Dynamic Bayesian network structure learning based on an improved bacterial foraging optimization algorithm
With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the ch...
Saved in:
| Published in: | Scientific reports Vol. 14; no. 1; pp. 8266 - 26 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
09.04.2024
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the characteristics of distributed, self-organization and robustness. By applying the high-performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the algorithm's global search capability to effectively process time-based data, improve the efficiency of network generation and the accuracy of network structure. This study proposes an improved bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited group communication, and the inability to maintain a balance between global and local searching. The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the activity strategy of a colony foraging trend is constructed by combining the exploration phase of the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-dispersal activity strategy is employed to escape the local optimal solution. To solve the problem of complex DBN learning structures due to the introduction of time information, a DBN structure learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, the designed V-structure orientation rule, and the trend activity strategy. Then, according to the improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the network candidate solution while maintaining species diversity. Finally, the global optimal network structure with the highest score is obtained based on the elimination-dispersal activity strategy. Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks to evaluate and analyze the optimization performance and structure learning ability of the proposed algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN structures from data and has practical value for engineering applications. |
|---|---|
| AbstractList | With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the characteristics of distributed, self-organization and robustness. By applying the high-performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the algorithm's global search capability to effectively process time-based data, improve the efficiency of network generation and the accuracy of network structure. This study proposes an improved bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited group communication, and the inability to maintain a balance between global and local searching. The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the activity strategy of a colony foraging trend is constructed by combining the exploration phase of the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-dispersal activity strategy is employed to escape the local optimal solution. To solve the problem of complex DBN learning structures due to the introduction of time information, a DBN structure learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, the designed V-structure orientation rule, and the trend activity strategy. Then, according to the improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the network candidate solution while maintaining species diversity. Finally, the global optimal network structure with the highest score is obtained based on the elimination-dispersal activity strategy. Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks to evaluate and analyze the optimization performance and structure learning ability of the proposed algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN structures from data and has practical value for engineering applications. Abstract With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the characteristics of distributed, self-organization and robustness. By applying the high-performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the algorithm's global search capability to effectively process time-based data, improve the efficiency of network generation and the accuracy of network structure. This study proposes an improved bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited group communication, and the inability to maintain a balance between global and local searching. The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the activity strategy of a colony foraging trend is constructed by combining the exploration phase of the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-dispersal activity strategy is employed to escape the local optimal solution. To solve the problem of complex DBN learning structures due to the introduction of time information, a DBN structure learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, the designed V-structure orientation rule, and the trend activity strategy. Then, according to the improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the network candidate solution while maintaining species diversity. Finally, the global optimal network structure with the highest score is obtained based on the elimination-dispersal activity strategy. Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks to evaluate and analyze the optimization performance and structure learning ability of the proposed algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN structures from data and has practical value for engineering applications. With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the characteristics of distributed, self-organization and robustness. By applying the high-performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the algorithm's global search capability to effectively process time-based data, improve the efficiency of network generation and the accuracy of network structure. This study proposes an improved bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited group communication, and the inability to maintain a balance between global and local searching. The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the activity strategy of a colony foraging trend is constructed by combining the exploration phase of the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-dispersal activity strategy is employed to escape the local optimal solution. To solve the problem of complex DBN learning structures due to the introduction of time information, a DBN structure learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, the designed V-structure orientation rule, and the trend activity strategy. Then, according to the improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the network candidate solution while maintaining species diversity. Finally, the global optimal network structure with the highest score is obtained based on the elimination-dispersal activity strategy. Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks to evaluate and analyze the optimization performance and structure learning ability of the proposed algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN structures from data and has practical value for engineering applications.With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the characteristics of distributed, self-organization and robustness. By applying the high-performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the algorithm's global search capability to effectively process time-based data, improve the efficiency of network generation and the accuracy of network structure. This study proposes an improved bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited group communication, and the inability to maintain a balance between global and local searching. The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the activity strategy of a colony foraging trend is constructed by combining the exploration phase of the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-dispersal activity strategy is employed to escape the local optimal solution. To solve the problem of complex DBN learning structures due to the introduction of time information, a DBN structure learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, the designed V-structure orientation rule, and the trend activity strategy. Then, according to the improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the network candidate solution while maintaining species diversity. Finally, the global optimal network structure with the highest score is obtained based on the elimination-dispersal activity strategy. Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks to evaluate and analyze the optimization performance and structure learning ability of the proposed algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN structures from data and has practical value for engineering applications. |
| ArticleNumber | 8266 |
| Author | Cong, Zelin Li, Tingting Wang, Biao Wang, Chenguang Zhou, Mingzhe Meng, Guanglei |
| Author_xml | – sequence: 1 givenname: Guanglei surname: Meng fullname: Meng, Guanglei organization: School of Automation, Shenyang Aerospace University, Aviation Science and Technology Key Laboratory of Air Combat System Technology – sequence: 2 givenname: Zelin surname: Cong fullname: Cong, Zelin email: congzelin@stu.sau.edu.cn organization: School of Automation, Shenyang Aerospace University, Aviation Science and Technology Key Laboratory of Air Combat System Technology – sequence: 3 givenname: Tingting surname: Li fullname: Li, Tingting organization: Aviation Science and Technology Key Laboratory of Air Combat System Technology – sequence: 4 givenname: Chenguang surname: Wang fullname: Wang, Chenguang organization: Aviation Science and Technology Key Laboratory of Air Combat System Technology – sequence: 5 givenname: Mingzhe surname: Zhou fullname: Zhou, Mingzhe organization: School of Automation, Shenyang Aerospace University, Aviation Science and Technology Key Laboratory of Air Combat System Technology – sequence: 6 givenname: Biao surname: Wang fullname: Wang, Biao organization: School of Automation, Shenyang Aerospace University, Aviation Science and Technology Key Laboratory of Air Combat System Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38594347$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNUREvpH-CAInHhEvBnYp8QLV-VKnGBszXrTLZeEnuxnaLy63F2W2h76Fz89cw7rzzzvDrwwWNVvaTkLSVcvUuCSq0awkQjlSJtQ55UR4wI2TDO2MGd_WF1ktKGlJBMC6qfVYdcSS246I6qzcdrD5Oz9SlcY3Lga4_5d4g_65TjbPMcsR4Rond-Xa8gYV8HXxfMTdsYrspxBTZjdDDWQ4iwXriwzW5yfyC7hR3XIbp8Ob2ong4wJjy5WY-rH58_fT_72lx8-3J-9uGisVLQ3GguLCOaAbMKNDLadVb0tB1sCVmMd4KtetZh13LWogLSKcF0OxCFEgjy4-p8r9sH2JhtdBPEaxPAmd1FiGsDMTs7opG2BataqXshBSkFB40d9LrtaceZXLTe77W282rC3qLPEcZ7ovdfvLs063BlKCWEa62KwpsbhRh-zZiymVyyOI7gMczJcMLlUrslBX39AN2EOfryVwslik_GaaFe3bX0z8ttTwug9oCNIaWIg7Eu73pRHLrRUGKWCTL7CTJlgsxugszigD1IvVV_NInvk1KB_Rrjf9uPZP0FKArZFg |
| CitedBy_id | crossref_primary_10_1039_D5AY01027F crossref_primary_10_1016_j_eswa_2025_128113 |
| Cites_doi | 10.1002/isaf.1486 10.1016/j.chaos.2007.01.055 10.1016/j.knosys.2022.109215 10.1016/j.asej.2019.10.003 10.1016/j.swevo.2013.06.001 10.1007/978-3-540-89332-5 10.1109/ACCESS.2021.3109133 10.1016/j.cogsys.2018.07.022 10.1016/j.mex.2023.102181 10.1016/j.advengsoft.2016.01.008 10.1016/j.ijepes.2014.12.090 10.1016/j.ins.2016.01.090 10.1007/s10618-010-0178-6 10.1109/TCYB.2019.2925015 10.1016/S0167-8655(01)00123-4 10.1016/j.engappai.2022.105521 10.1016/j.neucom.2011.05.048 10.1504/IJBIC.2013.055093 10.1109/ACCESS.2019.2897580 10.1109/ACCESS.2018.2876996 10.3389/fmech.2022.1126450 10.1007/s00521-020-04815-9 10.1016/j.compbiolchem.2019.02.006 10.1109/TII.2019.2952565 10.1007/s10489-010-0251-2 10.1109/MCS.2002.1004010 10.1371/journal.pone.0252754 10.1007/s10462-022-10351-w 10.1007/s10462-019-09704-9 10.1016/j.ins.2014.02.161 10.1080/23311916.2022.2114196 10.1007/s00500-012-0966-6 10.1109/2.294849 10.1080/02533839.2020.1838949 10.13700/j.bh.1001-5965.2023.0445 10.1016/j.neucom.2012.07.064 10.1007/s10115-016-0963-7 10.1007/BF01530777 10.1007/s11227-022-04959-6 10.1007/s10462-023-10567-4 10.1016/j.jneumeth.2017.05.009 10.1016/j.advengsoft.2013.12.007 10.1109/ACCESS.2021.3105520 10.1016/j.swevo.2017.09.010 10.1016/j.oceaneng.2024.117288 10.5772/5120 10.1007/s12530-023-09553-6 10.1109/ICMSAO.2013.6552549 10.1109/ALIFE.2007.367782 10.1109/CIS.2011.25 10.1109/TIE.2023.3321997 10.1109/TAES.2022.3221691 10.1007/978-3-030-86271-8_14 10.1007/978-3-642-41398-8_34 10.1109/CICSyN.2010.52 10.1007/BFb0053999 10.1109/TITS.2023.3268324 10.1109/BRC.2014.6880957 10.1007/978-3-642-35101-3_76 10.1007/978-981-19-3998-3_123 10.1109/ICIS.2014.6912142 10.1155/2019/2981282 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-58806-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 26 |
| ExternalDocumentID | oai_doaj_org_article_5c6ac8659d45402c8f9e7ad96d17325e PMC11003998 38594347 10_1038_s41598_024_58806_0 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62373261; 62373261; 62373261; 62373261; 62373261; 62373261 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Defense Basic Scientific Research Program of China grantid: JH2023007; JH2023007; JH2023007; JH2023007; JH2023007; JH2023007 funderid: http://dx.doi.org/10.13039/501100012335 – fundername: Liaoning Revitalization Talents Program grantid: XLYC2007144; XLYC2007144; XLYC2007144; XLYC2007144; XLYC2007144; XLYC2007144 funderid: http://dx.doi.org/10.13039/501100018617 – fundername: Natural Science Foundation of Shenyang Municipality grantid: 22-315-6-09; 22-315-6-09; 22-315-6-09; 22-315-6-09; 22-315-6-09; 22-315-6-09 funderid: http://dx.doi.org/10.13039/100016807 – fundername: Natural Science Foundation of Shenyang Municipality grantid: 22-315-6-09 – fundername: Liaoning Revitalization Talents Program grantid: XLYC2007144 – fundername: National Natural Science Foundation of China grantid: 62373261 – fundername: National Defense Basic Scientific Research Program of China grantid: JH2023007 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-934c2092a2c8a9e2177c4d16fcccc5859742bd27e76326e8a0784296f08e5a0e3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001199822700062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:50:43 EDT 2025 Tue Nov 04 02:05:46 EST 2025 Thu Sep 04 19:33:50 EDT 2025 Tue Oct 07 08:04:38 EDT 2025 Thu Apr 03 07:08:48 EDT 2025 Sat Nov 29 01:58:49 EST 2025 Tue Nov 18 22:36:16 EST 2025 Fri Feb 21 02:40:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Swarm intelligence optimization algorithm Bacterial foraging optimization algorithm Structural learning Dynamic Bayesian networks |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-934c2092a2c8a9e2177c4d16fcccc5859742bd27e76326e8a0784296f08e5a0e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3034865231?pq-origsite=%requestingapplication% |
| PMID | 38594347 |
| PQID | 3034865231 |
| PQPubID | 2041939 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5c6ac8659d45402c8f9e7ad96d17325e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11003998 proquest_miscellaneous_3035540260 proquest_journals_3034865231 pubmed_primary_38594347 crossref_citationtrail_10_1038_s41598_024_58806_0 crossref_primary_10_1038_s41598_024_58806_0 springer_journals_10_1038_s41598_024_58806_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-09 |
| PublicationDateYYYYMMDD | 2024-04-09 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Mirjalili, Mirjalili, Lewis (CR16) 2014; 69 Guanglei (CR45) 2023 Gámez, Puerta (CR13) 2002; 23 Deng, Xu, Zhao (CR23) 2019; 7 Ashraf, Mostafa, Sakr, Rashad (CR32) 2021; 16 CR39 CR38 CR37 Wang, Zhao, Tian, Pan (CR56) 2018; 52 CR33 De Jong, Spears (CR59) 1992; 5 Fister, Fister, Yang, Brest (CR20) 2013; 13 CR31 Yang, He (CR18) 2013; 5 Niu, Fan, Xiao, Xue (CR54) 2012; 98 Tzanetos, Blondin (CR65) 2023; 118 Hemeida (CR30) 2020; 11 Mirjalili, Lewis (CR19) 2016; 95 Niu, Wang, Wang (CR51) 2015; 148 Mahdavi, Rahnamayan, Deb (CR22) 2018; 39 Kitson, Constantinou, Guo, Liu, Chobtham (CR1) 2023; 56 Varol Altay, Alatas (CR48) 2020; 53 CR8 Giri, De, Dehuri, Cho (CR29) 2021; 28 Zhao, Wang, Tian, Pan (CR57) 2018; 52 CR7 Khan, Engelbrecht (CR34) 2012; 36 CR9 Dang, Chaudhury, Lall, Roy (CR4) 2017; 285 Cao (CR35) 2019; 16 CR46 CR42 CR41 Qu (CR6) 2021; 9 CR40 Adabor, Acquaah-Mensah (CR3) 2019; 79 Passino (CR44) 2002; 22 Nonut (CR36) 2022; 9 Zhong, Li, Meng (CR61) 2022; 251 Chen, Zhu, Hu, Ma (CR55) 2014; 273 Dehghani, Trojovský (CR58) 2023; 8 Ji, Wei, Liu (CR17) 2013; 17 Metzler, Chechkin, Gonchar, Klafter (CR21) 2007; 34 CR15 Naveen, Kumar, Rajalakshmi (CR52) 2015; 69 CR10 Giri, De, Dehuri (CR28) 2021; 33 CR53 CR50 Jia, Rao, Wen, Mirjalili (CR63) 2023; 56 Serfozo (CR47) 2009 Gheisari, Meybodi (CR14) 2016; 348 Liu (CR25) 2019; 51 Gámez, Mateo, Puerta (CR11) 2011; 22 Zhang (CR26) 2018; 6 Srinivas, Patnaik (CR12) 1994; 27 Mou, Zhu, Liu, Bai (CR27) 2024; 299 Komurlu (CR5) 2017; 50 Suganthan (CR60) 2005; 2005005 Panagant, Kumar, Tejani, Pholdee, Bureerat (CR66) 2023; 10 CR24 CR67 CR64 Deng, Liu, Wang, Liu (CR43) 2021; 44 Xue, Shen (CR62) 2023; 79 Shiguihara, Lopes, Mauricio (CR2) 2021; 9 Demir, Tuncer, Kocamaz (CR49) 2020; 32 58806_CR39 58806_CR38 S Naveen (58806_CR52) 2015; 69 M Srinivas (58806_CR12) 1994; 27 H Chen (58806_CR55) 2014; 273 SA Khan (58806_CR34) 2012; 36 58806_CR31 58806_CR33 Q Zhang (58806_CR26) 2018; 6 J Mou (58806_CR27) 2024; 299 58806_CR37 B Niu (58806_CR54) 2012; 98 M Dehghani (58806_CR58) 2023; 8 N Panagant (58806_CR66) 2023; 10 R Metzler (58806_CR21) 2007; 34 PK Giri (58806_CR29) 2021; 28 W Liu (58806_CR25) 2019; 51 M Guanglei (58806_CR45) 2023 A Tzanetos (58806_CR65) 2023; 118 NK Kitson (58806_CR1) 2023; 56 KM Passino (58806_CR44) 2002; 22 NM Ashraf (58806_CR32) 2021; 16 ES Adabor (58806_CR3) 2019; 79 W Deng (58806_CR23) 2019; 7 58806_CR42 58806_CR41 58806_CR46 B Cao (58806_CR35) 2019; 16 L Wang (58806_CR56) 2018; 52 JA Gámez (58806_CR13) 2002; 23 B Niu (58806_CR51) 2015; 148 P Shiguihara (58806_CR2) 2021; 9 58806_CR40 A Nonut (58806_CR36) 2022; 9 JA Gámez (58806_CR11) 2011; 22 L Qu (58806_CR6) 2021; 9 FB Demir (58806_CR49) 2020; 32 S Mirjalili (58806_CR19) 2016; 95 S Mahdavi (58806_CR22) 2018; 39 A Hemeida (58806_CR30) 2020; 11 PN Suganthan (58806_CR60) 2005; 2005005 58806_CR53 H Jia (58806_CR63) 2023; 56 58806_CR10 58806_CR15 KA De Jong (58806_CR59) 1992; 5 Y-J Deng (58806_CR43) 2021; 44 58806_CR50 S Dang (58806_CR4) 2017; 285 C Komurlu (58806_CR5) 2017; 50 PK Giri (58806_CR28) 2021; 33 J Ji (58806_CR17) 2013; 17 R Serfozo (58806_CR47) 2009 S Gheisari (58806_CR14) 2016; 348 58806_CR64 J Xue (58806_CR62) 2023; 79 E Varol Altay (58806_CR48) 2020; 53 58806_CR24 58806_CR67 C Zhong (58806_CR61) 2022; 251 58806_CR9 58806_CR8 X-S Yang (58806_CR18) 2013; 5 58806_CR7 S Mirjalili (58806_CR16) 2014; 69 W Zhao (58806_CR57) 2018; 52 I Fister (58806_CR20) 2013; 13 |
| References_xml | – volume: 28 start-page: 35 year: 2021 end-page: 51 ident: CR29 article-title: Biogeography based optimization for mining rules to assess credit risk publication-title: Intell. Syst. Acc. Finance Manag. doi: 10.1002/isaf.1486 – volume: 34 start-page: 129 year: 2007 end-page: 142 ident: CR21 article-title: Some fundamental aspects of Lévy flights publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2007.01.055 – volume: 251 year: 2022 ident: CR61 article-title: Beluga whale optimization: A novel nature-inspired metaheuristic algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109215 – volume: 11 start-page: 309 year: 2020 end-page: 318 ident: CR30 article-title: Implementation of nature-inspired optimization algorithms in some data mining tasks publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2019.10.003 – ident: CR39 – volume: 13 start-page: 34 year: 2013 end-page: 46 ident: CR20 article-title: A comprehensive review of firefly algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.06.001 – year: 2009 ident: CR47 publication-title: Basics of Applied Stochastic Processes doi: 10.1007/978-3-540-89332-5 – volume: 9 start-page: 123616 year: 2021 end-page: 123634 ident: CR6 article-title: Dynamic Bayesian network modeling based on structure prediction for gene regulatory network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3109133 – volume: 52 start-page: 301 year: 2018 end-page: 311 ident: CR56 article-title: A bare bones bacterial foraging optimization algorithm publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.07.022 – volume: 10 year: 2023 ident: CR66 article-title: Many-objective meta-heuristic methods for solving constrained truss optimisation problems: A comparative analysis publication-title: MethodsX doi: 10.1016/j.mex.2023.102181 – ident: CR8 – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR19 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 69 start-page: 90 year: 2015 end-page: 97 ident: CR52 article-title: Distribution system reconfiguration for loss minimization using modified bacterial foraging optimization algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.12.090 – volume: 348 start-page: 272 year: 2016 end-page: 289 ident: CR14 article-title: Bnc-pso: Structure learning of bayesian networks by particle swarm optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.090 – ident: CR42 – volume: 22 start-page: 106 year: 2011 end-page: 148 ident: CR11 article-title: Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood publication-title: Data Min. Knowl. Disc. doi: 10.1007/s10618-010-0178-6 – ident: CR46 – volume: 51 start-page: 1085 year: 2019 end-page: 1093 ident: CR25 article-title: A novel sigmoid-function-based adaptive weighted particle swarm optimizer publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2925015 – ident: CR67 – volume: 23 start-page: 261 year: 2002 end-page: 277 ident: CR13 article-title: Searching for the best elimination sequence in Bayesian networks by using ant colony optimization publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(01)00123-4 – ident: CR15 – ident: CR50 – volume: 118 year: 2023 ident: CR65 article-title: A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105521 – ident: CR9 – volume: 98 start-page: 90 year: 2012 end-page: 100 ident: CR54 article-title: Bacterial foraging based approaches to portfolio optimization with liquidity risk publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.05.048 – volume: 5 start-page: 141 year: 2013 end-page: 149 ident: CR18 article-title: Bat algorithm: Literature review and applications publication-title: Int. J. Bio-inspired Comput. doi: 10.1504/IJBIC.2013.055093 – volume: 7 start-page: 20281 year: 2019 end-page: 20292 ident: CR23 article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem publication-title: IEEE access doi: 10.1109/ACCESS.2019.2897580 – volume: 6 start-page: 64905 year: 2018 end-page: 64919 ident: CR26 article-title: Chaos enhanced bacterial foraging optimization for global optimization publication-title: Ieee Access doi: 10.1109/ACCESS.2018.2876996 – volume: 8 start-page: 1126450 year: 2023 ident: CR58 article-title: Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2022.1126450 – ident: CR64 – volume: 32 start-page: 14227 year: 2020 end-page: 14239 ident: CR49 article-title: A chaotic optimization method based on logistic-sine map for numerical function optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04815-9 – volume: 79 start-page: 155 year: 2019 end-page: 164 ident: CR3 article-title: Restricted-derestricted dynamic Bayesian Network inference of transcriptional regulatory relationships among genes in cancer publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2019.02.006 – volume: 16 start-page: 3597 year: 2019 end-page: 3605 ident: CR35 article-title: Multiobjective 3-D topology optimization of next-generation wireless data center network publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2952565 – volume: 36 start-page: 161 year: 2012 end-page: 177 ident: CR34 article-title: A fuzzy particle swarm optimization algorithm for computer communication network topology design publication-title: Appl. Intell. doi: 10.1007/s10489-010-0251-2 – volume: 22 start-page: 52 year: 2002 end-page: 67 ident: CR44 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2002.1004010 – volume: 16 year: 2021 ident: CR32 article-title: Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm publication-title: Plos one doi: 10.1371/journal.pone.0252754 – volume: 56 start-page: 1 year: 2023 end-page: 94 ident: CR1 article-title: A survey of Bayesian Network structure learning publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10351-w – ident: CR37 – ident: CR53 – volume: 53 start-page: 1373 year: 2020 end-page: 1414 ident: CR48 article-title: Bird swarm algorithms with chaotic mapping publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09704-9 – ident: CR10 – ident: CR33 – volume: 273 start-page: 73 year: 2014 end-page: 100 ident: CR55 article-title: Bacterial colony foraging algorithm: Combining chemotaxis, cell-to-cell communication, and self-adaptive strategy publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.161 – volume: 9 start-page: 2114196 year: 2022 ident: CR36 article-title: A small fixed-wing UAV system identification using metaheuristics publication-title: Cogent Eng. doi: 10.1080/23311916.2022.2114196 – ident: CR40 – volume: 17 start-page: 983 year: 2013 end-page: 994 ident: CR17 article-title: An artificial bee colony algorithm for learning Bayesian networks publication-title: Soft Computing doi: 10.1007/s00500-012-0966-6 – volume: 27 start-page: 17 year: 1994 end-page: 26 ident: CR12 article-title: Genetic algorithms: A survey publication-title: Computer doi: 10.1109/2.294849 – volume: 33 start-page: 453 year: 2021 end-page: 467 ident: CR28 article-title: Adaptive neighbourhood for locally and globally tuned biogeography based optimization algorithm publication-title: J. King Saud University-Comput. Inf. Sci. – volume: 44 start-page: 41 year: 2021 end-page: 52 ident: CR43 article-title: Learning Dynamic Bayesian Networks structure based on a new hybrid K2-Bat learning algorithm publication-title: J. Chin. Inst. Eng. doi: 10.1080/02533839.2020.1838949 – ident: CR38 – year: 2023 ident: CR45 article-title: A survey of Bayesian Network structure learning publication-title: J. Beihang Univ. doi: 10.13700/j.bh.1001-5965.2023.0445 – volume: 148 start-page: 54 year: 2015 end-page: 62 ident: CR51 article-title: Bacterial-inspired algorithms for solving constrained optimization problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.064 – volume: 50 start-page: 917 year: 2017 end-page: 943 ident: CR5 article-title: Active inference for dynamic Bayesian networks with an application to tissue engineering publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-016-0963-7 – volume: 5 start-page: 1 year: 1992 end-page: 26 ident: CR59 article-title: A formal analysis of the role of multi-point crossover in genetic algorithms publication-title: Ann. Math. Artif. Intell. doi: 10.1007/BF01530777 – volume: 79 start-page: 7305 year: 2023 end-page: 7336 ident: CR62 article-title: Dung beetle optimizer: A new meta-heuristic algorithm for global optimization publication-title: J. Supercomput. doi: 10.1007/s11227-022-04959-6 – ident: CR31 – volume: 56 start-page: 1919 year: 2023 end-page: 1979 ident: CR63 article-title: Crayfish optimization algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10567-4 – volume: 285 start-page: 33 year: 2017 end-page: 44 ident: CR4 article-title: The dynamic programming high-order dynamic Bayesian networks learning for identifying effective connectivity in human brain from fMRI publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.05.009 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR16 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 2005005 start-page: 2005 year: 2005 ident: CR60 article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization publication-title: KanGAL Rep. – volume: 52 start-page: 301 year: 2018 end-page: 311 ident: CR57 article-title: A bare bones bacterial foraging optimization algorithm publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.07.022 – volume: 9 start-page: 117639 year: 2021 end-page: 117648 ident: CR2 article-title: Dynamic Bayesian network modeling, learning, and inference: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105520 – ident: CR7 – volume: 39 start-page: 1 year: 2018 end-page: 23 ident: CR22 article-title: Opposition based learning: A literature review publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.09.010 – ident: CR41 – ident: CR24 – volume: 299 year: 2024 ident: CR27 article-title: Multi-objective optimal thrust allocation strategy for automatic berthing of surface ships using adaptive non-dominated sorting genetic algorithm III publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117288 – volume: 299 year: 2024 ident: 58806_CR27 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117288 – volume: 36 start-page: 161 year: 2012 ident: 58806_CR34 publication-title: Appl. Intell. doi: 10.1007/s10489-010-0251-2 – volume: 17 start-page: 983 year: 2013 ident: 58806_CR17 publication-title: Soft Computing doi: 10.1007/s00500-012-0966-6 – volume: 33 start-page: 453 year: 2021 ident: 58806_CR28 publication-title: J. King Saud University-Comput. Inf. Sci. – ident: 58806_CR15 doi: 10.5772/5120 – volume: 44 start-page: 41 year: 2021 ident: 58806_CR43 publication-title: J. Chin. Inst. Eng. doi: 10.1080/02533839.2020.1838949 – ident: 58806_CR64 doi: 10.1007/s12530-023-09553-6 – volume: 79 start-page: 155 year: 2019 ident: 58806_CR3 publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2019.02.006 – volume: 98 start-page: 90 year: 2012 ident: 58806_CR54 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.05.048 – volume: 118 year: 2023 ident: 58806_CR65 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105521 – volume: 273 start-page: 73 year: 2014 ident: 58806_CR55 publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.161 – volume: 22 start-page: 106 year: 2011 ident: 58806_CR11 publication-title: Data Min. Knowl. Disc. doi: 10.1007/s10618-010-0178-6 – volume: 32 start-page: 14227 year: 2020 ident: 58806_CR49 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04815-9 – volume: 5 start-page: 141 year: 2013 ident: 58806_CR18 publication-title: Int. J. Bio-inspired Comput. doi: 10.1504/IJBIC.2013.055093 – volume: 95 start-page: 51 year: 2016 ident: 58806_CR19 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 27 start-page: 17 year: 1994 ident: 58806_CR12 publication-title: Computer doi: 10.1109/2.294849 – volume: 28 start-page: 35 year: 2021 ident: 58806_CR29 publication-title: Intell. Syst. Acc. Finance Manag. doi: 10.1002/isaf.1486 – volume: 148 start-page: 54 year: 2015 ident: 58806_CR51 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.064 – volume: 11 start-page: 309 year: 2020 ident: 58806_CR30 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2019.10.003 – volume: 79 start-page: 7305 year: 2023 ident: 58806_CR62 publication-title: J. Supercomput. doi: 10.1007/s11227-022-04959-6 – ident: 58806_CR67 doi: 10.1109/ICMSAO.2013.6552549 – ident: 58806_CR39 doi: 10.1109/ALIFE.2007.367782 – ident: 58806_CR53 doi: 10.1109/CIS.2011.25 – volume: 51 start-page: 1085 year: 2019 ident: 58806_CR25 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2925015 – ident: 58806_CR33 doi: 10.1109/TIE.2023.3321997 – volume: 348 start-page: 272 year: 2016 ident: 58806_CR14 publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.090 – volume: 6 start-page: 64905 year: 2018 ident: 58806_CR26 publication-title: Ieee Access doi: 10.1109/ACCESS.2018.2876996 – volume: 34 start-page: 129 year: 2007 ident: 58806_CR21 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2007.01.055 – volume: 52 start-page: 301 year: 2018 ident: 58806_CR56 publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.07.022 – ident: 58806_CR37 doi: 10.1109/TAES.2022.3221691 – ident: 58806_CR42 doi: 10.1007/978-3-030-86271-8_14 – volume: 53 start-page: 1373 year: 2020 ident: 58806_CR48 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09704-9 – volume: 9 start-page: 117639 year: 2021 ident: 58806_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105520 – ident: 58806_CR9 doi: 10.1007/978-3-642-41398-8_34 – ident: 58806_CR10 – ident: 58806_CR50 doi: 10.1109/CICSyN.2010.52 – volume: 16 year: 2021 ident: 58806_CR32 publication-title: Plos one doi: 10.1371/journal.pone.0252754 – volume: 52 start-page: 301 year: 2018 ident: 58806_CR57 publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.07.022 – ident: 58806_CR7 doi: 10.1007/BFb0053999 – volume: 23 start-page: 261 year: 2002 ident: 58806_CR13 publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(01)00123-4 – ident: 58806_CR46 – ident: 58806_CR31 doi: 10.1109/TITS.2023.3268324 – volume: 56 start-page: 1919 year: 2023 ident: 58806_CR63 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10567-4 – volume: 10 year: 2023 ident: 58806_CR66 publication-title: MethodsX doi: 10.1016/j.mex.2023.102181 – ident: 58806_CR40 doi: 10.1109/BRC.2014.6880957 – volume: 251 year: 2022 ident: 58806_CR61 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109215 – volume: 22 start-page: 52 year: 2002 ident: 58806_CR44 publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2002.1004010 – volume: 2005005 start-page: 2005 year: 2005 ident: 58806_CR60 publication-title: KanGAL Rep. – volume: 13 start-page: 34 year: 2013 ident: 58806_CR20 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.06.001 – volume: 50 start-page: 917 year: 2017 ident: 58806_CR5 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-016-0963-7 – year: 2023 ident: 58806_CR45 publication-title: J. Beihang Univ. doi: 10.13700/j.bh.1001-5965.2023.0445 – volume: 69 start-page: 46 year: 2014 ident: 58806_CR16 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 285 start-page: 33 year: 2017 ident: 58806_CR4 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.05.009 – ident: 58806_CR8 doi: 10.1007/978-3-642-35101-3_76 – volume-title: Basics of Applied Stochastic Processes year: 2009 ident: 58806_CR47 doi: 10.1007/978-3-540-89332-5 – volume: 5 start-page: 1 year: 1992 ident: 58806_CR59 publication-title: Ann. Math. Artif. Intell. doi: 10.1007/BF01530777 – volume: 69 start-page: 90 year: 2015 ident: 58806_CR52 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.12.090 – volume: 56 start-page: 1 year: 2023 ident: 58806_CR1 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10351-w – ident: 58806_CR41 doi: 10.1007/978-981-19-3998-3_123 – volume: 9 start-page: 123616 year: 2021 ident: 58806_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3109133 – volume: 39 start-page: 1 year: 2018 ident: 58806_CR22 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.09.010 – volume: 8 start-page: 1126450 year: 2023 ident: 58806_CR58 publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2022.1126450 – ident: 58806_CR38 doi: 10.1109/ICIS.2014.6912142 – volume: 7 start-page: 20281 year: 2019 ident: 58806_CR23 publication-title: IEEE access doi: 10.1109/ACCESS.2019.2897580 – ident: 58806_CR24 doi: 10.1155/2019/2981282 – volume: 16 start-page: 3597 year: 2019 ident: 58806_CR35 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2952565 – volume: 9 start-page: 2114196 year: 2022 ident: 58806_CR36 publication-title: Cogent Eng. doi: 10.1080/23311916.2022.2114196 |
| SSID | ssj0000529419 |
| Score | 2.4399977 |
| Snippet | With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been... Abstract With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8266 |
| SubjectTerms | 639/166 639/705 Algorithms Artificial intelligence Bacteria Bacterial foraging optimization algorithm Bayesian analysis Colonies Dynamic Bayesian networks Gene mapping Humanities and Social Sciences Learning multidisciplinary Natural selection Optimization algorithms Science Science (multidisciplinary) Species diversity Structural learning Swarm intelligence optimization algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkhcEC2v0IKMxA2ixs_YxxaoOFUcQOrNcmynXdQm1e4Wqf-esZ1durx6YW_ZONnRPDzfrO1vAN7IwLXTEQOpkaEWonW18wqBXOhliDqgT-vcbKI9OdGnp-bzrVZfaU9YoQcuijuQXjmvlTQhccUxr3sTWxeMCrTlTMY0-zatuVVMFVZvZgQ10ymZhuuDBWaqdJqMiVqiz2IZvZGJMmH_n1Dm75slf1kxzYno-BE8nBAkOSyS78C9OOzC_dJT8uYxfPtQesyTI3cT0wlJMpSd3qRQxV7PI5laRZyRlMMCGQeCw2b57wW87AqBM_4GAtrcxIiMOLFcTic2ibs4G-ez5fnlE_h6_PHL-0_11FCh9lLQZW248KwxzKEanYlYjbReBKp6jx-sG7C2YF1gbcRJh6moHeIHzFeqb3SUron8KWwN4xCfA0FkozRirxBoJzraG-26QGmPeIiL3vAK6Eq51k9s46npxYXNq95c22IQiwax2SC2qeDt-pmrwrXxz9FHyWbrkYknO3-B3mMn77F3eU8F-yuL2yl4FxazusBnEPlW8Hp9G8MuraW4IY7XeYxMb1Qox7PiIGtJOGpScNFWoDdcZ0PUzTvD7DxTeycCP4SMuoJ3Ky_7KdffdfHif-hiDx6wFB5pW5LZhy10yvgStv335Wwxf5Xj6wd0VSfs priority: 102 providerName: Directory of Open Access Journals |
| Title | Dynamic Bayesian network structure learning based on an improved bacterial foraging optimization algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-024-58806-0 https://www.ncbi.nlm.nih.gov/pubmed/38594347 https://www.proquest.com/docview/3034865231 https://www.proquest.com/docview/3035540260 https://pubmed.ncbi.nlm.nih.gov/PMC11003998 https://doaj.org/article/5c6ac8659d45402c8f9e7ad96d17325e |
| Volume | 14 |
| WOSCitedRecordID | wos001199822700062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8MRWkHjhGxYYlZF4g2hx4sT2E6KwCR5WRQik8hQ5ttMVbcnWdkj795wdN1P52At9sNTEac-58337DuB1bjKhhMWNlOQmZoyrWOkCFTnT5MYKgzQtfLMJPp2K2UyWweG2CmmVG57oGbXptPORHyCrZaJAs4m-O7-IXdcoF10NLTR2YISaDXUpXcdpOfhYXBSLURnOyiSZOFihvHJnylIW50i5aExvySNftv9vuuafKZO_xU29ODq6_78LeQD3giJK3veU8xBu2fYR3OlbU149hh8f-1b1ZKKurDtoSdo-YZz0FWcvl5aEjhNz4kShIV1LcNrCeynwa93Xgcb_QL3Y90IiHfKns3Dwk6jTOYK1Pjl7At-ODr9--BSHvgyxzhldxzJjOk1kqlItlLRo1HDNDC0ajR80P9BESWuTcou8Ky2sUKiGoNgrmkTYXCU2ewq7bdfaPSCoIBUCVThjaM1q2kihakNpg2pVxhqZRUA32Kl0KFruemecVj54nomqx2iFGK08RqskgjfDM-d9yY4bZ08c0oeZrty2v9At51XYvVWuC6URadK4goW47EZarowsDOVZmtsI9je4rgIPWFXXiI7g1XAbd68LyajWdpd-Tu5-sUA4nvUUNkCS4ZtkGeMRiC3a2wJ1-067OPEVwl0dQNQ8RQRvN2R6Dde_38Xzm5fxAu6mbue4vCW5D7tIbvYl3NY_14vVcgw7fMb9KMYwmhxOyy9j7-EY-03pRo7jqPx8XH7_BUBLPQc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET20nsA0KUUrVqWfVQpN5cx3a2i7pJ2d2C9k_xGxk7yVbLo7ce2NtunKztfDPz2Z4HwKvMMqGFQ0FKMhtzXuhYmxyJnK0y64RFTItQbKIYDMThodxfgZ99LIx3q-x1YlDUtjF-j3wdVS0XOS6b0ven32JfNcqfrvYlNFpY7Lr5D1yyTd_tbOL7fU3p1qeDj9txV1UgNhlPZ7Fk3NBEUk2N0NIhJS8Mt2leGfwgeUaCTUtLC4eSR3MnNBpRVNp5lQiX6cQxfO4VuMp9ZjHvKkj3F3s6_tSMp7KLzUmYWJ-iffQxbJTHGUoKLt6X7F8oE_A3bvuni-Zv57TB_G3d_t8m7g7c6og2-dBKxl1YcfU9uN6W3pzfh6-b81qPR4Zs6LnzgaSkbh3iSZtR92ziSFdRY0i8qbekqQk2G4VdGPxatnmu8T-Q94daT6RB_TvuAluJPhniNMyOxw_gy6UM9CGs1k3tHgNBApgLpKjWpiUv00oKXdo0rZA2Ml5JFkHao0GZLim7rw1yooJzABOqRZBCBKmAIJVE8GZxz2mbkuTC1hseZIuWPp14-KGZDFWnnVRmcm0QJNL6hIw47Eq6QluZ27RgNHMRrPXYUp2Om6pzYEXwcnEZtZM_ctK1a85Cm8w_Mcd-PGoRvegJw5nkjBcRiCWsL3V1-Uo9Og4Z0H2eQ2TWIoK3vVic9-vfc_Hk4mG8gBvbB5_31N7OYPcp3KRear2PllyDVYSeewbXzPfZaDp5HsSewNFli8sv-gSRGQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHSAufLMFBhgJThA1cZzEPiDEKBXVoOoBpHEyru10RWsy2g7Uf42_jmcn6VQ-dtuB3JI4ie383vPP9vsAeJqahCtuUZCi1ISM5SpUOkMiZ4rUWG4Q09wnm8iHQ354KEZb8LP1hXFmla1O9IraVNqtkXdR1TKe4bQp7haNWcSo13918i10GaTcTmubTqOGyIFd_cDp2-LloIf_-hml_bcf37wLmwwDoU5ZvAxFwjSNBFVUcyUs0vNcMxNnhcYDiTSSbTo2NLcohTSzXOGAigo8KyJuUxXZBN97CbaRkjPage3R4MPo83qFx-2hsVg0njpRwrsLHC2dRxtlYYpyg1P5jdHQJw34G9P902Dzt11bPxj2b_zP3XgTrjcUnLyuZeYWbNnyNlypk3Ku7sDX3qpUs6km-2plnYspKWtTeVLH2j2dW9Lk2pgQRwIMqUqCxaZ-fQZPx3UEbPwGzgh8FihSoWaeNS6vRB1PsBuWR7O78OlCGnoPOmVV2l0gSA0zjuTVmHjMxnEhuBqbOC6QUCasEEkAcYsMqZtw7S5ryLH0ZgMJlzWaJKJJejTJKIDn62dO6mAl55bed4Bbl3SBxv2Faj6Rjd6Sqc6URsAI40I1YrMLYXNlRGbiPKGpDWCvxZlstN9CnoEsgCfr26i33GaUKm116suk7o0Z1mOnRve6Jgn2JEtYHgDfwP1GVTfvlNMjHxvdRUBEzs0DeNGKyFm9_t0X989vxmO4ilIi3w-GBw_gGnUC7Iy3xB50EHn2IVzW35fTxfxRowMIfLloefkF91qbYg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Bayesian+network+structure+learning+based+on+an+improved+bacterial+foraging+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Meng%2C+Guanglei&rft.au=Cong%2C+Zelin&rft.au=Li%2C+Tingting&rft.au=Wang%2C+Chenguang&rft.date=2024-04-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-58806-0&rft.externalDocID=10_1038_s41598_024_58806_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |