Dynamic Bayesian network structure learning based on an improved bacterial foraging optimization algorithm

With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the ch...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; pp. 8266 - 26
Main Authors: Meng, Guanglei, Cong, Zelin, Li, Tingting, Wang, Chenguang, Zhou, Mingzhe, Wang, Biao
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 09.04.2024
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the characteristics of distributed, self-organization and robustness. By applying the high-performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the algorithm's global search capability to effectively process time-based data, improve the efficiency of network generation and the accuracy of network structure. This study proposes an improved bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited group communication, and the inability to maintain a balance between global and local searching. The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the activity strategy of a colony foraging trend is constructed by combining the exploration phase of the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-dispersal activity strategy is employed to escape the local optimal solution. To solve the problem of complex DBN learning structures due to the introduction of time information, a DBN structure learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, the designed V-structure orientation rule, and the trend activity strategy. Then, according to the improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the network candidate solution while maintaining species diversity. Finally, the global optimal network structure with the highest score is obtained based on the elimination-dispersal activity strategy. Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks to evaluate and analyze the optimization performance and structure learning ability of the proposed algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN structures from data and has practical value for engineering applications.
AbstractList With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the characteristics of distributed, self-organization and robustness. By applying the high-performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the algorithm's global search capability to effectively process time-based data, improve the efficiency of network generation and the accuracy of network structure. This study proposes an improved bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited group communication, and the inability to maintain a balance between global and local searching. The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the activity strategy of a colony foraging trend is constructed by combining the exploration phase of the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-dispersal activity strategy is employed to escape the local optimal solution. To solve the problem of complex DBN learning structures due to the introduction of time information, a DBN structure learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, the designed V-structure orientation rule, and the trend activity strategy. Then, according to the improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the network candidate solution while maintaining species diversity. Finally, the global optimal network structure with the highest score is obtained based on the elimination-dispersal activity strategy. Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks to evaluate and analyze the optimization performance and structure learning ability of the proposed algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN structures from data and has practical value for engineering applications.
Abstract With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the characteristics of distributed, self-organization and robustness. By applying the high-performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the algorithm's global search capability to effectively process time-based data, improve the efficiency of network generation and the accuracy of network structure. This study proposes an improved bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited group communication, and the inability to maintain a balance between global and local searching. The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the activity strategy of a colony foraging trend is constructed by combining the exploration phase of the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-dispersal activity strategy is employed to escape the local optimal solution. To solve the problem of complex DBN learning structures due to the introduction of time information, a DBN structure learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, the designed V-structure orientation rule, and the trend activity strategy. Then, according to the improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the network candidate solution while maintaining species diversity. Finally, the global optimal network structure with the highest score is obtained based on the elimination-dispersal activity strategy. Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks to evaluate and analyze the optimization performance and structure learning ability of the proposed algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN structures from data and has practical value for engineering applications.
With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the characteristics of distributed, self-organization and robustness. By applying the high-performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the algorithm's global search capability to effectively process time-based data, improve the efficiency of network generation and the accuracy of network structure. This study proposes an improved bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited group communication, and the inability to maintain a balance between global and local searching. The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the activity strategy of a colony foraging trend is constructed by combining the exploration phase of the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-dispersal activity strategy is employed to escape the local optimal solution. To solve the problem of complex DBN learning structures due to the introduction of time information, a DBN structure learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, the designed V-structure orientation rule, and the trend activity strategy. Then, according to the improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the network candidate solution while maintaining species diversity. Finally, the global optimal network structure with the highest score is obtained based on the elimination-dispersal activity strategy. Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks to evaluate and analyze the optimization performance and structure learning ability of the proposed algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN structures from data and has practical value for engineering applications.With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been widely used in many engineering fields. And swarm intelligence algorithm is an optimization algorithm based on natural selection with the characteristics of distributed, self-organization and robustness. By applying the high-performance swarm intelligence algorithm to DBN structure learning, we can fully utilize the algorithm's global search capability to effectively process time-based data, improve the efficiency of network generation and the accuracy of network structure. This study proposes an improved bacterial foraging optimization algorithm (IBFO-A) to solve the problems of random step size, limited group communication, and the inability to maintain a balance between global and local searching. The IBFO-A algorithm framework comprises four layers. First, population initialization is achieved using a logistics-sine chaotic mapping strategy as the basis for global optimization. Second, the activity strategy of a colony foraging trend is constructed by combining the exploration phase of the Osprey optimization algorithm. Subsequently, the strategy of bacterial colony propagation is improved using a "genetic" approach and the Multi-point crossover operator. Finally, the elimination-dispersal activity strategy is employed to escape the local optimal solution. To solve the problem of complex DBN learning structures due to the introduction of time information, a DBN structure learning method called IBFO-D, which is based on the IBFO-A algorithm framework, is proposed. IBFO-D determines the edge direction of the structure by combining the dynamic K2 scoring function, the designed V-structure orientation rule, and the trend activity strategy. Then, according to the improved reproductive activity strategy, the concept of "survival of the fittest" is applied to the network candidate solution while maintaining species diversity. Finally, the global optimal network structure with the highest score is obtained based on the elimination-dispersal activity strategy. Multiple tests and comparison experiments were conducted on 10 sets of benchmark test functions, two non-temporal and temporal data types, and six data samples of two benchmark 2T-BN networks to evaluate and analyze the optimization performance and structure learning ability of the proposed algorithm under various data types. The experimental results demonstrated that IBFO-A exhibits good convergence, stability, and accuracy, whereas IBFO-D is an effective approach for learning DBN structures from data and has practical value for engineering applications.
ArticleNumber 8266
Author Cong, Zelin
Li, Tingting
Wang, Biao
Wang, Chenguang
Zhou, Mingzhe
Meng, Guanglei
Author_xml – sequence: 1
  givenname: Guanglei
  surname: Meng
  fullname: Meng, Guanglei
  organization: School of Automation, Shenyang Aerospace University, Aviation Science and Technology Key Laboratory of Air Combat System Technology
– sequence: 2
  givenname: Zelin
  surname: Cong
  fullname: Cong, Zelin
  email: congzelin@stu.sau.edu.cn
  organization: School of Automation, Shenyang Aerospace University, Aviation Science and Technology Key Laboratory of Air Combat System Technology
– sequence: 3
  givenname: Tingting
  surname: Li
  fullname: Li, Tingting
  organization: Aviation Science and Technology Key Laboratory of Air Combat System Technology
– sequence: 4
  givenname: Chenguang
  surname: Wang
  fullname: Wang, Chenguang
  organization: Aviation Science and Technology Key Laboratory of Air Combat System Technology
– sequence: 5
  givenname: Mingzhe
  surname: Zhou
  fullname: Zhou, Mingzhe
  organization: School of Automation, Shenyang Aerospace University, Aviation Science and Technology Key Laboratory of Air Combat System Technology
– sequence: 6
  givenname: Biao
  surname: Wang
  fullname: Wang, Biao
  organization: School of Automation, Shenyang Aerospace University, Aviation Science and Technology Key Laboratory of Air Combat System Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38594347$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAInHhEvBnYp8QLV-VKnGBszXrTLZeEnuxnaLy63F2W2h76Fz89cw7rzzzvDrwwWNVvaTkLSVcvUuCSq0awkQjlSJtQ55UR4wI2TDO2MGd_WF1ktKGlJBMC6qfVYdcSS246I6qzcdrD5Oz9SlcY3Lga4_5d4g_65TjbPMcsR4Rond-Xa8gYV8HXxfMTdsYrspxBTZjdDDWQ4iwXriwzW5yfyC7hR3XIbp8Ob2ong4wJjy5WY-rH58_fT_72lx8-3J-9uGisVLQ3GguLCOaAbMKNDLadVb0tB1sCVmMd4KtetZh13LWogLSKcF0OxCFEgjy4-p8r9sH2JhtdBPEaxPAmd1FiGsDMTs7opG2BataqXshBSkFB40d9LrtaceZXLTe77W282rC3qLPEcZ7ovdfvLs063BlKCWEa62KwpsbhRh-zZiymVyyOI7gMczJcMLlUrslBX39AN2EOfryVwslik_GaaFe3bX0z8ttTwug9oCNIaWIg7Eu73pRHLrRUGKWCTL7CTJlgsxugszigD1IvVV_NInvk1KB_Rrjf9uPZP0FKArZFg
CitedBy_id crossref_primary_10_1039_D5AY01027F
crossref_primary_10_1016_j_eswa_2025_128113
Cites_doi 10.1002/isaf.1486
10.1016/j.chaos.2007.01.055
10.1016/j.knosys.2022.109215
10.1016/j.asej.2019.10.003
10.1016/j.swevo.2013.06.001
10.1007/978-3-540-89332-5
10.1109/ACCESS.2021.3109133
10.1016/j.cogsys.2018.07.022
10.1016/j.mex.2023.102181
10.1016/j.advengsoft.2016.01.008
10.1016/j.ijepes.2014.12.090
10.1016/j.ins.2016.01.090
10.1007/s10618-010-0178-6
10.1109/TCYB.2019.2925015
10.1016/S0167-8655(01)00123-4
10.1016/j.engappai.2022.105521
10.1016/j.neucom.2011.05.048
10.1504/IJBIC.2013.055093
10.1109/ACCESS.2019.2897580
10.1109/ACCESS.2018.2876996
10.3389/fmech.2022.1126450
10.1007/s00521-020-04815-9
10.1016/j.compbiolchem.2019.02.006
10.1109/TII.2019.2952565
10.1007/s10489-010-0251-2
10.1109/MCS.2002.1004010
10.1371/journal.pone.0252754
10.1007/s10462-022-10351-w
10.1007/s10462-019-09704-9
10.1016/j.ins.2014.02.161
10.1080/23311916.2022.2114196
10.1007/s00500-012-0966-6
10.1109/2.294849
10.1080/02533839.2020.1838949
10.13700/j.bh.1001-5965.2023.0445
10.1016/j.neucom.2012.07.064
10.1007/s10115-016-0963-7
10.1007/BF01530777
10.1007/s11227-022-04959-6
10.1007/s10462-023-10567-4
10.1016/j.jneumeth.2017.05.009
10.1016/j.advengsoft.2013.12.007
10.1109/ACCESS.2021.3105520
10.1016/j.swevo.2017.09.010
10.1016/j.oceaneng.2024.117288
10.5772/5120
10.1007/s12530-023-09553-6
10.1109/ICMSAO.2013.6552549
10.1109/ALIFE.2007.367782
10.1109/CIS.2011.25
10.1109/TIE.2023.3321997
10.1109/TAES.2022.3221691
10.1007/978-3-030-86271-8_14
10.1007/978-3-642-41398-8_34
10.1109/CICSyN.2010.52
10.1007/BFb0053999
10.1109/TITS.2023.3268324
10.1109/BRC.2014.6880957
10.1007/978-3-642-35101-3_76
10.1007/978-981-19-3998-3_123
10.1109/ICIS.2014.6912142
10.1155/2019/2981282
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-58806-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 26
ExternalDocumentID oai_doaj_org_article_5c6ac8659d45402c8f9e7ad96d17325e
PMC11003998
38594347
10_1038_s41598_024_58806_0
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62373261; 62373261; 62373261; 62373261; 62373261; 62373261
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Defense Basic Scientific Research Program of China
  grantid: JH2023007; JH2023007; JH2023007; JH2023007; JH2023007; JH2023007
  funderid: http://dx.doi.org/10.13039/501100012335
– fundername: Liaoning Revitalization Talents Program
  grantid: XLYC2007144; XLYC2007144; XLYC2007144; XLYC2007144; XLYC2007144; XLYC2007144
  funderid: http://dx.doi.org/10.13039/501100018617
– fundername: Natural Science Foundation of Shenyang Municipality
  grantid: 22-315-6-09; 22-315-6-09; 22-315-6-09; 22-315-6-09; 22-315-6-09; 22-315-6-09
  funderid: http://dx.doi.org/10.13039/100016807
– fundername: Natural Science Foundation of Shenyang Municipality
  grantid: 22-315-6-09
– fundername: Liaoning Revitalization Talents Program
  grantid: XLYC2007144
– fundername: National Natural Science Foundation of China
  grantid: 62373261
– fundername: National Defense Basic Scientific Research Program of China
  grantid: JH2023007
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-934c2092a2c8a9e2177c4d16fcccc5859742bd27e76326e8a0784296f08e5a0e3
IEDL.DBID M2P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001199822700062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:50:43 EDT 2025
Tue Nov 04 02:05:46 EST 2025
Thu Sep 04 19:33:50 EDT 2025
Tue Oct 07 08:04:38 EDT 2025
Thu Apr 03 07:08:48 EDT 2025
Sat Nov 29 01:58:49 EST 2025
Tue Nov 18 22:36:16 EST 2025
Fri Feb 21 02:40:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Swarm intelligence optimization algorithm
Bacterial foraging optimization algorithm
Structural learning
Dynamic Bayesian networks
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-934c2092a2c8a9e2177c4d16fcccc5859742bd27e76326e8a0784296f08e5a0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3034865231?pq-origsite=%requestingapplication%
PMID 38594347
PQID 3034865231
PQPubID 2041939
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_5c6ac8659d45402c8f9e7ad96d17325e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11003998
proquest_miscellaneous_3035540260
proquest_journals_3034865231
pubmed_primary_38594347
crossref_citationtrail_10_1038_s41598_024_58806_0
crossref_primary_10_1038_s41598_024_58806_0
springer_journals_10_1038_s41598_024_58806_0
PublicationCentury 2000
PublicationDate 2024-04-09
PublicationDateYYYYMMDD 2024-04-09
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Mirjalili, Mirjalili, Lewis (CR16) 2014; 69
Guanglei (CR45) 2023
Gámez, Puerta (CR13) 2002; 23
Deng, Xu, Zhao (CR23) 2019; 7
Ashraf, Mostafa, Sakr, Rashad (CR32) 2021; 16
CR39
CR38
CR37
Wang, Zhao, Tian, Pan (CR56) 2018; 52
CR33
De Jong, Spears (CR59) 1992; 5
Fister, Fister, Yang, Brest (CR20) 2013; 13
CR31
Yang, He (CR18) 2013; 5
Niu, Fan, Xiao, Xue (CR54) 2012; 98
Tzanetos, Blondin (CR65) 2023; 118
Hemeida (CR30) 2020; 11
Mirjalili, Lewis (CR19) 2016; 95
Niu, Wang, Wang (CR51) 2015; 148
Mahdavi, Rahnamayan, Deb (CR22) 2018; 39
Kitson, Constantinou, Guo, Liu, Chobtham (CR1) 2023; 56
Varol Altay, Alatas (CR48) 2020; 53
CR8
Giri, De, Dehuri, Cho (CR29) 2021; 28
Zhao, Wang, Tian, Pan (CR57) 2018; 52
CR7
Khan, Engelbrecht (CR34) 2012; 36
CR9
Dang, Chaudhury, Lall, Roy (CR4) 2017; 285
Cao (CR35) 2019; 16
CR46
CR42
CR41
Qu (CR6) 2021; 9
CR40
Adabor, Acquaah-Mensah (CR3) 2019; 79
Passino (CR44) 2002; 22
Nonut (CR36) 2022; 9
Zhong, Li, Meng (CR61) 2022; 251
Chen, Zhu, Hu, Ma (CR55) 2014; 273
Dehghani, Trojovský (CR58) 2023; 8
Ji, Wei, Liu (CR17) 2013; 17
Metzler, Chechkin, Gonchar, Klafter (CR21) 2007; 34
CR15
Naveen, Kumar, Rajalakshmi (CR52) 2015; 69
CR10
Giri, De, Dehuri (CR28) 2021; 33
CR53
CR50
Jia, Rao, Wen, Mirjalili (CR63) 2023; 56
Serfozo (CR47) 2009
Gheisari, Meybodi (CR14) 2016; 348
Liu (CR25) 2019; 51
Gámez, Mateo, Puerta (CR11) 2011; 22
Zhang (CR26) 2018; 6
Srinivas, Patnaik (CR12) 1994; 27
Mou, Zhu, Liu, Bai (CR27) 2024; 299
Komurlu (CR5) 2017; 50
Suganthan (CR60) 2005; 2005005
Panagant, Kumar, Tejani, Pholdee, Bureerat (CR66) 2023; 10
CR24
CR67
CR64
Deng, Liu, Wang, Liu (CR43) 2021; 44
Xue, Shen (CR62) 2023; 79
Shiguihara, Lopes, Mauricio (CR2) 2021; 9
Demir, Tuncer, Kocamaz (CR49) 2020; 32
58806_CR39
58806_CR38
S Naveen (58806_CR52) 2015; 69
M Srinivas (58806_CR12) 1994; 27
H Chen (58806_CR55) 2014; 273
SA Khan (58806_CR34) 2012; 36
58806_CR31
58806_CR33
Q Zhang (58806_CR26) 2018; 6
J Mou (58806_CR27) 2024; 299
58806_CR37
B Niu (58806_CR54) 2012; 98
M Dehghani (58806_CR58) 2023; 8
N Panagant (58806_CR66) 2023; 10
R Metzler (58806_CR21) 2007; 34
PK Giri (58806_CR29) 2021; 28
W Liu (58806_CR25) 2019; 51
M Guanglei (58806_CR45) 2023
A Tzanetos (58806_CR65) 2023; 118
NK Kitson (58806_CR1) 2023; 56
KM Passino (58806_CR44) 2002; 22
NM Ashraf (58806_CR32) 2021; 16
ES Adabor (58806_CR3) 2019; 79
W Deng (58806_CR23) 2019; 7
58806_CR42
58806_CR41
58806_CR46
B Cao (58806_CR35) 2019; 16
L Wang (58806_CR56) 2018; 52
JA Gámez (58806_CR13) 2002; 23
B Niu (58806_CR51) 2015; 148
P Shiguihara (58806_CR2) 2021; 9
58806_CR40
A Nonut (58806_CR36) 2022; 9
JA Gámez (58806_CR11) 2011; 22
L Qu (58806_CR6) 2021; 9
FB Demir (58806_CR49) 2020; 32
S Mirjalili (58806_CR19) 2016; 95
S Mahdavi (58806_CR22) 2018; 39
A Hemeida (58806_CR30) 2020; 11
PN Suganthan (58806_CR60) 2005; 2005005
58806_CR53
H Jia (58806_CR63) 2023; 56
58806_CR10
58806_CR15
KA De Jong (58806_CR59) 1992; 5
Y-J Deng (58806_CR43) 2021; 44
58806_CR50
S Dang (58806_CR4) 2017; 285
C Komurlu (58806_CR5) 2017; 50
PK Giri (58806_CR28) 2021; 33
J Ji (58806_CR17) 2013; 17
R Serfozo (58806_CR47) 2009
S Gheisari (58806_CR14) 2016; 348
58806_CR64
J Xue (58806_CR62) 2023; 79
E Varol Altay (58806_CR48) 2020; 53
58806_CR24
58806_CR67
C Zhong (58806_CR61) 2022; 251
58806_CR9
58806_CR8
X-S Yang (58806_CR18) 2013; 5
58806_CR7
S Mirjalili (58806_CR16) 2014; 69
W Zhao (58806_CR57) 2018; 52
I Fister (58806_CR20) 2013; 13
References_xml – volume: 28
  start-page: 35
  year: 2021
  end-page: 51
  ident: CR29
  article-title: Biogeography based optimization for mining rules to assess credit risk
  publication-title: Intell. Syst. Acc. Finance Manag.
  doi: 10.1002/isaf.1486
– volume: 34
  start-page: 129
  year: 2007
  end-page: 142
  ident: CR21
  article-title: Some fundamental aspects of Lévy flights
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2007.01.055
– volume: 251
  year: 2022
  ident: CR61
  article-title: Beluga whale optimization: A novel nature-inspired metaheuristic algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109215
– volume: 11
  start-page: 309
  year: 2020
  end-page: 318
  ident: CR30
  article-title: Implementation of nature-inspired optimization algorithms in some data mining tasks
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2019.10.003
– ident: CR39
– volume: 13
  start-page: 34
  year: 2013
  end-page: 46
  ident: CR20
  article-title: A comprehensive review of firefly algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.06.001
– year: 2009
  ident: CR47
  publication-title: Basics of Applied Stochastic Processes
  doi: 10.1007/978-3-540-89332-5
– volume: 9
  start-page: 123616
  year: 2021
  end-page: 123634
  ident: CR6
  article-title: Dynamic Bayesian network modeling based on structure prediction for gene regulatory network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3109133
– volume: 52
  start-page: 301
  year: 2018
  end-page: 311
  ident: CR56
  article-title: A bare bones bacterial foraging optimization algorithm
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.022
– volume: 10
  year: 2023
  ident: CR66
  article-title: Many-objective meta-heuristic methods for solving constrained truss optimisation problems: A comparative analysis
  publication-title: MethodsX
  doi: 10.1016/j.mex.2023.102181
– ident: CR8
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR19
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 69
  start-page: 90
  year: 2015
  end-page: 97
  ident: CR52
  article-title: Distribution system reconfiguration for loss minimization using modified bacterial foraging optimization algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.12.090
– volume: 348
  start-page: 272
  year: 2016
  end-page: 289
  ident: CR14
  article-title: Bnc-pso: Structure learning of bayesian networks by particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.090
– ident: CR42
– volume: 22
  start-page: 106
  year: 2011
  end-page: 148
  ident: CR11
  article-title: Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-010-0178-6
– ident: CR46
– volume: 51
  start-page: 1085
  year: 2019
  end-page: 1093
  ident: CR25
  article-title: A novel sigmoid-function-based adaptive weighted particle swarm optimizer
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2925015
– ident: CR67
– volume: 23
  start-page: 261
  year: 2002
  end-page: 277
  ident: CR13
  article-title: Searching for the best elimination sequence in Bayesian networks by using ant colony optimization
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(01)00123-4
– ident: CR15
– ident: CR50
– volume: 118
  year: 2023
  ident: CR65
  article-title: A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105521
– ident: CR9
– volume: 98
  start-page: 90
  year: 2012
  end-page: 100
  ident: CR54
  article-title: Bacterial foraging based approaches to portfolio optimization with liquidity risk
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.05.048
– volume: 5
  start-page: 141
  year: 2013
  end-page: 149
  ident: CR18
  article-title: Bat algorithm: Literature review and applications
  publication-title: Int. J. Bio-inspired Comput.
  doi: 10.1504/IJBIC.2013.055093
– volume: 7
  start-page: 20281
  year: 2019
  end-page: 20292
  ident: CR23
  article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2019.2897580
– volume: 6
  start-page: 64905
  year: 2018
  end-page: 64919
  ident: CR26
  article-title: Chaos enhanced bacterial foraging optimization for global optimization
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2018.2876996
– volume: 8
  start-page: 1126450
  year: 2023
  ident: CR58
  article-title: Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2022.1126450
– ident: CR64
– volume: 32
  start-page: 14227
  year: 2020
  end-page: 14239
  ident: CR49
  article-title: A chaotic optimization method based on logistic-sine map for numerical function optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04815-9
– volume: 79
  start-page: 155
  year: 2019
  end-page: 164
  ident: CR3
  article-title: Restricted-derestricted dynamic Bayesian Network inference of transcriptional regulatory relationships among genes in cancer
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2019.02.006
– volume: 16
  start-page: 3597
  year: 2019
  end-page: 3605
  ident: CR35
  article-title: Multiobjective 3-D topology optimization of next-generation wireless data center network
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2952565
– volume: 36
  start-page: 161
  year: 2012
  end-page: 177
  ident: CR34
  article-title: A fuzzy particle swarm optimization algorithm for computer communication network topology design
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-010-0251-2
– volume: 22
  start-page: 52
  year: 2002
  end-page: 67
  ident: CR44
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2002.1004010
– volume: 16
  year: 2021
  ident: CR32
  article-title: Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm
  publication-title: Plos one
  doi: 10.1371/journal.pone.0252754
– volume: 56
  start-page: 1
  year: 2023
  end-page: 94
  ident: CR1
  article-title: A survey of Bayesian Network structure learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10351-w
– ident: CR37
– ident: CR53
– volume: 53
  start-page: 1373
  year: 2020
  end-page: 1414
  ident: CR48
  article-title: Bird swarm algorithms with chaotic mapping
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09704-9
– ident: CR10
– ident: CR33
– volume: 273
  start-page: 73
  year: 2014
  end-page: 100
  ident: CR55
  article-title: Bacterial colony foraging algorithm: Combining chemotaxis, cell-to-cell communication, and self-adaptive strategy
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.161
– volume: 9
  start-page: 2114196
  year: 2022
  ident: CR36
  article-title: A small fixed-wing UAV system identification using metaheuristics
  publication-title: Cogent Eng.
  doi: 10.1080/23311916.2022.2114196
– ident: CR40
– volume: 17
  start-page: 983
  year: 2013
  end-page: 994
  ident: CR17
  article-title: An artificial bee colony algorithm for learning Bayesian networks
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0966-6
– volume: 27
  start-page: 17
  year: 1994
  end-page: 26
  ident: CR12
  article-title: Genetic algorithms: A survey
  publication-title: Computer
  doi: 10.1109/2.294849
– volume: 33
  start-page: 453
  year: 2021
  end-page: 467
  ident: CR28
  article-title: Adaptive neighbourhood for locally and globally tuned biogeography based optimization algorithm
  publication-title: J. King Saud University-Comput. Inf. Sci.
– volume: 44
  start-page: 41
  year: 2021
  end-page: 52
  ident: CR43
  article-title: Learning Dynamic Bayesian Networks structure based on a new hybrid K2-Bat learning algorithm
  publication-title: J. Chin. Inst. Eng.
  doi: 10.1080/02533839.2020.1838949
– ident: CR38
– year: 2023
  ident: CR45
  article-title: A survey of Bayesian Network structure learning
  publication-title: J. Beihang Univ.
  doi: 10.13700/j.bh.1001-5965.2023.0445
– volume: 148
  start-page: 54
  year: 2015
  end-page: 62
  ident: CR51
  article-title: Bacterial-inspired algorithms for solving constrained optimization problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.064
– volume: 50
  start-page: 917
  year: 2017
  end-page: 943
  ident: CR5
  article-title: Active inference for dynamic Bayesian networks with an application to tissue engineering
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-016-0963-7
– volume: 5
  start-page: 1
  year: 1992
  end-page: 26
  ident: CR59
  article-title: A formal analysis of the role of multi-point crossover in genetic algorithms
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/BF01530777
– volume: 79
  start-page: 7305
  year: 2023
  end-page: 7336
  ident: CR62
  article-title: Dung beetle optimizer: A new meta-heuristic algorithm for global optimization
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04959-6
– ident: CR31
– volume: 56
  start-page: 1919
  year: 2023
  end-page: 1979
  ident: CR63
  article-title: Crayfish optimization algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10567-4
– volume: 285
  start-page: 33
  year: 2017
  end-page: 44
  ident: CR4
  article-title: The dynamic programming high-order dynamic Bayesian networks learning for identifying effective connectivity in human brain from fMRI
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.05.009
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR16
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 2005005
  start-page: 2005
  year: 2005
  ident: CR60
  article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization
  publication-title: KanGAL Rep.
– volume: 52
  start-page: 301
  year: 2018
  end-page: 311
  ident: CR57
  article-title: A bare bones bacterial foraging optimization algorithm
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.022
– volume: 9
  start-page: 117639
  year: 2021
  end-page: 117648
  ident: CR2
  article-title: Dynamic Bayesian network modeling, learning, and inference: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3105520
– ident: CR7
– volume: 39
  start-page: 1
  year: 2018
  end-page: 23
  ident: CR22
  article-title: Opposition based learning: A literature review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.09.010
– ident: CR41
– ident: CR24
– volume: 299
  year: 2024
  ident: CR27
  article-title: Multi-objective optimal thrust allocation strategy for automatic berthing of surface ships using adaptive non-dominated sorting genetic algorithm III
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117288
– volume: 299
  year: 2024
  ident: 58806_CR27
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117288
– volume: 36
  start-page: 161
  year: 2012
  ident: 58806_CR34
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-010-0251-2
– volume: 17
  start-page: 983
  year: 2013
  ident: 58806_CR17
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0966-6
– volume: 33
  start-page: 453
  year: 2021
  ident: 58806_CR28
  publication-title: J. King Saud University-Comput. Inf. Sci.
– ident: 58806_CR15
  doi: 10.5772/5120
– volume: 44
  start-page: 41
  year: 2021
  ident: 58806_CR43
  publication-title: J. Chin. Inst. Eng.
  doi: 10.1080/02533839.2020.1838949
– ident: 58806_CR64
  doi: 10.1007/s12530-023-09553-6
– volume: 79
  start-page: 155
  year: 2019
  ident: 58806_CR3
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2019.02.006
– volume: 98
  start-page: 90
  year: 2012
  ident: 58806_CR54
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.05.048
– volume: 118
  year: 2023
  ident: 58806_CR65
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105521
– volume: 273
  start-page: 73
  year: 2014
  ident: 58806_CR55
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.161
– volume: 22
  start-page: 106
  year: 2011
  ident: 58806_CR11
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-010-0178-6
– volume: 32
  start-page: 14227
  year: 2020
  ident: 58806_CR49
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04815-9
– volume: 5
  start-page: 141
  year: 2013
  ident: 58806_CR18
  publication-title: Int. J. Bio-inspired Comput.
  doi: 10.1504/IJBIC.2013.055093
– volume: 95
  start-page: 51
  year: 2016
  ident: 58806_CR19
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 27
  start-page: 17
  year: 1994
  ident: 58806_CR12
  publication-title: Computer
  doi: 10.1109/2.294849
– volume: 28
  start-page: 35
  year: 2021
  ident: 58806_CR29
  publication-title: Intell. Syst. Acc. Finance Manag.
  doi: 10.1002/isaf.1486
– volume: 148
  start-page: 54
  year: 2015
  ident: 58806_CR51
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.064
– volume: 11
  start-page: 309
  year: 2020
  ident: 58806_CR30
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2019.10.003
– volume: 79
  start-page: 7305
  year: 2023
  ident: 58806_CR62
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04959-6
– ident: 58806_CR67
  doi: 10.1109/ICMSAO.2013.6552549
– ident: 58806_CR39
  doi: 10.1109/ALIFE.2007.367782
– ident: 58806_CR53
  doi: 10.1109/CIS.2011.25
– volume: 51
  start-page: 1085
  year: 2019
  ident: 58806_CR25
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2925015
– ident: 58806_CR33
  doi: 10.1109/TIE.2023.3321997
– volume: 348
  start-page: 272
  year: 2016
  ident: 58806_CR14
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.090
– volume: 6
  start-page: 64905
  year: 2018
  ident: 58806_CR26
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2018.2876996
– volume: 34
  start-page: 129
  year: 2007
  ident: 58806_CR21
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2007.01.055
– volume: 52
  start-page: 301
  year: 2018
  ident: 58806_CR56
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.022
– ident: 58806_CR37
  doi: 10.1109/TAES.2022.3221691
– ident: 58806_CR42
  doi: 10.1007/978-3-030-86271-8_14
– volume: 53
  start-page: 1373
  year: 2020
  ident: 58806_CR48
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09704-9
– volume: 9
  start-page: 117639
  year: 2021
  ident: 58806_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3105520
– ident: 58806_CR9
  doi: 10.1007/978-3-642-41398-8_34
– ident: 58806_CR10
– ident: 58806_CR50
  doi: 10.1109/CICSyN.2010.52
– volume: 16
  year: 2021
  ident: 58806_CR32
  publication-title: Plos one
  doi: 10.1371/journal.pone.0252754
– volume: 52
  start-page: 301
  year: 2018
  ident: 58806_CR57
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.022
– ident: 58806_CR7
  doi: 10.1007/BFb0053999
– volume: 23
  start-page: 261
  year: 2002
  ident: 58806_CR13
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(01)00123-4
– ident: 58806_CR46
– ident: 58806_CR31
  doi: 10.1109/TITS.2023.3268324
– volume: 56
  start-page: 1919
  year: 2023
  ident: 58806_CR63
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10567-4
– volume: 10
  year: 2023
  ident: 58806_CR66
  publication-title: MethodsX
  doi: 10.1016/j.mex.2023.102181
– ident: 58806_CR40
  doi: 10.1109/BRC.2014.6880957
– volume: 251
  year: 2022
  ident: 58806_CR61
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109215
– volume: 22
  start-page: 52
  year: 2002
  ident: 58806_CR44
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2002.1004010
– volume: 2005005
  start-page: 2005
  year: 2005
  ident: 58806_CR60
  publication-title: KanGAL Rep.
– volume: 13
  start-page: 34
  year: 2013
  ident: 58806_CR20
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.06.001
– volume: 50
  start-page: 917
  year: 2017
  ident: 58806_CR5
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-016-0963-7
– year: 2023
  ident: 58806_CR45
  publication-title: J. Beihang Univ.
  doi: 10.13700/j.bh.1001-5965.2023.0445
– volume: 69
  start-page: 46
  year: 2014
  ident: 58806_CR16
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 285
  start-page: 33
  year: 2017
  ident: 58806_CR4
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.05.009
– ident: 58806_CR8
  doi: 10.1007/978-3-642-35101-3_76
– volume-title: Basics of Applied Stochastic Processes
  year: 2009
  ident: 58806_CR47
  doi: 10.1007/978-3-540-89332-5
– volume: 5
  start-page: 1
  year: 1992
  ident: 58806_CR59
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/BF01530777
– volume: 69
  start-page: 90
  year: 2015
  ident: 58806_CR52
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.12.090
– volume: 56
  start-page: 1
  year: 2023
  ident: 58806_CR1
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10351-w
– ident: 58806_CR41
  doi: 10.1007/978-981-19-3998-3_123
– volume: 9
  start-page: 123616
  year: 2021
  ident: 58806_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3109133
– volume: 39
  start-page: 1
  year: 2018
  ident: 58806_CR22
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.09.010
– volume: 8
  start-page: 1126450
  year: 2023
  ident: 58806_CR58
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2022.1126450
– ident: 58806_CR38
  doi: 10.1109/ICIS.2014.6912142
– volume: 7
  start-page: 20281
  year: 2019
  ident: 58806_CR23
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2019.2897580
– ident: 58806_CR24
  doi: 10.1155/2019/2981282
– volume: 16
  start-page: 3597
  year: 2019
  ident: 58806_CR35
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2952565
– volume: 9
  start-page: 2114196
  year: 2022
  ident: 58806_CR36
  publication-title: Cogent Eng.
  doi: 10.1080/23311916.2022.2114196
SSID ssj0000529419
Score 2.4399977
Snippet With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model, has been...
Abstract With the rapid development of artificial intelligence and data science, Dynamic Bayesian Network (DBN), as an effective probabilistic graphical model,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8266
SubjectTerms 639/166
639/705
Algorithms
Artificial intelligence
Bacteria
Bacterial foraging optimization algorithm
Bayesian analysis
Colonies
Dynamic Bayesian networks
Gene mapping
Humanities and Social Sciences
Learning
multidisciplinary
Natural selection
Optimization algorithms
Science
Science (multidisciplinary)
Species diversity
Structural learning
Swarm intelligence optimization algorithm
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkhcEC2v0IKMxA2ixs_YxxaoOFUcQOrNcmynXdQm1e4Wqf-esZ1durx6YW_ZONnRPDzfrO1vAN7IwLXTEQOpkaEWonW18wqBXOhliDqgT-vcbKI9OdGnp-bzrVZfaU9YoQcuijuQXjmvlTQhccUxr3sTWxeMCrTlTMY0-zatuVVMFVZvZgQ10ymZhuuDBWaqdJqMiVqiz2IZvZGJMmH_n1Dm75slf1kxzYno-BE8nBAkOSyS78C9OOzC_dJT8uYxfPtQesyTI3cT0wlJMpSd3qRQxV7PI5laRZyRlMMCGQeCw2b57wW87AqBM_4GAtrcxIiMOLFcTic2ibs4G-ez5fnlE_h6_PHL-0_11FCh9lLQZW248KwxzKEanYlYjbReBKp6jx-sG7C2YF1gbcRJh6moHeIHzFeqb3SUron8KWwN4xCfA0FkozRirxBoJzraG-26QGmPeIiL3vAK6Eq51k9s46npxYXNq95c22IQiwax2SC2qeDt-pmrwrXxz9FHyWbrkYknO3-B3mMn77F3eU8F-yuL2yl4FxazusBnEPlW8Hp9G8MuraW4IY7XeYxMb1Qox7PiIGtJOGpScNFWoDdcZ0PUzTvD7DxTeycCP4SMuoJ3Ky_7KdffdfHif-hiDx6wFB5pW5LZhy10yvgStv335Wwxf5Xj6wd0VSfs
  priority: 102
  providerName: Directory of Open Access Journals
Title Dynamic Bayesian network structure learning based on an improved bacterial foraging optimization algorithm
URI https://link.springer.com/article/10.1038/s41598-024-58806-0
https://www.ncbi.nlm.nih.gov/pubmed/38594347
https://www.proquest.com/docview/3034865231
https://www.proquest.com/docview/3035540260
https://pubmed.ncbi.nlm.nih.gov/PMC11003998
https://doaj.org/article/5c6ac8659d45402c8f9e7ad96d17325e
Volume 14
WOSCitedRecordID wos001199822700062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8MRWkHjhGxYYlZF4g2hx4sT2E6KwCR5WRQik8hQ5ttMVbcnWdkj795wdN1P52At9sNTEac-58337DuB1bjKhhMWNlOQmZoyrWOkCFTnT5MYKgzQtfLMJPp2K2UyWweG2CmmVG57oGbXptPORHyCrZaJAs4m-O7-IXdcoF10NLTR2YISaDXUpXcdpOfhYXBSLURnOyiSZOFihvHJnylIW50i5aExvySNftv9vuuafKZO_xU29ODq6_78LeQD3giJK3veU8xBu2fYR3OlbU149hh8f-1b1ZKKurDtoSdo-YZz0FWcvl5aEjhNz4kShIV1LcNrCeynwa93Xgcb_QL3Y90IiHfKns3Dwk6jTOYK1Pjl7At-ODr9--BSHvgyxzhldxzJjOk1kqlItlLRo1HDNDC0ajR80P9BESWuTcou8Ky2sUKiGoNgrmkTYXCU2ewq7bdfaPSCoIBUCVThjaM1q2kihakNpg2pVxhqZRUA32Kl0KFruemecVj54nomqx2iFGK08RqskgjfDM-d9yY4bZ08c0oeZrty2v9At51XYvVWuC6URadK4goW47EZarowsDOVZmtsI9je4rgIPWFXXiI7g1XAbd68LyajWdpd-Tu5-sUA4nvUUNkCS4ZtkGeMRiC3a2wJ1-067OPEVwl0dQNQ8RQRvN2R6Dde_38Xzm5fxAu6mbue4vCW5D7tIbvYl3NY_14vVcgw7fMb9KMYwmhxOyy9j7-EY-03pRo7jqPx8XH7_BUBLPQc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET20nsA0KUUrVqWfVQpN5cx3a2i7pJ2d2C9k_xGxk7yVbLo7ce2NtunKztfDPz2Z4HwKvMMqGFQ0FKMhtzXuhYmxyJnK0y64RFTItQbKIYDMThodxfgZ99LIx3q-x1YlDUtjF-j3wdVS0XOS6b0ven32JfNcqfrvYlNFpY7Lr5D1yyTd_tbOL7fU3p1qeDj9txV1UgNhlPZ7Fk3NBEUk2N0NIhJS8Mt2leGfwgeUaCTUtLC4eSR3MnNBpRVNp5lQiX6cQxfO4VuMp9ZjHvKkj3F3s6_tSMp7KLzUmYWJ-iffQxbJTHGUoKLt6X7F8oE_A3bvuni-Zv57TB_G3d_t8m7g7c6og2-dBKxl1YcfU9uN6W3pzfh6-b81qPR4Zs6LnzgaSkbh3iSZtR92ziSFdRY0i8qbekqQk2G4VdGPxatnmu8T-Q94daT6RB_TvuAluJPhniNMyOxw_gy6UM9CGs1k3tHgNBApgLpKjWpiUv00oKXdo0rZA2Ml5JFkHao0GZLim7rw1yooJzABOqRZBCBKmAIJVE8GZxz2mbkuTC1hseZIuWPp14-KGZDFWnnVRmcm0QJNL6hIw47Eq6QluZ27RgNHMRrPXYUp2Om6pzYEXwcnEZtZM_ctK1a85Cm8w_Mcd-PGoRvegJw5nkjBcRiCWsL3V1-Uo9Og4Z0H2eQ2TWIoK3vVic9-vfc_Hk4mG8gBvbB5_31N7OYPcp3KRear2PllyDVYSeewbXzPfZaDp5HsSewNFli8sv-gSRGQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHSAufLMFBhgJThA1cZzEPiDEKBXVoOoBpHEyru10RWsy2g7Uf42_jmcn6VQ-dtuB3JI4ie383vPP9vsAeJqahCtuUZCi1ISM5SpUOkMiZ4rUWG4Q09wnm8iHQ354KEZb8LP1hXFmla1O9IraVNqtkXdR1TKe4bQp7haNWcSo13918i10GaTcTmubTqOGyIFd_cDp2-LloIf_-hml_bcf37wLmwwDoU5ZvAxFwjSNBFVUcyUs0vNcMxNnhcYDiTSSbTo2NLcohTSzXOGAigo8KyJuUxXZBN97CbaRkjPage3R4MPo83qFx-2hsVg0njpRwrsLHC2dRxtlYYpyg1P5jdHQJw34G9P902Dzt11bPxj2b_zP3XgTrjcUnLyuZeYWbNnyNlypk3Ku7sDX3qpUs6km-2plnYspKWtTeVLH2j2dW9Lk2pgQRwIMqUqCxaZ-fQZPx3UEbPwGzgh8FihSoWaeNS6vRB1PsBuWR7O78OlCGnoPOmVV2l0gSA0zjuTVmHjMxnEhuBqbOC6QUCasEEkAcYsMqZtw7S5ryLH0ZgMJlzWaJKJJejTJKIDn62dO6mAl55bed4Bbl3SBxv2Faj6Rjd6Sqc6URsAI40I1YrMLYXNlRGbiPKGpDWCvxZlstN9CnoEsgCfr26i33GaUKm116suk7o0Z1mOnRve6Jgn2JEtYHgDfwP1GVTfvlNMjHxvdRUBEzs0DeNGKyFm9_t0X989vxmO4ilIi3w-GBw_gGnUC7Iy3xB50EHn2IVzW35fTxfxRowMIfLloefkF91qbYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Bayesian+network+structure+learning+based+on+an+improved+bacterial+foraging+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Meng%2C+Guanglei&rft.au=Cong%2C+Zelin&rft.au=Li%2C+Tingting&rft.au=Wang%2C+Chenguang&rft.date=2024-04-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-58806-0&rft.externalDocID=10_1038_s41598_024_58806_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon