möller (43706_CR22) 2016; 3 MJ Firbank (43706_CR34) 2016; 37 WM Van der Flier (43706_CR4) 2018; 62 BJ Erickson (43706_CR24) 2017; 37 S Mori (43706_CR43) 2008; 40 RA Armstrong (43706_CR7) 2005; 25 R Garcia-Dias (43706_CR89) 2020; 220 GB Frisoni (43706_CR10) 2010; 6 Y Zhang (43706_CR80) 2009; 132 F Blanc (43706_CR72) 2015; 10 CU Onyike (43706_CR5) 2013; 25 AM Koenig (43706_CR57) 2018; 16 R Watson (43706_CR66) 2016; 28 DL Beekly (43706_CR30) 2007; 21 PC Donaghy (43706_CR35) 2020; 78 J Dukart (43706_CR18) 2013; 212 P Lillo (43706_CR81) 2012; 7 JP Kim (43706_CR20) 2019; 23 Z Liu (43706_CR55) 2021; 3 D Bzdok (43706_CR84) 2018; 15 D Archetti (43706_CR36) 2019; 24 A Yendiki (43706_CR16) 2011; 5 H Lindroth (43706_CR38) 2019; 9 C Möller (43706_CR63) 2015; 44 E Ofori (43706_CR31) 2016; 124 B Fischl (43706_CR13) 2002; 33 M Bozzali (43706_CR79) 2005; 128 L Amelio (43706_CR12) 2019 B Fischl (43706_CR14) 2004; 14 T Tong (43706_CR87) 2017; 15 LG Vasconcelos (43706_CR67) 2014; 69 NJ Tustison (43706_CR37) 2010; 29 JMJ Vonk (43706_CR71) 2020; 12 HC Huang (43706_CR58) 2021; 36 R Watson (43706_CR78) 2012; 79 BT Hyman (43706_CR54) 2012; 8 M Reite (43706_CR39) 2010; 10 P Schmidt (43706_CR41) 2012; 59 A Redolfi (43706_CR53) 2022 MJ Firbank (43706_CR33) 2010; 21 43706_CR25 A Redolfi (43706_CR26) 2020; 11 GB Frisoni (43706_CR69) 1999; 52 TA Craney (43706_CR50) 2002; 14 V Berisha (43706_CR48) 2021; 4 JPM Kane (43706_CR60) 2018; 10 A Benussi (43706_CR2) 2020; 87 S De Francesco (43706_CR40) 2021; 15 A Nigri (43706_CR27) 2022; 13 RC Petersen (43706_CR29) 2010; 74 E Acuña (43706_CR46) 2004 E Westman (43706_CR19) 2013; 26 F Pedregosa (43706_CR45) 2011; 12 |
| References_xml | – volume: 131 start-page: 2969 year: 2008 end-page: 74 ident: CR23 article-title: Accuracy of dementia diagnosis: A direct comparison between radiologists and a computerized method publication-title: Brain doi: 10.1093/brain/awn239 – volume: 16 start-page: 164 year: 2018 end-page: 172 ident: CR57 article-title: Biomarkers in Alzheimer's, frontotemporal, Lewy body, and vascular dementias publication-title: Focus (Am. Psychiatr. Publ.) doi: 10.1176/appi.focus.20170048 – volume: 94 start-page: 743 year: 2020 end-page: 755 ident: CR3 article-title: Research criteria for the diagnosis of prodromal dementia with Lewy bodies publication-title: Neurology doi: 10.1212/WNL.0000000000009323 – ident: CR49 – volume: 12 start-page: e12066 year: 2020 ident: CR71 article-title: Semantic loss marks early Alzheimer's disease-related neurodegeneration in older adults without dementia publication-title: Alzheimers Dement (Amst). doi: 10.1002/dad2.12066 – volume: 4 start-page: 153 year: 2021 ident: CR48 article-title: Digital medicine and the curse of dimensionality publication-title: NPJ Digit. Med. doi: 10.1038/s41746-021-00521-5 – volume: 40 start-page: 570 year: 2008 end-page: 582 ident: CR43 article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.035 – volume: 62 start-page: 1091 year: 2018 end-page: 1111 ident: CR4 article-title: Amsterdam dementia cohort: Performing research to optimize care publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-170850 – volume: 45 start-page: 1095 year: 2011 end-page: 100 ident: CR77 article-title: White matter changes in dementia with Lewy bodies and Alzheimer's disease: A tractography-based study publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2011.01.011 – volume: 4 start-page: 661110 year: 2021 ident: CR21 article-title: Inter-cohort validation of SuStaIn model for Alzheimer's disease publication-title: Front. Big Data doi: 10.3389/fdata.2021.661110 – volume: 26 start-page: 9 year: 2013 end-page: 23 ident: CR19 article-title: Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment publication-title: Brain Topogr. doi: 10.1007/s10548-012-0246-x – volume: 14 start-page: 391 year: 2002 end-page: 403 ident: CR50 article-title: Model-dependent variance inflation factor cutoff values publication-title: Qual. Eng. doi: 10.1081/QEN-120001878 – volume: 8 start-page: 1 year: 2012 end-page: 13 ident: CR54 article-title: National institute on aging-Alzheimer's association guidelines for the neuropathologic assessment of Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2011.10.007 – ident: CR25 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR45 article-title: Scikit-learn: Machine learning in python publication-title: Journal of Machine Learning Research. – volume: 8 start-page: 14 year: 2014 ident: CR51 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00014 – volume: 80 start-page: 737 year: 2009 end-page: 743 ident: CR59 article-title: Functional and cognitive criteria produce different rates of mild cognitive impairment and conversion to dementia publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2008.160705 – volume: 87 start-page: 394 year: 2020 end-page: 404 ident: CR2 article-title: Classification accuracy of transcranial magnetic stimulation for the diagnosis of neurodegenerative dementias publication-title: Ann. Neurol. doi: 10.1002/ana.25677 – volume: 21 start-page: 249 year: 2007 end-page: 258 ident: CR30 article-title: The National Alzheimer's Coordinating Center (NACC) database: The uniform data set publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/WAD.0b013e318142774e – volume: 7 start-page: e43993 year: 2012 ident: CR81 article-title: Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum publication-title: PLoS ONE doi: 10.1371/journal.pone.0043993 – volume: 70 start-page: 344 year: 2019 end-page: 353 ident: CR47 article-title: Sample-size determination methodologies for machine learning in medical imaging research: A systematic review publication-title: Can. Assoc. Radiol. J. doi: 10.1016/j.carj.2019.06.002 – volume: 36 start-page: 239 year: 2021 end-page: 251 ident: CR58 article-title: Diagnostic accuracy of the Clinical Dementia Rating Scale for detecting mild cognitive impairment and dementia: A bivariate meta-analysis publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.5436 – volume: 28 start-page: 175 year: 2013 end-page: 90 ident: CR52 article-title: Brain investigation and brain conceptualization publication-title: Funct. Neurol. doi: 10.11138/FNeur/2013.28.3.175 – volume: 5 start-page: 23 year: 2011 ident: CR16 article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Front. Neuroinform. doi: 10.3389/fninf.2011.00023 – volume: 52 start-page: 91 year: 1999 end-page: 100 ident: CR69 article-title: Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease publication-title: Neurology doi: 10.1212/wnl.52.1.91 – volume: 14 start-page: 11 year: 2004 end-page: 22 ident: CR14 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – volume: 69 start-page: 28 year: 2014 end-page: 37 ident: CR67 article-title: The thickness of posterior cortical areas is related to executive dysfunction in Alzheimer's disease publication-title: Clinics (Sao Paulo) doi: 10.6061/clinics/2014(01)05 – volume: 25 start-page: 130 year: 2013 end-page: 137 ident: CR5 article-title: The epidemiology of frontotemporal dementia publication-title: Int. Rev. Psychiatry doi: 10.3109/09540261.2013.776523 – volume: 10 start-page: a033118 year: 2018 ident: CR9 article-title: Clinical neurology and epidemiology of the major neurodegenerative diseases publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a033118 – volume: 6 start-page: 18 year: 2014 ident: CR61 article-title: Neuroimaging characteristics of dementia with Lewy bodies publication-title: Alzheimers Res. Ther. doi: 10.1186/alzrt248 – volume: 11 start-page: 435 year: 2016 end-page: 449 ident: CR86 article-title: Differential diagnosis of neurodegenerative diseases using structural MRI data publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2016.02.019 – volume: 15 start-page: 613 year: 2017 end-page: 624 ident: CR87 article-title: Five-class differential diagnostics of neurodegenerative diseases using random undersampling boosting publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.06.012 – volume: 15 start-page: 233 year: 2018 end-page: 234 ident: CR84 article-title: Statistics versus machine learning publication-title: Nat. Methods doi: 10.1038/nmeth.4642 – volume: 7 start-page: 208 year: 2015 ident: CR76 article-title: Structural Connectivity is differently altered in dementia with Lewy body and Alzheimer's disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2015.00208 – volume: 46 start-page: 1145 year: 2012 end-page: 58 ident: CR64 article-title: Differential putaminal morphology in Huntington's disease, frontotemporal dementia and Alzheimer's disease publication-title: Aust. N. Z. J. Psychiatry doi: 10.1177/0004867412457224 – volume: 74 start-page: 201 year: 2010 end-page: 9 ident: CR29 article-title: Alzheimer's Disease Neuroimaging Initiative (ADNI): Clinical characterization publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 – year: 2019 ident: CR12 article-title: Classification methods in image analysis with a special focus on medical analytics publication-title: Machine Learning Paradigms. Intelligent Systems Reference Library doi: 10.1007/978-3-319-94030-4_3 – volume: 8 start-page: 33 year: 2018 end-page: 48 ident: CR6 article-title: Frontotemporal dementia: Latest evidence and clinical implications publication-title: Ther. Adv. Psychopharmacol. doi: 10.1177/2045125317739818 – volume: 14 start-page: 562 issue: 535 year: 2018 ident: CR88 article-title: NIA-AA research framework: Toward a biological definition of Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2018.02.018 – volume: 12 start-page: e0185239 year: 2017 ident: CR44 article-title: The effect of white matter hyperintensities on statistical analysis of diffusion tensor imaging in cognitively healthy elderly and prodromal Alzheimer's disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0185239 – volume: 11 start-page: 1021 year: 2020 ident: CR26 article-title: Medical Informatics Platform (MIP): A pilot study across clinical Italian cohorts publication-title: Front. Neurol. doi: 10.3389/fneur.2020.01021 – volume: 3 start-page: 838 year: 2016 end-page: 48 ident: CR22 article-title: Alzheimer disease and behavioral variant frontotemporal dementia: Automatic classification based on cortical atrophy for single-subject diagnosis publication-title: Radiology doi: 10.1148/radiol.2015150220 – volume: 3 start-page: 779091 year: 2021 ident: CR55 article-title: Listening to mental health crisis needs at Scale: Using natural language processing to understand and evaluate a mental health crisis text messaging service publication-title: Front. Digit. Health doi: 10.3389/fdgth.2021.779091 – volume: 16 start-page: 1 issue: 1s year: 2020 end-page: 35 ident: CR85 article-title: Machine learning techniques for the diagnosis of Alzheimer’s disease: A review publication-title: ACM Trans. Multimed. Comput. Commun. Appl. doi: 10.1145/3344998 – volume: 9 start-page: 11288 year: 2019 ident: CR38 article-title: Examining the identification of age-related atrophy between T1 and T1 + T2-FLAIR cortical thickness measurements publication-title: Sci. Rep. doi: 10.1038/s41598-019-47294-2 – volume: 212 start-page: 230 year: 2013 end-page: 6 ident: CR18 article-title: Alzheimer's disease neuroimaging initiative. Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2012.04.007 – volume: 7 start-page: e52531 year: 2012 ident: CR62 article-title: Structural MRI in frontotemporal dementia: Comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry publication-title: PLoS ONE doi: 10.1371/journal.pone.0052531 – year: 2004 ident: CR46 article-title: The treatment of missing values and its effect on classifier accuracy publication-title: Classification, Clustering, and Data Mining Applications. Studies in Classification, Data Analysis, and Knowledge Organisation doi: 10.1007/978-3-642-17103-1_60 – volume: 21 start-page: 1129 year: 2010 end-page: 1140 ident: CR33 article-title: High resolution imaging of the medial temporal lobe in Alzheimer's disease and dementia with Lewy bodies publication-title: J. Alzheimers Dis. doi: 10.3233/jad-2010-100138 – volume: 33 start-page: 341 year: 2002 end-page: 55 ident: CR13 article-title: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/s0896-6273(02)00569-x – volume: 44 start-page: 635 year: 2015 end-page: 647 ident: CR63 article-title: More atrophy of deep gray matter structures in frontotemporal dementia compared to Alzheimer's disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-141230 – volume: 62 start-page: 927 year: 2014 end-page: 33 ident: CR68 article-title: Destruction of white matter integrity in patients with mild cognitive impairment and Alzheimer disease publication-title: J. Investig. Med. doi: 10.1097/JIM.0000000000000102 – volume: 10 start-page: e0127396 year: 2015 ident: CR72 article-title: Cortical thickness in dementia with lewy bodies and Alzheimer's disease: A comparison of prodromal and dementia stages publication-title: PLoS ONE doi: 10.1371/journal.pone.0127396 – volume: 29 start-page: 1310 year: 2010 end-page: 20 ident: CR37 article-title: N4ITK: Improved N3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 125 start-page: 1 year: 2020 end-page: 11 ident: CR75 article-title: Diffusion tensor imaging evidence of corticospinal pathway involvement in frontotemporal lobar degeneration publication-title: Cortex doi: 10.1016/j.cortex.2019.11.022 – volume: 78 start-page: 109 year: 2020 end-page: 115 ident: CR35 article-title: Diffusion imaging in dementia with Lewy bodies: Associations with amyloid burden, atrophy, vascular factors and clinical features publication-title: Parkinsonism Relat. Disord. doi: 10.1016/j.parkreldis.2020.07.025 – volume: 79 start-page: 906 year: 2012 end-page: 14 ident: CR78 article-title: Characterizing dementia with Lewy bodies by means of diffusion tensor imaging publication-title: Neurology doi: 10.1212/WNL.0b013e318266fc51 – volume: 167 start-page: 191 year: 2019 end-page: 227 ident: CR11 article-title: Neuroimaging in aging and neurologic diseases publication-title: Handb. Clin. Neurol. doi: 10.1016/B978-0-12-804766-8.00012-1 – volume: 124 start-page: 1120 year: 2016 end-page: 1124 ident: CR31 article-title: Parkinson's disease biomarkers program brain imaging repository publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.005 – volume: 120 start-page: 290 year: 2012 end-page: 302 ident: CR73 article-title: Impairments of speech fluency in Lewy body spectrum disorder publication-title: Brain Lang. doi: 10.1016/j.bandl.2011.09.004 – volume: 14 start-page: 1119 year: 2017 end-page: 1120 ident: CR83 article-title: Machine learning: A primer publication-title: Nat. Methods doi: 10.1038/nmeth.4526 – volume: 104 start-page: 93 year: 2022 end-page: 100 ident: CR28 article-title: MRI data quality assessment for the RIN: Neuroimaging Network using the ACR phantoms publication-title: Phys. Med. doi: 10.1016/j.ejmp.2022.10.008 – volume: 18 start-page: 459 year: 2019 end-page: 480 ident: CR1 article-title: Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30499-X – volume: 10 start-page: 79 year: 2010 ident: CR39 article-title: Brain size and brain/intracranial volume ratio in major mental illness publication-title: BMC Psychiatry doi: 10.1186/1471-244X-10-79 – volume: 59 start-page: 3774 year: 2012 end-page: 3783 ident: CR41 article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.032 – volume: 37 start-page: 505 year: 2017 end-page: 515 ident: CR24 article-title: Machine learning for medical imaging publication-title: Radiographics doi: 10.1148/rg.2017160130 – volume: 25 start-page: 111 year: 2005 end-page: 124 ident: CR7 article-title: Overlap between neurodegenerative disorders publication-title: Neuropathology doi: 10.1111/j.1440-1789.2005.00605.x – volume: 13 start-page: 855125 year: 2022 ident: CR27 article-title: Quantitative MRI harmonization to maximize clinical impact: The RIN-neuroimaging network publication-title: Front. Neurol. doi: 10.3389/fneur.2022.855125 – volume: 132 start-page: 2579 year: 2009 end-page: 2592 ident: CR80 article-title: White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI publication-title: Brain doi: 10.1093/brain/awp071 – volume: 47 start-page: 939 year: 2015 end-page: 954 ident: CR56 article-title: Applying automated MR-based diagnostic methods to the memory clinic: A prospective study publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150334 – volume: 10 start-page: 19 year: 2018 ident: CR60 article-title: Clinical prevalence of Lewy body dementia publication-title: Alzheimers Res. Ther. doi: 10.1186/s13195-018-0350-6 – volume: 130 start-page: 1159 year: 2007 end-page: 66 ident: CR70 article-title: Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia publication-title: Brain doi: 10.1093/brain/awm016 – volume: 23 start-page: 101811 year: 2019 ident: CR20 article-title: Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2019.101811 – volume: 14 start-page: 1635 year: 2018 end-page: 1643 ident: CR42 article-title: The detection of white matter alterations in obsessive-compulsive disorder revealed by TRActs Constrained by UnderLying Anatomy (TRACULA) publication-title: Neuropsychiatr. Dis. Treat. doi: 10.2147/NDT.S164058 – volume: 155 start-page: 135 year: 2007 end-page: 145 ident: CR32 article-title: Diffusion tensor imaging in dementia with Lewy bodies and Alzheimer's disease publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2007.01.001 – volume: 15 start-page: 656808 year: 2021 ident: CR40 article-title: Norms for automatic estimation of hippocampal atrophy and a step forward for applicability to the Italian population publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.656808 – volume: 28 start-page: 529 year: 2016 end-page: 36 ident: CR66 article-title: Subcortical volume changes in dementia with Lewy bodies and Alzheimer's disease. A comparison with healthy aging publication-title: Int. Psychogeriatr. doi: 10.1017/S1041610215001805 – year: 2022 ident: CR53 article-title: Italian, European, and international neuroinformatics efforts: An overview publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.15854 – volume: 128 start-page: 1595 year: 2005 end-page: 604 ident: CR79 article-title: Brain tissue damage in dementia with Lewy bodies: An in vivo diffusion tensor MRI study publication-title: Brain doi: 10.1093/brain/awh493 – volume: 301 start-page: 79 year: 2015 end-page: 89 ident: CR74 article-title: Tract-based analysis of white matter degeneration in Alzheimer's disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.05.049 – volume: 6 start-page: 67 year: 2010 end-page: 77 ident: CR10 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2009.215 – volume: 136 start-page: 455 year: 2013 end-page: 70 ident: CR82 article-title: Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia publication-title: Brain doi: 10.1093/brain/aws324 – volume: 1 start-page: 182 issue: 2 year: 2004 end-page: 188 ident: CR8 article-title: Biomarkers: Potential uses and limitations publication-title: NeuroRx doi: 10.1602/neurorx.1.2.182 – volume: 76 start-page: 108 year: 2021 end-page: 115 ident: CR15 article-title: Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study publication-title: Magn. Reson. Imaging. doi: 10.1016/j.mri.2020.11.008 – volume: 37 start-page: 1254 year: 2016 end-page: 70 ident: CR34 article-title: Neural correlates of attention-executive dysfunction in Lewy body dementia and Alzheimer's disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23100 – volume: 24 start-page: 101954 year: 2019 ident: CR36 article-title: Multi-study validation of data-driven disease progression models to characterize evolution of biomarkers in Alzheimer's disease publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2019.101954 – volume: 220 start-page: 117127 year: 2020 ident: CR89 article-title: Neuroharmony: A new tool for harmonizing volumetric MRI data from unseen scanners publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117127 – volume: 61 start-page: 1191 year: 2003 end-page: 5 ident: CR65 article-title: Atrophy of the putamen in dementia with Lewy bodies but not Alzheimer's disease: An MRI study publication-title: Neurology doi: 10.1212/01.wnl.0000091889.20347.30 – volume: 8 start-page: 3372 year: 2017 end-page: 3382 ident: CR17 article-title: Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI publication-title: Eur. Radiol. doi: 10.1007/s00330-016-4691-x – volume: 8 start-page: 14 year: 2014 ident: 43706_CR51 publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00014 – volume: 18 start-page: 459 year: 2019 ident: 43706_CR1 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30499-X – volume: 6 start-page: 67 year: 2010 ident: 43706_CR10 publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2009.215 – volume: 33 start-page: 341 year: 2002 ident: 43706_CR13 publication-title: Neuron doi: 10.1016/s0896-6273(02)00569-x – volume: 14 start-page: 1119 year: 2017 ident: 43706_CR83 publication-title: Nat. Methods doi: 10.1038/nmeth.4526 – volume: 28 start-page: 529 year: 2016 ident: 43706_CR66 publication-title: Int. Psychogeriatr. doi: 10.1017/S1041610215001805 – volume: 62 start-page: 1091 year: 2018 ident: 43706_CR4 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-170850 – volume: 8 start-page: 3372 year: 2017 ident: 43706_CR17 publication-title: Eur. Radiol. doi: 10.1007/s00330-016-4691-x – volume: 26 start-page: 9 year: 2013 ident: 43706_CR19 publication-title: Brain Topogr. doi: 10.1007/s10548-012-0246-x – volume: 12 start-page: 2825 year: 2011 ident: 43706_CR45 publication-title: Journal of Machine Learning Research. – volume: 76 start-page: 108 year: 2021 ident: 43706_CR15 publication-title: Magn. Reson. Imaging. doi: 10.1016/j.mri.2020.11.008 – volume: 16 start-page: 164 year: 2018 ident: 43706_CR57 publication-title: Focus (Am. Psychiatr. Publ.) doi: 10.1176/appi.focus.20170048 – volume: 125 start-page: 1 year: 2020 ident: 43706_CR75 publication-title: Cortex doi: 10.1016/j.cortex.2019.11.022 – volume: 24 start-page: 101954 year: 2019 ident: 43706_CR36 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2019.101954 – volume: 132 start-page: 2579 year: 2009 ident: 43706_CR80 publication-title: Brain doi: 10.1093/brain/awp071 – volume: 15 start-page: 233 year: 2018 ident: 43706_CR84 publication-title: Nat. Methods doi: 10.1038/nmeth.4642 – volume: 70 start-page: 344 year: 2019 ident: 43706_CR47 publication-title: Can. Assoc. Radiol. J. doi: 10.1016/j.carj.2019.06.002 – ident: 43706_CR49 doi: 10.1109/MIPRO.2015.7160458 – volume: 36 start-page: 239 year: 2021 ident: 43706_CR58 publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.5436 – volume: 62 start-page: 927 year: 2014 ident: 43706_CR68 publication-title: J. Investig. Med. doi: 10.1097/JIM.0000000000000102 – volume: 10 start-page: e0127396 year: 2015 ident: 43706_CR72 publication-title: PLoS ONE doi: 10.1371/journal.pone.0127396 – volume: 131 start-page: 2969 year: 2008 ident: 43706_CR23 publication-title: Brain doi: 10.1093/brain/awn239 – volume: 47 start-page: 939 year: 2015 ident: 43706_CR56 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150334 – volume: 37 start-page: 505 year: 2017 ident: 43706_CR24 publication-title: Radiographics doi: 10.1148/rg.2017160130 – volume: 124 start-page: 1120 year: 2016 ident: 43706_CR31 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.005 – volume: 61 start-page: 1191 year: 2003 ident: 43706_CR65 publication-title: Neurology doi: 10.1212/01.wnl.0000091889.20347.30 – volume: 1 start-page: 182 issue: 2 year: 2004 ident: 43706_CR8 publication-title: NeuroRx doi: 10.1602/neurorx.1.2.182 – volume: 104 start-page: 93 year: 2022 ident: 43706_CR28 publication-title: Phys. Med. doi: 10.1016/j.ejmp.2022.10.008 – volume: 6 start-page: 18 year: 2014 ident: 43706_CR61 publication-title: Alzheimers Res. Ther. doi: 10.1186/alzrt248 – volume-title: Machine Learning Paradigms. Intelligent Systems Reference Library year: 2019 ident: 43706_CR12 doi: 10.1007/978-3-319-94030-4_3 – volume: 78 start-page: 109 year: 2020 ident: 43706_CR35 publication-title: Parkinsonism Relat. Disord. doi: 10.1016/j.parkreldis.2020.07.025 – volume: 69 start-page: 28 year: 2014 ident: 43706_CR67 publication-title: Clinics (Sao Paulo) doi: 10.6061/clinics/2014(01)05 – volume: 28 start-page: 175 year: 2013 ident: 43706_CR52 publication-title: Funct. Neurol. doi: 10.11138/FNeur/2013.28.3.175 – volume: 301 start-page: 79 year: 2015 ident: 43706_CR74 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.05.049 – volume: 16 start-page: 1 issue: 1s year: 2020 ident: 43706_CR85 publication-title: ACM Trans. Multimed. Comput. Commun. Appl. doi: 10.1145/3344998 – volume: 44 start-page: 635 year: 2015 ident: 43706_CR63 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-141230 – volume: 15 start-page: 613 year: 2017 ident: 43706_CR87 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.06.012 – volume: 7 start-page: 208 year: 2015 ident: 43706_CR76 publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2015.00208 – volume: 13 start-page: 855125 year: 2022 ident: 43706_CR27 publication-title: Front. Neurol. doi: 10.3389/fneur.2022.855125 – volume: 4 start-page: 153 year: 2021 ident: 43706_CR48 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-021-00521-5 – volume: 10 start-page: 79 year: 2010 ident: 43706_CR39 publication-title: BMC Psychiatry doi: 10.1186/1471-244X-10-79 – volume: 15 start-page: 656808 year: 2021 ident: 43706_CR40 publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.656808 – volume: 3 start-page: 779091 year: 2021 ident: 43706_CR55 publication-title: Front. Digit. Health doi: 10.3389/fdgth.2021.779091 – volume: 12 start-page: e12066 year: 2020 ident: 43706_CR71 publication-title: Alzheimers Dement (Amst). doi: 10.1002/dad2.12066 – volume: 87 start-page: 394 year: 2020 ident: 43706_CR2 publication-title: Ann. Neurol. doi: 10.1002/ana.25677 – volume: 74 start-page: 201 year: 2010 ident: 43706_CR29 publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 – volume: 46 start-page: 1145 year: 2012 ident: 43706_CR64 publication-title: Aust. N. Z. J. Psychiatry doi: 10.1177/0004867412457224 – volume: 79 start-page: 906 year: 2012 ident: 43706_CR78 publication-title: Neurology doi: 10.1212/WNL.0b013e318266fc51 – volume: 14 start-page: 11 year: 2004 ident: 43706_CR14 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – volume: 10 start-page: 19 year: 2018 ident: 43706_CR60 publication-title: Alzheimers Res. Ther. doi: 10.1186/s13195-018-0350-6 – volume: 14 start-page: 1635 year: 2018 ident: 43706_CR42 publication-title: Neuropsychiatr. Dis. Treat. doi: 10.2147/NDT.S164058 – volume: 11 start-page: 1021 year: 2020 ident: 43706_CR26 publication-title: Front. Neurol. doi: 10.3389/fneur.2020.01021 – volume: 94 start-page: 743 year: 2020 ident: 43706_CR3 publication-title: Neurology doi: 10.1212/WNL.0000000000009323 – volume: 14 start-page: 562 issue: 535 year: 2018 ident: 43706_CR88 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2018.02.018 – volume: 212 start-page: 230 year: 2013 ident: 43706_CR18 publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2012.04.007 – volume: 120 start-page: 290 year: 2012 ident: 43706_CR73 publication-title: Brain Lang. doi: 10.1016/j.bandl.2011.09.004 – volume: 10 start-page: a033118 year: 2018 ident: 43706_CR9 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a033118 – volume: 21 start-page: 249 year: 2007 ident: 43706_CR30 publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/WAD.0b013e318142774e – volume: 40 start-page: 570 year: 2008 ident: 43706_CR43 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.035 – volume: 52 start-page: 91 year: 1999 ident: 43706_CR69 publication-title: Neurology doi: 10.1212/wnl.52.1.91 – volume: 25 start-page: 130 year: 2013 ident: 43706_CR5 publication-title: Int. Rev. Psychiatry doi: 10.3109/09540261.2013.776523 – volume: 80 start-page: 737 year: 2009 ident: 43706_CR59 publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2008.160705 – ident: 43706_CR25 – volume: 5 start-page: 23 year: 2011 ident: 43706_CR16 publication-title: Front. Neuroinform. doi: 10.3389/fninf.2011.00023 – volume: 12 start-page: e0185239 year: 2017 ident: 43706_CR44 publication-title: PLoS ONE doi: 10.1371/journal.pone.0185239 – volume: 8 start-page: 1 year: 2012 ident: 43706_CR54 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2011.10.007 – volume: 25 start-page: 111 year: 2005 ident: 43706_CR7 publication-title: Neuropathology doi: 10.1111/j.1440-1789.2005.00605.x – volume: 21 start-page: 1129 year: 2010 ident: 43706_CR33 publication-title: J. Alzheimers Dis. doi: 10.3233/jad-2010-100138 – volume: 4 start-page: 661110 year: 2021 ident: 43706_CR21 publication-title: Front. Big Data doi: 10.3389/fdata.2021.661110 – volume: 7 start-page: e52531 year: 2012 ident: 43706_CR62 publication-title: PLoS ONE doi: 10.1371/journal.pone.0052531 – volume: 155 start-page: 135 year: 2007 ident: 43706_CR32 publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2007.01.001 – volume: 29 start-page: 1310 year: 2010 ident: 43706_CR37 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 128 start-page: 1595 year: 2005 ident: 43706_CR79 publication-title: Brain doi: 10.1093/brain/awh493 – volume: 7 start-page: e43993 year: 2012 ident: 43706_CR81 publication-title: PLoS ONE doi: 10.1371/journal.pone.0043993 – volume: 8 start-page: 33 year: 2018 ident: 43706_CR6 publication-title: Ther. Adv. Psychopharmacol. doi: 10.1177/2045125317739818 – volume: 59 start-page: 3774 year: 2012 ident: 43706_CR41 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.032 – volume-title: Classification, Clustering, and Data Mining Applications. Studies in Classification, Data Analysis, and Knowledge Organisation year: 2004 ident: 43706_CR46 doi: 10.1007/978-3-642-17103-1_60 – volume: 3 start-page: 838 year: 2016 ident: 43706_CR22 publication-title: Radiology doi: 10.1148/radiol.2015150220 – volume: 23 start-page: 101811 year: 2019 ident: 43706_CR20 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2019.101811 – volume: 14 start-page: 391 year: 2002 ident: 43706_CR50 publication-title: Qual. Eng. doi: 10.1081/QEN-120001878 – year: 2022 ident: 43706_CR53 publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.15854 – volume: 11 start-page: 435 year: 2016 ident: 43706_CR86 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2016.02.019 – volume: 220 start-page: 117127 year: 2020 ident: 43706_CR89 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117127 – volume: 167 start-page: 191 year: 2019 ident: 43706_CR11 publication-title: Handb. Clin. Neurol. doi: 10.1016/B978-0-12-804766-8.00012-1 – volume: 130 start-page: 1159 year: 2007 ident: 43706_CR70 publication-title: Brain doi: 10.1093/brain/awm016 – volume: 37 start-page: 1254 year: 2016 ident: 43706_CR34 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23100 – volume: 45 start-page: 1095 year: 2011 ident: 43706_CR77 publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2011.01.011 – volume: 136 start-page: 455 year: 2013 ident: 43706_CR82 publication-title: Brain doi: 10.1093/brain/aws324 – volume: 9 start-page: 11288 year: 2019 ident: 43706_CR38 publication-title: Sci. Rep. doi: 10.1038/s41598-019-47294-2 |
| SSID | ssj0000529419 |
| Score | 2.4657145 |
| Snippet | Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address... Abstract Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 17355 |
| SubjectTerms | 639/705/258 639/705/794 692/617 692/617/375/132 692/617/375/365 Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Biomarkers Dementia Dementia disorders Diagnosis, Differential Differential diagnosis Frontotemporal dementia Humanities and Social Sciences Humans Learning algorithms Lewy bodies Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods multidisciplinary Neuroimaging Prediction models Science Science (multidisciplinary) Substantia alba |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJG4QdQ4dvw4oRaoqESrglipNyvxY7vSNlk2Wx7_Ho_jTbU8euGSQ-IkTmY8_jwz_gahl8Yy76Wtcl4ZINWueC4bTsOhrEVZWutl3Cj8URwdyZMTdZwcbn1Kq1zbxGiobWfAR74TkD1wi3HO3iy-5lA1CqKrqYTGVXQNWBJoTN07Hn0sEMViRKW9MgWVO32Yr2BPWUlzRkVYTPON-SjS9v8Na_6ZMvlb3DROR_u3__dD7qBbCYji3UFz7qIrrr2HbgylKX_eR9_fpcopwQLMsR0S8mY97jyOFJjWTSNhNVhLbKOPcVb3GNy6OGBK7H4s5mljFj78fIBhtrT4LKZuOpxqVUxxPZ-Gvq1Oz_Dh5NNk72D3AZrsv__y9kOeijTkpmJklStnFPc-wDZT1EqZgnjWUOqINJUUwpRNWPH5khlJrbOWSE6stLwxTDDJnaEP0Vbbte4xwgDlChcAtGsUaxpZEwdpqMQI7lkpRIbIWlTaJAZzKKQx1zGSTqUexKuDeHUUr-YZejXesxj4Oy5tvQcaMLYE7u14oltOdRrKWgE_kQnaZk3NahIgciG8alxAsibAzzJD22vB62QQen0h9Qy9GC-HoQzxmbp13XlsI6hQihUZejSo29gTKiSltAgPlxuKuNHVzSvt7DTShUMl50rCi1-vdfaiX__-F08u_4yn6GYJwwiSe-g22lotz90zdN18W8365fM4Dn8Bvqg6Xw priority: 102 providerName: ProQuest |
| Title | Differential diagnosis of neurodegenerative dementias with the explainable MRI based machine learning algorithm MUQUBIA |
| URI | https://link.springer.com/article/10.1038/s41598-023-43706-6 https://www.ncbi.nlm.nih.gov/pubmed/37833302 https://www.proquest.com/docview/2876767664 https://www.proquest.com/docview/2877379940 https://pubmed.ncbi.nlm.nih.gov/PMC10575864 https://doaj.org/article/91157c153dca4a119207f9be522c5142 |
| Volume | 13 |
| WOSCitedRecordID | wos001086926800071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgFyQuiDeFpTISN4g2jh0_jlvYFZVoFVZUKicr8aNU6qarprsL_56xk5YtzwuXOSROYnlmMp_t8TcIvTKWeS9tnvDcBFLtnCey4hREVooss9bLeFD4gxiP5XSqimulvkJOWEsP3A7coQpsMAb80pqSlQQASSq8qhzgBgPBPv59AfVcm0y1rN6ZYkR1p2RSKg8biFThNFlGE0YFTKP5TiSKhP2_Q5m_Jkv-tGMaA9HJPXS3Q5D4qO35fXTD1Q_Q7bam5LeH6OpdV_IEXHeBbZtJN2_w0uPIXWndLDJNh98ctnFxcF42OKzHYgCD2H09X3QnqvDodIhDmLP4LOZcOtwVmZjhcjFbruCZMzyafJwMhkeP0OTk-NPb90lXXSExOSPrRDmjuPeAt0xaKmVS4llFqSPS5FIIk1UwVfMZM5JaZy2RnFhpeWWYYJI7Qx-jvXpZu6cIBwyWOkC-rlKsqmRJXMgfJUZwzzIheohsRlqbjno8VMBY6LgFTqVutaNBOzpqR_Meer195rwl3vhr60FQ4LZlIM2OF8CUdGdK-l-m1EMHG_XrzpMbDTPKwGnHOeuhl9vb4INhY6Ws3fIithFUKMXSHnrSWsu2J1RISmkKL5c7drTT1d079fxL5PkOJZhzGT78ZmNyP_r157F49j_G4jm6kwVfCbk79ADtrVcX7gW6ZS7X82bVRzfFVEQp-2h_cDwuTvvRAUGOsiJIAXK_GI6Kz98BnhIx6w |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4IX7pfCACPBE0RLbMeXB4Q2xrRqbVXQKm1PIbGdrlKXlqZj7E_xG_Fxkk7lsrc98JKHxEkc5_M537HPBaHX2rA8lyYOeKwhqXbMA5lx6g4kFYQYk0sfKNwV_b48PFSDNfSziYUBt8pGJnpBbaYa1sg3HbOH3GKcsw-zbwFUjYLd1aaERgWLfXt-5ky28n1nx_3fN4Tsfjr4uBfUVQUCHbNoESirFc9zxzN0mCqlwyhnGaU2kjqWQmiSORMlJ0xLaqwxkeSRkYZnmgkmudXUPfcaWmcO7LKF1ged3uBouaoD-2YsUnV0TkjlZuk0JESxERowKpz5zlc0oC8U8Dd2-6eT5m87tV4B7t7534buLrpdU228Vc2Ne2jNFvfRjar45vkDdLZT14ZxMm6CTeVyOC7xNMc-yaexI5-SG_QBNn4VdZyWGBausWPN2P6YTerQM9z70sHABww-8c6pFtfVOEY4nYzcWCyOT3Bv-Hm43dl6iIZX8tWPUKuYFvYJwkBWQ-tMBJsplmUyjSw42kZa8JwRIdooaqCR6DpHO5QKmSTeV4DKpIJT4uCUeDglvI3eLu-ZVRlKLm29DYhbtoTs4v7EdD5KamGVKMjApJ0uNDplaeSMgFDkKrOOq2tHsEkbbTRAS2qRVyYXKGujV8vLTljBDlRa2OmpbyOoUIqFbfS4gveyJ1RISmnoHi5XgL_S1dUrxfjYJ0SHWtWxhBe_a-bIRb_-PRZPL_-Ml-jm3kGvm3Q7_f1n6BaBKQyuTHQDtRbzU_scXdffF-Ny_qKWAhh9verZ8wvCiJkZ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VsogL-xIoMEhwolbsmfEsB4RaQkTUNgqISL0Ze5Y0UpqEOKX0r_HrmDe2U4Wltx645BBPnPH4rTPvfR9Cr7RhzkmTRjzVAKqd8kgWnPoPkgtCjHEyNArvi35fHh6qwQb62fTCQFllYxODoTYzDXvkbR_ZA7YY56zt6rKIQaf7bv4tAgYpOGlt6DQqEdmzZ6c-fSvf9jr-Xb8mpPvhy_uPUc0wEOmUJctIWa24cz7m0HGulI4TxwpKbSJ1KoXQpPDpiiNMS2qsMYnkiZGGF5oJJrnV1N_3CroqALQ8lA0OVvs7cILGElX36cRUtkvvK6GfjdCIUeETeb7mCwNlwN_i3D_LNX87sw2usHv7f17EO-hWHYDjnUpj7qINO72HrleUnGf30WmnZozxlm-CTVWIOC7xzOEA_WnsKAB1g5fAJuytjvMSw3Y29rE0tj_mk7ohDR987mGIEgw-DiWrFtccHSOcT0Z-LZZHx_hg-Gm429t5gIaX8tQP0eZ0NrWPEYYQNrY-cbCFYkUh88RC-W2iBXeMCNFCSSMmma6R24FAZJKFCgIqs0q0Mi9aWRCtjLfQm9Vv5hVuyYWjd0H6ViMBczx8MVuMstqEZQpwmbT3kEbnLE98ahALpwrrI3jtw27SQluN0GW1ISyzc4lroZery96EwblUPrWzkzBGUKEUi1voUSXqq5lQISmlsb-5XFOCtamuX5mOjwJMOjBYpxL-eLvRl_N5_Xstnlz8GC_QDa8y2X6vv_cU3SSgzVDfRLfQ5nJxYp-ha_r7clwungdzgNHXy1adX8ChoFg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+diagnosis+of+neurodegenerative+dementias+with+the+explainable+MRI+based+machine+learning+algorithm+MUQUBIA&rft.jtitle=Scientific+reports&rft.au=Silvia+De+Francesco&rft.au=Claudio+Crema&rft.au=Damiano+Archetti&rft.au=Cristina+Muscio&rft.date=2023-10-13&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1038%2Fs41598-023-43706-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_91157c153dca4a119207f9be522c5142 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |