Dual-loop control and state prediction analysis of QUAV trajectory tracking based on biological swarm intelligent optimization algorithm

Quadrotor unmanned aerial vehicles (QUAVs) have attracted significant research focus due to their outstanding Vertical Take-Off and Landing (VTOL) capabilities. This research addresses the challenge of maintaining precise trajectory tracking in QUAV systems when faced with external disturbances by i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 19091 - 25
Hlavní autoři: Zou, Zuoming, Yang, Shuming, Zhao, Liang
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 17.08.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quadrotor unmanned aerial vehicles (QUAVs) have attracted significant research focus due to their outstanding Vertical Take-Off and Landing (VTOL) capabilities. This research addresses the challenge of maintaining precise trajectory tracking in QUAV systems when faced with external disturbances by introducing a robust, two-tier control system based on sliding mode technology. For position control, this approach utilizes a virtual sliding mode control signal to enhance tracking precision and includes adaptive mechanisms to adjust for changes in mass and external disruptions. In controlling the attitude subsystem, the method employs a sliding mode control framework that secures system stability and compliance with intermediate commands, eliminating the reliance on precise models of the inertia matrix. Furthermore, this study incorporates a deep learning approach that combines Particle Swarm Optimization (PSO) with the Long Short-Term Memory (LSTM) network to foresee and mitigate trajectory tracking errors, thereby significantly enhancing the reliability and safety of mission operations. The robustness and effectiveness of this innovative control strategy are validated through comprehensive numerical simulations.
AbstractList Quadrotor unmanned aerial vehicles (QUAVs) have attracted significant research focus due to their outstanding Vertical Take-Off and Landing (VTOL) capabilities. This research addresses the challenge of maintaining precise trajectory tracking in QUAV systems when faced with external disturbances by introducing a robust, two-tier control system based on sliding mode technology. For position control, this approach utilizes a virtual sliding mode control signal to enhance tracking precision and includes adaptive mechanisms to adjust for changes in mass and external disruptions. In controlling the attitude subsystem, the method employs a sliding mode control framework that secures system stability and compliance with intermediate commands, eliminating the reliance on precise models of the inertia matrix. Furthermore, this study incorporates a deep learning approach that combines Particle Swarm Optimization (PSO) with the Long Short-Term Memory (LSTM) network to foresee and mitigate trajectory tracking errors, thereby significantly enhancing the reliability and safety of mission operations. The robustness and effectiveness of this innovative control strategy are validated through comprehensive numerical simulations.Quadrotor unmanned aerial vehicles (QUAVs) have attracted significant research focus due to their outstanding Vertical Take-Off and Landing (VTOL) capabilities. This research addresses the challenge of maintaining precise trajectory tracking in QUAV systems when faced with external disturbances by introducing a robust, two-tier control system based on sliding mode technology. For position control, this approach utilizes a virtual sliding mode control signal to enhance tracking precision and includes adaptive mechanisms to adjust for changes in mass and external disruptions. In controlling the attitude subsystem, the method employs a sliding mode control framework that secures system stability and compliance with intermediate commands, eliminating the reliance on precise models of the inertia matrix. Furthermore, this study incorporates a deep learning approach that combines Particle Swarm Optimization (PSO) with the Long Short-Term Memory (LSTM) network to foresee and mitigate trajectory tracking errors, thereby significantly enhancing the reliability and safety of mission operations. The robustness and effectiveness of this innovative control strategy are validated through comprehensive numerical simulations.
Quadrotor unmanned aerial vehicles (QUAVs) have attracted significant research focus due to their outstanding Vertical Take-Off and Landing (VTOL) capabilities. This research addresses the challenge of maintaining precise trajectory tracking in QUAV systems when faced with external disturbances by introducing a robust, two-tier control system based on sliding mode technology. For position control, this approach utilizes a virtual sliding mode control signal to enhance tracking precision and includes adaptive mechanisms to adjust for changes in mass and external disruptions. In controlling the attitude subsystem, the method employs a sliding mode control framework that secures system stability and compliance with intermediate commands, eliminating the reliance on precise models of the inertia matrix. Furthermore, this study incorporates a deep learning approach that combines Particle Swarm Optimization (PSO) with the Long Short-Term Memory (LSTM) network to foresee and mitigate trajectory tracking errors, thereby significantly enhancing the reliability and safety of mission operations. The robustness and effectiveness of this innovative control strategy are validated through comprehensive numerical simulations.
Abstract Quadrotor unmanned aerial vehicles (QUAVs) have attracted significant research focus due to their outstanding Vertical Take-Off and Landing (VTOL) capabilities. This research addresses the challenge of maintaining precise trajectory tracking in QUAV systems when faced with external disturbances by introducing a robust, two-tier control system based on sliding mode technology. For position control, this approach utilizes a virtual sliding mode control signal to enhance tracking precision and includes adaptive mechanisms to adjust for changes in mass and external disruptions. In controlling the attitude subsystem, the method employs a sliding mode control framework that secures system stability and compliance with intermediate commands, eliminating the reliance on precise models of the inertia matrix. Furthermore, this study incorporates a deep learning approach that combines Particle Swarm Optimization (PSO) with the Long Short-Term Memory (LSTM) network to foresee and mitigate trajectory tracking errors, thereby significantly enhancing the reliability and safety of mission operations. The robustness and effectiveness of this innovative control strategy are validated through comprehensive numerical simulations.
ArticleNumber 19091
Author Yang, Shuming
Zhao, Liang
Zou, Zuoming
Author_xml – sequence: 1
  givenname: Zuoming
  surname: Zou
  fullname: Zou, Zuoming
  organization: Xi’an Jiaotong University
– sequence: 2
  givenname: Shuming
  surname: Yang
  fullname: Yang, Shuming
  organization: Xi’an Jiaotong University
– sequence: 3
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  email: silence_edu1209@163.com
  organization: School of Information Engineering, Yangzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39154026$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhi1UREvpC7BAltiwCfiaxCtUlVulSgipsLUcx0l9cOxgO6DDE_DY-JyU0nZRb2yN__k8v2eeggMfvAHgOUavMaLtm8QwF22FCKtqITCu-CNwRBDjFaGEHNw6H4KTlDaoLE4Ew-IJOKQCc4ZIfQT-vFuUq1wIM9TB5xgcVL6HKats4BxNb3W2wZegcttkEwwD_PL19BvMUW2MziFud0f93foRdiqZHhZ1Z4MLo9XKwfRLxQlan41zdjQ-wzBnO9nfauW6MUSbr6Zn4PGgXDIn1_sxuPzw_vLsU3Xx-eP52elFpTnDuWpJ3eO6K7Yx6hBqOOeoaRpcmwFh3QmGaoFabAwhahjaeuACdxwrpZvimdJjcL5i-6A2co52UnErg7JyHwhxlCpmq52Ruq0RazAnA-oYFbTThdiLpiGKtYVcWG9X1rx0k-l1MReVuwO9e-PtlRzDT4kxpYgJUQivrgkx_FhMynKySZefUt6EJUmKiiFWk7Yu0pf3pJuwxNKVvYoKzjjlRfXidkk3tfxreBGQVaBjSCma4UaCkdwNllwHS5YflvvBkjtqey9J27zvX7Fl3cOpdE1N5R0_mvi_7Aey_gKXm-Mi
CitedBy_id crossref_primary_10_1007_s11831_025_10290_z
crossref_primary_10_3390_s25082447
crossref_primary_10_3390_en18154137
crossref_primary_10_1016_j_buildenv_2025_113401
crossref_primary_10_1016_j_jfranklin_2025_108080
crossref_primary_10_4274_cjms_2025_2024_109
crossref_primary_10_1109_TASE_2025_3599163
crossref_primary_10_1016_j_ijhydene_2025_03_032
crossref_primary_10_1038_s41598_025_95776_3
crossref_primary_10_1177_01423312251352882
crossref_primary_10_1371_journal_pone_0317012
crossref_primary_10_1177_03611981251353706
crossref_primary_10_1038_s41598_025_98486_y
crossref_primary_10_1371_journal_pone_0317398
crossref_primary_10_3390_math13132078
crossref_primary_10_1007_s13235_025_00654_2
crossref_primary_10_1109_TASE_2025_3570089
crossref_primary_10_1002_jccs_70009
crossref_primary_10_1007_s10115_025_02507_1
crossref_primary_10_1016_j_rineng_2025_106838
crossref_primary_10_3934_math_2025583
crossref_primary_10_1016_j_jspr_2025_102611
crossref_primary_10_1371_journal_pone_0319663
crossref_primary_10_3390_sym17040609
crossref_primary_10_1007_s13235_025_00645_3
crossref_primary_10_1007_s13235_025_00647_1
crossref_primary_10_1016_j_knosys_2025_113481
crossref_primary_10_1016_j_egyr_2025_04_055
crossref_primary_10_3390_jmse13040657
crossref_primary_10_1038_s41598_025_95288_0
crossref_primary_10_7717_peerj_cs_2791
crossref_primary_10_1007_s10044_025_01459_0
crossref_primary_10_3390_su17094088
Cites_doi 10.1109/TIE.2019.2905808
10.1002/rnc.4044
10.1007/s00034-012-9402-5
10.3390/en14206782
10.1109/COMST.2015.2495297
10.1098/rsta.2020.0209
10.23919/DATE.2018.8342149
10.1007/978-3-540-71918-2
10.3934/mbe.2023002
10.3390/robotics8030059
10.1007/s12046-014-0275-0
10.3390/aerospace9080460
10.1177/0142331220909003
10.1002/cta.650
10.3934/mbe.2022335
10.1016/j.ast.2019.04.055
10.1109/ITNEC.2016.7560311
10.1109/TNN.2009.2034145
10.1049/cje.2019.12.006
10.1007/s10845-022-01963-8
10.1007/s10846-009-9331-0
10.1016/j.conengprac.2020.104560
10.1109/SSRR.2014.7017669
10.4028/www.scientific.net/AMM.494-495.1206
10.1016/j.ast.2018.06.017
10.1109/ACC.2011.5991594
10.1109/VSS57184.2022.9902069
10.3934/mbe.2023566
10.1016/j.automatica.2009.10.018
10.1007/s11071-019-05013-6
10.1007/s10846-021-01527-7
10.1080/00207179.2020.1743366
10.1016/j.ast.2021.106549
10.1016/j.ast.2019.105336
10.1007/s13369-020-04742-w
10.1007/s12652-020-02353-9
10.3934/mbe.2022571
10.1007/s10846-012-9717-2
10.1109/TCST.2014.2330999
10.1002/acs.2955
10.1109/TNNLS.2013.2251747
10.1016/j.ymssp.2019.106548
10.1109/ACC.2013.6579806
10.1016/S0196-8904(02)00248-0
10.3390/electronics9071104
10.1007/s12647-021-00478-6
10.3934/mbe.2023641
10.1109/TCST.2013.2291784
10.1109/ICOMITEE53461.2021.9650314
10.1016/j.conengprac.2018.11.002
10.1002/for.2839
10.1002/asjc.1758
10.1007/s10846-020-01227-8
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-69911-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database ProQuest
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 25
ExternalDocumentID oai_doaj_org_article_c86047152f0b4393bcaffd9772a4886f
PMC11330499
39154026
10_1038_s41598_024_69911_5
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c541t-826d16b02410b007555077716ef01cb94069081ee22aff86f591b51aac791533
IEDL.DBID DOA
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001292901700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:36:01 EST 2025
Tue Nov 04 02:05:40 EST 2025
Sun Nov 09 09:43:57 EST 2025
Tue Oct 07 08:04:56 EDT 2025
Mon Jul 21 05:41:08 EDT 2025
Tue Nov 18 22:20:41 EST 2025
Sat Nov 29 05:24:00 EST 2025
Fri Feb 21 02:39:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Long short-term memory
Data-driven
Vertical take-off and landing
Particle swarm optimization
Quadrotor unmanned aerial vehicles
Sliding mode control
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-826d16b02410b007555077716ef01cb94069081ee22aff86f591b51aac791533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/c86047152f0b4393bcaffd9772a4886f
PMID 39154026
PQID 3093954535
PQPubID 2041939
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_c86047152f0b4393bcaffd9772a4886f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11330499
proquest_miscellaneous_3094046286
proquest_journals_3093954535
pubmed_primary_39154026
crossref_primary_10_1038_s41598_024_69911_5
crossref_citationtrail_10_1038_s41598_024_69911_5
springer_journals_10_1038_s41598_024_69911_5
PublicationCentury 2000
PublicationDate 2024-08-17
PublicationDateYYYYMMDD 2024-08-17
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References YadavAKGaurPAi-based adaptive control and design of autopilot system for nonlinear UAVSadhana20143976578310.1007/s12046-014-0275-01:CAS:528:DC%2BC2cXhtFGqtrzO
DasALewisFSubbaraoKBackstepping approach for controlling a quadrotor using lagrange form dynamicsJ. Intell. Robot. Syst.20095612715110.1007/s10846-009-9331-0
IannaceGCiaburroGTrematerraAFault diagnosis for UAV blades using artificial neural networkRobotics201985910.3390/robotics8030059
HsuC-CChenC-YApplications of improved grey prediction model for power demand forecastingEnergy Convers. Manag.200344224122492003ECM....44.2241H10.1016/S0196-8904(02)00248-0
JiangBNeural network based model predictive control for a quadrotor UAVAerospace2022946010.3390/aerospace9080460
SohaneAAgarwalRA single platform for classification and prediction using a hybrid bioinspired and deep neural network (PSO-LSTM)Mapan202237475810.1007/s12647-021-00478-6
ZhangYChenZZhangXSunQSunMA novel control scheme for quadrotor UAV based upon active disturbance rejection controlAerosp. Sci. Technol.20187960160910.1016/j.ast.2018.06.017
Kyrkou, C., Plastiras, G., Theocharides, T., Venieris, S. I. & Bouganis, C.-S. Dronet: Efficient convolutional neural network detector for real-time UAV applications. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), 967–972 (IEEE, 2018).
GuoKJiaJYuXGuoLXieLMultiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbancesControl. Eng. Pract.202010210.1016/j.conengprac.2020.104560
RosalesCSoriaCMRossomandoFGIdentification and adaptive PID control of a hexacopter UAV based on neural networksInt. J. Adapt. Control Signal Process.2019337491390575210.1002/acs.2955
LimBZohrenSTime-series forecasting with deep learning: A surveyPhilos. Trans. R. Soc. A2021379202002092021RSPTA.37900209L423614610.1098/rsta.2020.0209
Bialy, B. J., Klotz, J., Brink, K. & Dixon, W. E. Lyapunov-based robust adaptive control of a quadrotor UAV in the presence of modeling uncertainties. In 2013 American Control Conference, 13–18 (IEEE, 2013).
NoordinAMohd BasriMAMohamedZMat LazimIAdaptive PID controller using sliding mode control approaches for quadrotor UAV attitude and position stabilizationArab. J. Sci. Eng.20214696398110.1007/s13369-020-04742-w
RyllMBülthoffHHGiordanoPRA novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validationIEEE Trans. Control Syst. Technol.20142354055610.1109/TCST.2014.2330999
QianMJiangBXuDFault tolerant tracking control scheme for UAV using dynamic surface control techniqueCircuits Syst. Signal Process.20123117131729297132210.1007/s00034-012-9402-5
HyndmanRKoehlerABOrdJKSnyderRDForecasting with Exponential Smoothing: The State Space Approach2008Springer Science & Business Media10.1007/978-3-540-71918-2
RotheJZeveringJStrohmeierMMontenegroSA modified model reference adaptive controller (M-MRAC) using an updated MIT-rule for the altitude of a UAVElectronics20209110410.3390/electronics9071104
Susanto, T. et al. Application of unmanned aircraft PID control system for roll, pitch and yaw stability on fixed wings. In 2021 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), 186–190 (IEEE, 2021).
Niu, T., Xiong, H. & Zhao, S. Based on ADRC UAV longitudinal pitching angle control research. In 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, 21–25 (IEEE, 2016).
IdrissiMSalamiMAnnazFA review of quadrotor unmanned aerial vehicles: Applications, architectural design and control algorithmsJ. Intell. Robot. Syst.20221042210.1007/s10846-021-01527-7
FanBLiYZhangRFuQReview on the technological development and application of UAV systemsChin. J. Electron.20202919920710.1049/cje.2019.12.006
WeiYZhangYHangBConstruction and management of smart campus: Anti-disturbance control of flexible manipulator based on PDE modelingMath. Biosci. Eng.20232014327143523767913810.3934/mbe.2023641
DierksTJagannathanSOutput feedback control of a quadrotor UAV using neural networksIEEE Trans. Neural Netw.20092150661996369810.1109/TNN.2009.2034145
Michel, L., Ghanes, M., Aoustin, Y. & Barbot, J.-P. A third order semi-implicit homogeneous differentiator: Experimental results. In 2022 16th International Workshop on Variable Structure Systems (VSS), 77–82 (IEEE, 2022).
HangBSuBDengWAdaptive sliding mode fault-tolerant attitude control for flexible satellites based on ts fuzzy disturbance modelingMath. Biosci. Eng.202320127001271746009003750146210.3934/mbe.2023566
JiaoXSongYKongYTangXVolatility forecasting for crude oil based on text information and deep learning PSO-LSTM modelJ. Forecast.202241933944444694210.1002/for.2839
GuptaMVarshneyPVisweswaranGDigital fractional-order differentiator and integrator models based on first-order and higher order operatorsInt. J. Circuit Theory Appl.20113946147410.1002/cta.650
AltanAHacıoğluRModel predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbancesMech. Syst. Signal Process.202013810.1016/j.ymssp.2019.106548
RadzkiGBocewiczGWikarekJNielsenPBanaszakZComparison of exact and approximate approaches to UAVs mission contingency planning in dynamic environmentsMath. Biosci. Eng.20221970917121443754110.3934/mbe.2022335
GengRJiRZiSResearch on task allocation of UAV cluster based on particle swarm quantization algorithmMath. Biosci. Eng.20222018333665075510.3934/mbe.2023002
Kada, B. & Ghazzawi, Y. Robust PID controller design for an UAV flight control system. In Proceedings of the World Congress on Engineering and Computer Science Vol. 2, 1–6 (2011).
GuWValavanisKPRutherfordMJRizzoAUAV model-based flight control with artificial neural networks: A surveyJ. Intell. Robot. Syst.20201001469149110.1007/s10846-020-01227-8
GunduVSimonSPPSO-LSTM for short term forecast of heterogeneous time series electricity price signalsJ. Ambient. Intell. Humaniz. Comput.2021122375238510.1007/s12652-020-02353-9
ShenZLiFCaoXGuoCPrescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraintsInt. J. Control20219429452955432784710.1080/00207179.2020.1743366
MoHFaridGNonlinear and adaptive intelligent control techniques for quadrotor UAV—a surveyAsian J. Control2019219891008394003110.1002/asjc.1758
ElsaraitiMMerabetAA comparative analysis of the ARIMA and LSTM predictive models and their effectiveness for predicting wind speedEnergies202114678210.3390/en14206782
ZhenZTaoGXuYSongGMultivariable adaptive control based consensus flight control system for UAVs formationAerosp. Sci. Technol.20199310.1016/j.ast.2019.105336
JiangFPourpanahFHaoQDesign, implementation, and evaluation of a neural-network-based quadcopter UAV systemIEEE Trans. Ind. Electron.2019672076208510.1109/TIE.2019.2905808
Lee, D., Nataraj, C., Burg, T. C. & Dawson, D. M. Adaptive tracking control of an underactuated aerial vehicle. In Proceedings of the 2011 American Control Conference, 2326–2331 (IEEE, 2011).
Jiang, G. & Voyles, R. A nonparallel hexrotor UAV with faster response to disturbances for precision position keeping. In 2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014), 1–5 (IEEE, 2014).
LotufoMAColangeloLPerez-MontenegroCCanutoENovaraCUAV quadrotor attitude control: An ADRC-EMC combined approachControl. Eng. Pract.201984132210.1016/j.conengprac.2018.11.002
RaoSGhoseDSliding mode control-based autopilots for leaderless consensus of unmanned aerial vehiclesIEEE Trans. Control Syst. Technol.2013221964197210.1109/TCST.2013.2291784
GaoTYWangDDTaoFGeHLControl of small unconventional UAV based on an on-line adaptive ADRC systemAppl. Mech. Mater.20144941206121110.4028/www.scientific.net/AMM.494-495.1206
ZhangYChenZSunMTrajectory tracking control for a quadrotor unmanned aerial vehicle based on dynamic surface active disturbance rejection controlTrans. Inst. Meas. Control.2020422198220510.1177/0142331220909003
LinXYuYSunC-YA decoupling control for quadrotor UAV using dynamic surface control and sliding mode disturbance observerNonlinear Dyn.20199778179510.1007/s11071-019-05013-6
RazmiHAfshinfarSNeural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAVAerosp. Sci. Technol.201991122710.1016/j.ast.2019.04.055
GuptaLJainRVaszkunGSurvey of important issues in UAV communication networksIEEE Commun. Surv. Tutorials2015181123115210.1109/COMST.2015.2495297
NodlandDZargarzadehHJagannathanSNeural network-based optimal adaptive output feedback control of a helicopter UAVIEEE Trans. Neural Netw. Learn. Syst.201324106110732480852110.1109/TNNLS.2013.2251747
NajmAAIbraheemIKNonlinear PID controller design for a 6-DOF UAV quadrotor systemEng. Sci. Technol. Int. J.20192210871097
ShaoXLiuJCaoHShenCWangHRobust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observerInt. J. Robust Nonlinear Control20182827002719377941810.1002/rnc.4044
FahlstromPGGleasonTJSadraeyMHIntroduction to UAV Systems2022Wiley
LuPA time series image prediction method combining a CNN and LSTM and its application in typhoon track predictionMath. Biosci. Eng.20221912260122783665399610.3934/mbe.2022571
WangJHanLDongXLiQRenZDistributed sliding mode control for time-varying formation tracking of multi-UAV system with a dynamic leaderAerosp. Sci. Technol.202111110.1016/j.ast.2021.106549
TercanHMeisenTMachine learning and deep learning based predictive quality in manufacturing: A systematic reviewJ. Intell. Manuf.2022331879190510.1007/s10845-022-01963-8
CapelloEGuglieriGQuagliottiFSartoriDDesign and validation of an adaptive controller for mini-UAV autopilotJ. Intell. Robot. Syst.20136910911810.1007/s10846-012-9717-2
RaffoGVOrtegaMGRubioFRAn integral predictive/nonlinear h∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$
B Hang (69911_CR7) 2023; 20
GV Raffo (69911_CR49) 2010; 46
MA Lotufo (69911_CR15) 2019; 84
P Lu (69911_CR52) 2022; 19
69911_CR10
D Nodland (69911_CR37) 2013; 24
M Gupta (69911_CR56) 2011; 39
Z Shen (69911_CR22) 2021; 94
69911_CR16
69911_CR55
H Mo (69911_CR35) 2019; 21
Y Zhang (69911_CR53) 2018; 79
AK Yadav (69911_CR14) 2014; 39
Z Zhen (69911_CR32) 2019; 93
E Capello (69911_CR33) 2013; 69
X Shao (69911_CR23) 2018; 28
Y Wei (69911_CR6) 2023; 20
69911_CR8
TY Gao (69911_CR17) 2014; 494
A Sohane (69911_CR51) 2022; 37
B Fan (69911_CR2) 2020; 29
J Rothe (69911_CR34) 2020; 9
69911_CR48
V Gundu (69911_CR44) 2021; 12
R Hyndman (69911_CR40) 2008
K Guo (69911_CR54) 2020; 102
T Dierks (69911_CR26) 2009; 21
R Geng (69911_CR3) 2022; 20
PG Fahlstrom (69911_CR1) 2022
G Radzki (69911_CR5) 2022; 19
M Ryll (69911_CR46) 2014; 23
Y Zhang (69911_CR36) 2020; 42
M Elsaraiti (69911_CR43) 2021; 14
69911_CR31
C-C Hsu (69911_CR41) 2003; 44
69911_CR30
A Das (69911_CR50) 2009; 56
B Lim (69911_CR39) 2021; 379
C Rosales (69911_CR12) 2019; 33
A Noordin (69911_CR13) 2021; 46
X Jiao (69911_CR45) 2022; 41
W Gu (69911_CR25) 2020; 100
F Jiang (69911_CR29) 2019; 67
L Gupta (69911_CR4) 2015; 18
S Rao (69911_CR18) 2013; 22
H Razmi (69911_CR20) 2019; 91
M Idrissi (69911_CR47) 2022; 104
G Iannace (69911_CR28) 2019; 8
J Wang (69911_CR19) 2021; 111
AA Najm (69911_CR11) 2019; 22
H Tercan (69911_CR42) 2022; 33
A Altan (69911_CR9) 2020; 138
69911_CR27
X Lin (69911_CR24) 2019; 97
B Jiang (69911_CR38) 2022; 9
M Qian (69911_CR21) 2012; 31
References_xml – reference: Kada, B. & Ghazzawi, Y. Robust PID controller design for an UAV flight control system. In Proceedings of the World Congress on Engineering and Computer Science Vol. 2, 1–6 (2011).
– reference: LinXYuYSunC-YA decoupling control for quadrotor UAV using dynamic surface control and sliding mode disturbance observerNonlinear Dyn.20199778179510.1007/s11071-019-05013-6
– reference: RyllMBülthoffHHGiordanoPRA novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validationIEEE Trans. Control Syst. Technol.20142354055610.1109/TCST.2014.2330999
– reference: Niu, T., Xiong, H. & Zhao, S. Based on ADRC UAV longitudinal pitching angle control research. In 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, 21–25 (IEEE, 2016).
– reference: IannaceGCiaburroGTrematerraAFault diagnosis for UAV blades using artificial neural networkRobotics201985910.3390/robotics8030059
– reference: NoordinAMohd BasriMAMohamedZMat LazimIAdaptive PID controller using sliding mode control approaches for quadrotor UAV attitude and position stabilizationArab. J. Sci. Eng.20214696398110.1007/s13369-020-04742-w
– reference: JiaoXSongYKongYTangXVolatility forecasting for crude oil based on text information and deep learning PSO-LSTM modelJ. Forecast.202241933944444694210.1002/for.2839
– reference: LuPA time series image prediction method combining a CNN and LSTM and its application in typhoon track predictionMath. Biosci. Eng.20221912260122783665399610.3934/mbe.2022571
– reference: QianMJiangBXuDFault tolerant tracking control scheme for UAV using dynamic surface control techniqueCircuits Syst. Signal Process.20123117131729297132210.1007/s00034-012-9402-5
– reference: IdrissiMSalamiMAnnazFA review of quadrotor unmanned aerial vehicles: Applications, architectural design and control algorithmsJ. Intell. Robot. Syst.20221042210.1007/s10846-021-01527-7
– reference: GuWValavanisKPRutherfordMJRizzoAUAV model-based flight control with artificial neural networks: A surveyJ. Intell. Robot. Syst.20201001469149110.1007/s10846-020-01227-8
– reference: SohaneAAgarwalRA single platform for classification and prediction using a hybrid bioinspired and deep neural network (PSO-LSTM)Mapan202237475810.1007/s12647-021-00478-6
– reference: GaoTYWangDDTaoFGeHLControl of small unconventional UAV based on an on-line adaptive ADRC systemAppl. Mech. Mater.20144941206121110.4028/www.scientific.net/AMM.494-495.1206
– reference: GuptaMVarshneyPVisweswaranGDigital fractional-order differentiator and integrator models based on first-order and higher order operatorsInt. J. Circuit Theory Appl.20113946147410.1002/cta.650
– reference: RadzkiGBocewiczGWikarekJNielsenPBanaszakZComparison of exact and approximate approaches to UAVs mission contingency planning in dynamic environmentsMath. Biosci. Eng.20221970917121443754110.3934/mbe.2022335
– reference: ShaoXLiuJCaoHShenCWangHRobust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observerInt. J. Robust Nonlinear Control20182827002719377941810.1002/rnc.4044
– reference: TercanHMeisenTMachine learning and deep learning based predictive quality in manufacturing: A systematic reviewJ. Intell. Manuf.2022331879190510.1007/s10845-022-01963-8
– reference: RaffoGVOrtegaMGRubioFRAn integral predictive/nonlinear h∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} control structure for a quadrotor helicopterAutomatica2010462939257827010.1016/j.automatica.2009.10.018
– reference: Susanto, T. et al. Application of unmanned aircraft PID control system for roll, pitch and yaw stability on fixed wings. In 2021 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), 186–190 (IEEE, 2021).
– reference: RotheJZeveringJStrohmeierMMontenegroSA modified model reference adaptive controller (M-MRAC) using an updated MIT-rule for the altitude of a UAVElectronics20209110410.3390/electronics9071104
– reference: RaoSGhoseDSliding mode control-based autopilots for leaderless consensus of unmanned aerial vehiclesIEEE Trans. Control Syst. Technol.2013221964197210.1109/TCST.2013.2291784
– reference: GuptaLJainRVaszkunGSurvey of important issues in UAV communication networksIEEE Commun. Surv. Tutorials2015181123115210.1109/COMST.2015.2495297
– reference: WeiYZhangYHangBConstruction and management of smart campus: Anti-disturbance control of flexible manipulator based on PDE modelingMath. Biosci. Eng.20232014327143523767913810.3934/mbe.2023641
– reference: Lee, D., Nataraj, C., Burg, T. C. & Dawson, D. M. Adaptive tracking control of an underactuated aerial vehicle. In Proceedings of the 2011 American Control Conference, 2326–2331 (IEEE, 2011).
– reference: ShenZLiFCaoXGuoCPrescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraintsInt. J. Control20219429452955432784710.1080/00207179.2020.1743366
– reference: ZhangYChenZZhangXSunQSunMA novel control scheme for quadrotor UAV based upon active disturbance rejection controlAerosp. Sci. Technol.20187960160910.1016/j.ast.2018.06.017
– reference: Michel, L., Ghanes, M., Aoustin, Y. & Barbot, J.-P. A third order semi-implicit homogeneous differentiator: Experimental results. In 2022 16th International Workshop on Variable Structure Systems (VSS), 77–82 (IEEE, 2022).
– reference: YadavAKGaurPAi-based adaptive control and design of autopilot system for nonlinear UAVSadhana20143976578310.1007/s12046-014-0275-01:CAS:528:DC%2BC2cXhtFGqtrzO
– reference: WangJHanLDongXLiQRenZDistributed sliding mode control for time-varying formation tracking of multi-UAV system with a dynamic leaderAerosp. Sci. Technol.202111110.1016/j.ast.2021.106549
– reference: HyndmanRKoehlerABOrdJKSnyderRDForecasting with Exponential Smoothing: The State Space Approach2008Springer Science & Business Media10.1007/978-3-540-71918-2
– reference: HangBSuBDengWAdaptive sliding mode fault-tolerant attitude control for flexible satellites based on ts fuzzy disturbance modelingMath. Biosci. Eng.202320127001271746009003750146210.3934/mbe.2023566
– reference: JiangFPourpanahFHaoQDesign, implementation, and evaluation of a neural-network-based quadcopter UAV systemIEEE Trans. Ind. Electron.2019672076208510.1109/TIE.2019.2905808
– reference: JiangBNeural network based model predictive control for a quadrotor UAVAerospace2022946010.3390/aerospace9080460
– reference: NajmAAIbraheemIKNonlinear PID controller design for a 6-DOF UAV quadrotor systemEng. Sci. Technol. Int. J.20192210871097
– reference: Bialy, B. J., Klotz, J., Brink, K. & Dixon, W. E. Lyapunov-based robust adaptive control of a quadrotor UAV in the presence of modeling uncertainties. In 2013 American Control Conference, 13–18 (IEEE, 2013).
– reference: FanBLiYZhangRFuQReview on the technological development and application of UAV systemsChin. J. Electron.20202919920710.1049/cje.2019.12.006
– reference: LotufoMAColangeloLPerez-MontenegroCCanutoENovaraCUAV quadrotor attitude control: An ADRC-EMC combined approachControl. Eng. Pract.201984132210.1016/j.conengprac.2018.11.002
– reference: RazmiHAfshinfarSNeural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAVAerosp. Sci. Technol.201991122710.1016/j.ast.2019.04.055
– reference: GengRJiRZiSResearch on task allocation of UAV cluster based on particle swarm quantization algorithmMath. Biosci. Eng.20222018333665075510.3934/mbe.2023002
– reference: ZhenZTaoGXuYSongGMultivariable adaptive control based consensus flight control system for UAVs formationAerosp. Sci. Technol.20199310.1016/j.ast.2019.105336
– reference: HsuC-CChenC-YApplications of improved grey prediction model for power demand forecastingEnergy Convers. Manag.200344224122492003ECM....44.2241H10.1016/S0196-8904(02)00248-0
– reference: Kyrkou, C., Plastiras, G., Theocharides, T., Venieris, S. I. & Bouganis, C.-S. Dronet: Efficient convolutional neural network detector for real-time UAV applications. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), 967–972 (IEEE, 2018).
– reference: DasALewisFSubbaraoKBackstepping approach for controlling a quadrotor using lagrange form dynamicsJ. Intell. Robot. Syst.20095612715110.1007/s10846-009-9331-0
– reference: CapelloEGuglieriGQuagliottiFSartoriDDesign and validation of an adaptive controller for mini-UAV autopilotJ. Intell. Robot. Syst.20136910911810.1007/s10846-012-9717-2
– reference: MoHFaridGNonlinear and adaptive intelligent control techniques for quadrotor UAV—a surveyAsian J. Control2019219891008394003110.1002/asjc.1758
– reference: DierksTJagannathanSOutput feedback control of a quadrotor UAV using neural networksIEEE Trans. Neural Netw.20092150661996369810.1109/TNN.2009.2034145
– reference: ZhangYChenZSunMTrajectory tracking control for a quadrotor unmanned aerial vehicle based on dynamic surface active disturbance rejection controlTrans. Inst. Meas. Control.2020422198220510.1177/0142331220909003
– reference: RosalesCSoriaCMRossomandoFGIdentification and adaptive PID control of a hexacopter UAV based on neural networksInt. J. Adapt. Control Signal Process.2019337491390575210.1002/acs.2955
– reference: GuoKJiaJYuXGuoLXieLMultiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbancesControl. Eng. Pract.202010210.1016/j.conengprac.2020.104560
– reference: GunduVSimonSPPSO-LSTM for short term forecast of heterogeneous time series electricity price signalsJ. Ambient. Intell. Humaniz. Comput.2021122375238510.1007/s12652-020-02353-9
– reference: NodlandDZargarzadehHJagannathanSNeural network-based optimal adaptive output feedback control of a helicopter UAVIEEE Trans. Neural Netw. Learn. Syst.201324106110732480852110.1109/TNNLS.2013.2251747
– reference: AltanAHacıoğluRModel predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbancesMech. Syst. Signal Process.202013810.1016/j.ymssp.2019.106548
– reference: Jiang, G. & Voyles, R. A nonparallel hexrotor UAV with faster response to disturbances for precision position keeping. In 2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014), 1–5 (IEEE, 2014).
– reference: ElsaraitiMMerabetAA comparative analysis of the ARIMA and LSTM predictive models and their effectiveness for predicting wind speedEnergies202114678210.3390/en14206782
– reference: FahlstromPGGleasonTJSadraeyMHIntroduction to UAV Systems2022Wiley
– reference: LimBZohrenSTime-series forecasting with deep learning: A surveyPhilos. Trans. R. Soc. A2021379202002092021RSPTA.37900209L423614610.1098/rsta.2020.0209
– volume: 67
  start-page: 2076
  year: 2019
  ident: 69911_CR29
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2905808
– volume: 28
  start-page: 2700
  year: 2018
  ident: 69911_CR23
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4044
– volume: 31
  start-page: 1713
  year: 2012
  ident: 69911_CR21
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-012-9402-5
– volume: 14
  start-page: 6782
  year: 2021
  ident: 69911_CR43
  publication-title: Energies
  doi: 10.3390/en14206782
– volume: 18
  start-page: 1123
  year: 2015
  ident: 69911_CR4
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2015.2495297
– volume: 379
  start-page: 20200209
  year: 2021
  ident: 69911_CR39
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0209
– ident: 69911_CR27
  doi: 10.23919/DATE.2018.8342149
– volume-title: Forecasting with Exponential Smoothing: The State Space Approach
  year: 2008
  ident: 69911_CR40
  doi: 10.1007/978-3-540-71918-2
– volume: 20
  start-page: 18
  year: 2022
  ident: 69911_CR3
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2023002
– volume: 8
  start-page: 59
  year: 2019
  ident: 69911_CR28
  publication-title: Robotics
  doi: 10.3390/robotics8030059
– volume: 39
  start-page: 765
  year: 2014
  ident: 69911_CR14
  publication-title: Sadhana
  doi: 10.1007/s12046-014-0275-0
– volume: 9
  start-page: 460
  year: 2022
  ident: 69911_CR38
  publication-title: Aerospace
  doi: 10.3390/aerospace9080460
– volume: 42
  start-page: 2198
  year: 2020
  ident: 69911_CR36
  publication-title: Trans. Inst. Meas. Control.
  doi: 10.1177/0142331220909003
– volume: 39
  start-page: 461
  year: 2011
  ident: 69911_CR56
  publication-title: Int. J. Circuit Theory Appl.
  doi: 10.1002/cta.650
– volume: 19
  start-page: 7091
  year: 2022
  ident: 69911_CR5
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2022335
– volume: 91
  start-page: 12
  year: 2019
  ident: 69911_CR20
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.04.055
– ident: 69911_CR16
  doi: 10.1109/ITNEC.2016.7560311
– volume: 21
  start-page: 50
  year: 2009
  ident: 69911_CR26
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2034145
– ident: 69911_CR10
– volume: 29
  start-page: 199
  year: 2020
  ident: 69911_CR2
  publication-title: Chin. J. Electron.
  doi: 10.1049/cje.2019.12.006
– volume: 33
  start-page: 1879
  year: 2022
  ident: 69911_CR42
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-01963-8
– volume: 56
  start-page: 127
  year: 2009
  ident: 69911_CR50
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-009-9331-0
– volume: 102
  year: 2020
  ident: 69911_CR54
  publication-title: Control. Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104560
– ident: 69911_CR8
  doi: 10.1109/SSRR.2014.7017669
– volume: 22
  start-page: 1087
  year: 2019
  ident: 69911_CR11
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 494
  start-page: 1206
  year: 2014
  ident: 69911_CR17
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.494-495.1206
– volume: 79
  start-page: 601
  year: 2018
  ident: 69911_CR53
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.06.017
– ident: 69911_CR48
  doi: 10.1109/ACC.2011.5991594
– ident: 69911_CR55
  doi: 10.1109/VSS57184.2022.9902069
– volume: 20
  start-page: 12700
  year: 2023
  ident: 69911_CR7
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2023566
– volume: 46
  start-page: 29
  year: 2010
  ident: 69911_CR49
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.10.018
– volume: 97
  start-page: 781
  year: 2019
  ident: 69911_CR24
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05013-6
– volume: 104
  start-page: 22
  year: 2022
  ident: 69911_CR47
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-021-01527-7
– volume: 94
  start-page: 2945
  year: 2021
  ident: 69911_CR22
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2020.1743366
– volume: 111
  year: 2021
  ident: 69911_CR19
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106549
– volume: 93
  year: 2019
  ident: 69911_CR32
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105336
– volume: 46
  start-page: 963
  year: 2021
  ident: 69911_CR13
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04742-w
– volume: 12
  start-page: 2375
  year: 2021
  ident: 69911_CR44
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02353-9
– volume: 19
  start-page: 12260
  year: 2022
  ident: 69911_CR52
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2022571
– volume: 69
  start-page: 109
  year: 2013
  ident: 69911_CR33
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-012-9717-2
– volume: 23
  start-page: 540
  year: 2014
  ident: 69911_CR46
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2330999
– volume-title: Introduction to UAV Systems
  year: 2022
  ident: 69911_CR1
– volume: 33
  start-page: 74
  year: 2019
  ident: 69911_CR12
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.2955
– volume: 24
  start-page: 1061
  year: 2013
  ident: 69911_CR37
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2251747
– volume: 138
  year: 2020
  ident: 69911_CR9
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106548
– ident: 69911_CR31
  doi: 10.1109/ACC.2013.6579806
– volume: 44
  start-page: 2241
  year: 2003
  ident: 69911_CR41
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(02)00248-0
– volume: 9
  start-page: 1104
  year: 2020
  ident: 69911_CR34
  publication-title: Electronics
  doi: 10.3390/electronics9071104
– volume: 37
  start-page: 47
  year: 2022
  ident: 69911_CR51
  publication-title: Mapan
  doi: 10.1007/s12647-021-00478-6
– volume: 20
  start-page: 14327
  year: 2023
  ident: 69911_CR6
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2023641
– volume: 22
  start-page: 1964
  year: 2013
  ident: 69911_CR18
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2291784
– ident: 69911_CR30
  doi: 10.1109/ICOMITEE53461.2021.9650314
– volume: 84
  start-page: 13
  year: 2019
  ident: 69911_CR15
  publication-title: Control. Eng. Pract.
  doi: 10.1016/j.conengprac.2018.11.002
– volume: 41
  start-page: 933
  year: 2022
  ident: 69911_CR45
  publication-title: J. Forecast.
  doi: 10.1002/for.2839
– volume: 21
  start-page: 989
  year: 2019
  ident: 69911_CR35
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1758
– volume: 100
  start-page: 1469
  year: 2020
  ident: 69911_CR25
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-020-01227-8
SSID ssj0000529419
Score 2.582329
Snippet Quadrotor unmanned aerial vehicles (QUAVs) have attracted significant research focus due to their outstanding Vertical Take-Off and Landing (VTOL)...
Abstract Quadrotor unmanned aerial vehicles (QUAVs) have attracted significant research focus due to their outstanding Vertical Take-Off and Landing (VTOL)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19091
SubjectTerms 639/166
639/705
Control systems
Data-driven
Deep learning
Humanities and Social Sciences
Long short-term memory
multidisciplinary
Particle swarm optimization
Quadrotor unmanned aerial vehicles
Science
Science (multidisciplinary)
Sliding mode control
Systems stability
Vertical take-off and landing
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSlvGmgICNxA6ux8z4hXhUXqh4q1JtlO3a7aDfZJtlW_Qf92cw43lTLoxduq9grje2x5_OM5xtC3mY2T3SSO6aVhQtKbQVTXHMm0OXPwSBpZXyxieLgoDw-rg6Dw60PzyrXZ6I_qOvWoI98DyN2FZj7JPuwPGNYNQqjq6GExm1yB5ANxydd38Xh5GPBKFbKq5ArEyflXg_2CnPKRMpyQEacZRv2yNP2_w1r_vlk8re4qTdH-w_-dyAPyXYAovTjqDmPyC3bPCb3xtKUl0_I1ZeVmrN52y5peM1OVVNTn39Elx2Gd3BJ4eNIakJbRwEd_6Ag908fCbjEnwY98RRNZU2h90j5hHpB-wvVLehsYgQdaAun1yKkhVI1PwGhh9PFU3K0__Xo8zcWqjYwk6V8YHBfqXmuYYp5rBGRIGNaAdcy62JudIWptoBDrBVCOVfmLqu4zrhSBpQDwOczstW0jd0h1GhVFEleCVPmaRFzJTxVTBFXtRGuriLC10snTWA0x8Iac-kj60kpx-WWIIv0yy2ziLyb_rMc-Txu7P0JNWLqiVzc_kPbnciwtSVIF4OJz4SLNcC7RBsYVw24Wig4HXMXkd21IshwQPTyWgsi8mZqhq2N8RrV2Hbl-6Rj7nBEno_qN0mCvP5w9YeWckMxN0TdbGlmp54-nHP0YVUwfe_XOnwt17_n4sXNw3hJ7gvcVsgWXOySraFb2VfkrjkfZn332u_LX87CQA4
  priority: 102
  providerName: ProQuest
Title Dual-loop control and state prediction analysis of QUAV trajectory tracking based on biological swarm intelligent optimization algorithm
URI https://link.springer.com/article/10.1038/s41598-024-69911-5
https://www.ncbi.nlm.nih.gov/pubmed/39154026
https://www.proquest.com/docview/3093954535
https://www.proquest.com/docview/3094046286
https://pubmed.ncbi.nlm.nih.gov/PMC11330499
https://doaj.org/article/c86047152f0b4393bcaffd9772a4886f
Volume 14
WOSCitedRecordID wos001292901700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgFyQuiDeFpTISN4g2dh6OjyzsCg5bRWiFysmyHWe3qE2qtAXtP-BnM2OnYcvzwsWKYkcZzYw9Y4_nG0JeZC5PTJLXkdEONiiV45FmhkUcj_wZGCSjrS82ISaTYjqV5ZVSX3gnLMADB8Yd2iKPYQHNeB0bMJ6JsbquK_BauAbdy2tcfWMhr2ymAqo3lymTfZZMnBSHK7BUmE3G0ygHn4hF2Y4l8oD9v_Myf70s-VPE1Buikzvkdu9B0teB8rvkmmvukZuhpuTlffLt7UbPo3nbLml_DZ3qpqI-cYguO4zLoCzgZUAjoW1Nwa39SOG3n_0R_iU-WjxCp2jjKgqjA1YTCpSuvupuQWcDlOeatrDsLPp8Tqrn5203W18sHpCzk-OzN--ivtxCZLOUrSPYaFQsN8AhFht0JRDqTMB-ytUxs0Zijiw4EM5xDiIA1meSmYxpbUGq4DU-JHtN27jHhFqjhUhyyUF4qYiZ5h7jRcSyshyENyJsy3lleyhyrIgxVz4knhQqSEsBLcpLS2Uj8nL4ZhmAOP46-ggFOoxEEG3_AlRL9aql_qVaI3KwVQfVz-yVwsixBLczgX88H7phTmKgRTeu3fgxaUj6HZFHQXsGShCQH_bs0FPs6NUOqbs9zezC434zhodPEtj3aquCP-j6My-e_A9ePCW3OM4dBAMWB2Rv3W3cM3LDflnPVt2YXBdT4dtiTPaPjiflh7GfkNCe8hJbAe1--f60_PQdOPY4yQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoIL70eggJHgBFZj531ACChVq5ZVDyvUm2U7TrtoN1k2War9B_wZ_iMzzqNaHr31wG0Ve6XJZDwznsc3hLyMbBzoIC6YVhYuKLkVTHHNmcCQPweDpJVxwyaS0Sg9Ps6ONsjPvhcGyyp7negUdV4ZjJFvY8YuA3MfRO_m3xhOjcLsaj9CoxWLA7s6gytb_XZ_B77vKyF2P40_7rFuqgAzUcgbBv50zmMNton7Gi0mInolcG2whc-NzrAVFOyktUKookjjIsq4jrhSBoiPMP4JGv9KiMBiWCkojoaQDibNQp51rTl-kG7XYB6xhU2ELAZHjLNozfy5KQF_c23_rND8LU3rrN_urf-Mb7fJzc7Npu_bc3GHbNjyLrnWDt5c3SM_dpZqyqZVNaddrT5VZU5ddxWdLzB5hQILD1vIFloVFHz_LxTY9NXlOVb402CegaIjkFPY3QJaodTT-kwtZnQy4J02tALdPOuaXqmangCPmtPZfTK-DC48IJtlVdpHhBqtkiSIM2HSOEx8roQDwkn8LDeiyDOP8F5SpOnw2nFsyFS6uoEgla10SaBFOumSkUdeD_-Zt2glF-7-gAI47ESkcfegWpzITnFJoM4HByYSha_BeQ20gffK4dYgFOj-uPDIVi93slN_tTwXOo-8GJZBcWE2SpW2Wro9YdsZ7ZGHrbQPlODUgtAXsJKunYM1UtdXysmpA0fnHCN0GbDvTX9kzun6Ny8eX_waz8n1vfHnQ3m4Pzp4Qm4IPNGIi5xskc1msbRPyVXzvZnUi2dOJVAiL_ko_QKRkZfm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JbtNAdFSlgLiwQwMFBglOYMUz3g8IASEiKkQ5VKicRjPjcRuU2KnjUOUP-CX-jvfGSxWW3nrgZnnG0pvnt81bCXkemNBTXpg5Shq4oKSGO5Ip5nB0-TNQSEpqO2wimkzio6NkukN-trUwmFbZykQrqNNCo498gBG7BNS9FwyyJi1iOhy9WZ46OEEKI63tOI2aRA7M5gyub6vX4yH86xecjz4cvv_oNBMGHB34rHLAtk5ZqEBPMVeh9sTuXhFcIUzmMq0SLAsFnWkM5zLL4jALEqYCJqWGgwToCwXpvwsWuc97ZHc6_jz92jl4MITms6Qp1HG9eLACZYkFbdx3QjDLmBNsKUM7M-Bvhu6f-Zq_BW2tLhzd_I-xeIvcaAxw-rbmmNtkx-R3yNV6JOfmLvkxXMu5My-KJW2y-KnMU2rrruiyxLAWkjK8rJu50CKjcCv4QgFl32wEZIOPGiMQFE2ElMLuutUV8gNdnclyQWddJ9SKFiC1F005LJXzY8BRdbK4Rw4vAwv3SS8vcrNHqFYyirww4ToO_chlktsWOZGbpJpnadInrKUaoZtO7jhQZC5sRoEXi5rSBMAiLKWJoE9edt8s6z4mF-5-h8TY7cQe5PZFUR6LRqQJgM4F0ybgmavArPWUhnOlcJ_gErRCmPXJfkuDohGMK3FOgH3yrFsGkYZxKpmbYm33-HXNdJ88qCm_gwTnGfguh5V4iye2QN1eyWcntm06Y-i7SwB9r1r2OYfr37h4ePExnpJrwEHi03hy8Ihc58jc2DA52ie9qlybx-SK_l7NVuWTRj5QIi6Zl34BjwWiLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-loop+control+and+state+prediction+analysis+of+QUAV+trajectory+tracking+based+on+biological+swarm+intelligent+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Zou%2C+Zuoming&rft.au=Yang%2C+Shuming&rft.au=Zhao%2C+Liang&rft.date=2024-08-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-69911-5&rft.externalDocID=PMC11330499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon