Well Pattern optimization as a planning process using a novel developed optimization algorithm
Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simu...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 14; H. 1; S. 26725 - 14 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
05.11.2024
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simulations for various parameters can be time-consuming and costly. Also, due to the high dimension of the possible solutions, there is still no general approach to address this problem. The application of searching algorithm as a general approach to solve such problems has received much attention in recent years. In this study, the efficiency, and reliability of genetic algorithm, particle swarm optimization and in particular a newly developed algorithm was analyzed and compared. The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. In traditional genetic algorithms, solutions lacking adequate qualifications are deleted from the algorithmic process; however, the new algorithm provides these solutions with additional opportunities to prove themselves by acquiring new velocities from particle swarm optimization. The results indicate that while the genetic algorithm and particle swarm optimization do not guarantee optimal outcomes, the newly developed algorithm outperforms both methods. This performance was tested across various scenarios focused on well pattern optimization, highlighting its innovative contribution to the field development. |
|---|---|
| AbstractList | Abstract Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simulations for various parameters can be time-consuming and costly. Also, due to the high dimension of the possible solutions, there is still no general approach to address this problem. The application of searching algorithm as a general approach to solve such problems has received much attention in recent years. In this study, the efficiency, and reliability of genetic algorithm, particle swarm optimization and in particular a newly developed algorithm was analyzed and compared. The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. In traditional genetic algorithms, solutions lacking adequate qualifications are deleted from the algorithmic process; however, the new algorithm provides these solutions with additional opportunities to prove themselves by acquiring new velocities from particle swarm optimization. The results indicate that while the genetic algorithm and particle swarm optimization do not guarantee optimal outcomes, the newly developed algorithm outperforms both methods. This performance was tested across various scenarios focused on well pattern optimization, highlighting its innovative contribution to the field development. Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simulations for various parameters can be time-consuming and costly. Also, due to the high dimension of the possible solutions, there is still no general approach to address this problem. The application of searching algorithm as a general approach to solve such problems has received much attention in recent years. In this study, the efficiency, and reliability of genetic algorithm, particle swarm optimization and in particular a newly developed algorithm was analyzed and compared. The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. In traditional genetic algorithms, solutions lacking adequate qualifications are deleted from the algorithmic process; however, the new algorithm provides these solutions with additional opportunities to prove themselves by acquiring new velocities from particle swarm optimization. The results indicate that while the genetic algorithm and particle swarm optimization do not guarantee optimal outcomes, the newly developed algorithm outperforms both methods. This performance was tested across various scenarios focused on well pattern optimization, highlighting its innovative contribution to the field development.Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simulations for various parameters can be time-consuming and costly. Also, due to the high dimension of the possible solutions, there is still no general approach to address this problem. The application of searching algorithm as a general approach to solve such problems has received much attention in recent years. In this study, the efficiency, and reliability of genetic algorithm, particle swarm optimization and in particular a newly developed algorithm was analyzed and compared. The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. In traditional genetic algorithms, solutions lacking adequate qualifications are deleted from the algorithmic process; however, the new algorithm provides these solutions with additional opportunities to prove themselves by acquiring new velocities from particle swarm optimization. The results indicate that while the genetic algorithm and particle swarm optimization do not guarantee optimal outcomes, the newly developed algorithm outperforms both methods. This performance was tested across various scenarios focused on well pattern optimization, highlighting its innovative contribution to the field development. Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simulations for various parameters can be time-consuming and costly. Also, due to the high dimension of the possible solutions, there is still no general approach to address this problem. The application of searching algorithm as a general approach to solve such problems has received much attention in recent years. In this study, the efficiency, and reliability of genetic algorithm, particle swarm optimization and in particular a newly developed algorithm was analyzed and compared. The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. In traditional genetic algorithms, solutions lacking adequate qualifications are deleted from the algorithmic process; however, the new algorithm provides these solutions with additional opportunities to prove themselves by acquiring new velocities from particle swarm optimization. The results indicate that while the genetic algorithm and particle swarm optimization do not guarantee optimal outcomes, the newly developed algorithm outperforms both methods. This performance was tested across various scenarios focused on well pattern optimization, highlighting its innovative contribution to the field development. |
| ArticleNumber | 26725 |
| Author | Zaheri, Seyed Hayan Hosseini, Mahdi Fathinasab, Mohammad |
| Author_xml | – sequence: 1 givenname: Seyed Hayan surname: Zaheri fullname: Zaheri, Seyed Hayan email: hayanzaheri88@gmail.com organization: National Iranian Oil Company – sequence: 2 givenname: Mahdi surname: Hosseini fullname: Hosseini, Mahdi organization: National Iranian Oil Company – sequence: 3 givenname: Mohammad surname: Fathinasab fullname: Fathinasab, Mohammad organization: Research Institute of Petroleum Industry |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39496806$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1TAURS1UREvpDzBAkZgwCfgRO_YIoYpHpUowADHDcmwn9VViB9upVL4e56aF9g7qgZ9rb20dn-fgyAdvAXiJ4FsECX-XGkQFryFu6pYjwer2CTjBsKE1Jhgf3dsfg7OUdrAMikWDxDNwTEQjGIfsBPz6acex-qZyttFXYc5ucn9UdsFXKlWqmkflvfNDNcegbUrVktaTqny4tmNlbJnDbM2BdBxCdPlqegGe9mpM9ux2PQU_Pn38fv6lvvz6-eL8w2WtaYNy3RrUE8UbJqzQkGjGOi6o5RoRZrhCFJO2bw2nqOOcIMrblpped6xXDDMLySm42HxNUDs5RzepeCODcnJ_EeIgVcxOj1ZSwTpCucWc8kZBraDRpoeCd8aaRqxe7zeveekma7T1OarxgenDF--u5BCuJUKUUIja4vDm1iGG34tNWU4u6VJo5W1YkiQINwgXlBX09QG6C0v0pVYrRQRuuUCFenU_0r8sd_9YAL4BOoaUou2ldnn_FyWhGyWCcu0auXWNLF0j910j17D4QHrn_qiIbKJUYD_Y-D_2I6q_cHHU5Q |
| CitedBy_id | crossref_primary_10_3390_pr13030599 crossref_primary_10_17341_gazimmfd_1308301 |
| Cites_doi | 10.2523/106426-MS 10.2118/143617-MS 10.3997/2214-4609-pdb.170.spe125539 10.2172/6276441 10.2118/38895-MS 10.2118/78266-PA 10.1007/s12046-021-01626-z 10.1007/s11721-007-0002-0 10.2118/87663-PA 10.2118/86880-PA 10.3997/2214-4609.20144994 10.2118/69439-MS 10.1016/j.jngse.2020.103695 10.1016/j.petrol.2014.12.016 10.1007/s00170-013-4730-6 10.1007/s10596-006-9025-7 10.2118/160861-MS 10.3997/2214-4609.201404805 10.1016/j.petrol.2017.10.083 10.1145/298151.298382 10.1016/j.asoc.2020.106511 10.1016/j.petrol.2017.02.011 10.1016/j.fuel.2016.01.009 10.2118/169272-MS 10.2118/175590-MS 10.3389/fenrg.2022.860220 10.1002/0471671746 10.2118/117323-MS 10.2118/118808-MS 10.1016/B978-012064155-0/50008-2 10.1016/j.cageo.2019.104379 10.2118/141950-PA 10.2523/100131-MS 10.1016/j.fluid.2015.04.003 10.1108/ECAM-06-2018-0246 10.1016/j.petrol.2010.07.002 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-78196-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_596b358e28584a0ca0dcdf098bded490 PMC11535017 39496806 10_1038_s41598_024_78196_7 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-7d1f3a8469e9c03c66b895e8c136d8a15237f7d851b883158775dfcb6fa626e03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001348039700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:52:36 EDT 2025 Tue Nov 04 02:05:45 EST 2025 Thu Sep 04 16:56:31 EDT 2025 Tue Oct 28 13:16:35 EDT 2025 Thu Apr 03 06:55:25 EDT 2025 Tue Nov 18 22:30:28 EST 2025 Sat Nov 29 05:24:38 EST 2025 Fri Feb 21 02:36:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Reservoir Simulation Genetic algorithm Particle swarm optimization Well Placement Pattern |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-7d1f3a8469e9c03c66b895e8c136d8a15237f7d851b883158775dfcb6fa626e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/596b358e28584a0ca0dcdf098bded490 |
| PMID | 39496806 |
| PQID | 3123927891 |
| PQPubID | 2041939 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_596b358e28584a0ca0dcdf098bded490 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11535017 proquest_miscellaneous_3124125016 proquest_journals_3123927891 pubmed_primary_39496806 crossref_citationtrail_10_1038_s41598_024_78196_7 crossref_primary_10_1038_s41598_024_78196_7 springer_journals_10_1038_s41598_024_78196_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-05 |
| PublicationDateYYYYMMDD | 2024-11-05 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Lee, J. W., Park, C., Kang, J. M. & Jeong, C. K. Horizontal well design incorporated with interwell interference, drilling location, and trajectory for the recovery optimization. SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE. (2009), October. Farshi, M. M. Improving genetic algorithms for optimum well placement. Stanford Univ. Stanf. CA (2008). Michalewicz, Z. Genetic algorithms + data structures = evolution programs. Springer Science Business Media (2013). RoyCDasDKA hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimizationSādhanā2021462101426769210.1007/s12046-021-01626-z Engelbrecht, A. P. Fundamentals of computational swarm intelligence. John Wiley Sons (2006). Rosen, K. H. & Kamala Krithivasan. Discrete mathematics and its applications. New. York: McGraw-Hill6, 410 (1999). Litvak, M. L. et al. Field development optimization technology. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers. (2007). ParkHYYangCAl-AruriADFjerstadPAImproved decision making with new efficient workflows for well placement optimizationJ. Petrol. Sci. Eng.2017152819010.1016/j.petrol.2017.02.011 Morales, A. N., Nasrabadi, H. & Zhu, D. A new modified genetic algorithm for well placement optimization under geological uncertainties. SPE Europec featured at EAGE Conference and Exhibition. SPE. (2011), May. BaumannEJDaleSIBelloutMCFieldOptA powerful and effective programming framework tailored for field development optimizationComputers Geosciences202013510437910.1016/j.cageo.2019.104379 KhanRAAwotundeAADetermination of vertical/horizontal well type from generalized field development optimizationJ. Petrol. Sci. Eng.201816265266510.1016/j.petrol.2017.10.083 AlQahtani, G., Vadapalli, R., Siddiqui, S. & Bhattacharya S Well optimization strategies in conventional reservoirs. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. SPE. (2012), April. GargHA hybrid PSO-GA algorithm for constrained optimization problemsAppl. Math. Comput.20162742923053433137 Eberhart, R. C. & Kennedy, J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science. New York, NY. (1995). Guyaguler, B. Optimization of well placement and assessment of uncertainty. Stanford University (2002). FathinasabMAyatollahiSOn the determination of CO2–crude oil minimum miscibility pressure using genetic programming combined with constrained multivariable search methodsFuel201617318018810.1016/j.fuel.2016.01.009 Yeten, B., Durlofsky, L. J. & Aziz, K. Optimization of nonconventional well type, location, and trajectory. SPE J.8(03), 200–210 (2003). Panwar, A., Tripathi, K. K. & Jha, K. N. A qualitative framework for selection of optimization algorithm for multi-objective trade-off problem in construction projects. Engineering Constr. Architectural Management (2019). GüyagülerBHorneRNUncertainty assessment of well-placement optimizationSPE Reserv. Evaluation Engineering2004701243210.2118/87663-PA WangHCiaurriDEDurlofskyLJCominelliAOptimal well placement under uncertainty using a retrospective optimization frameworkSPE J.2012170111212110.2118/141950-PA ZhangKLiGReynoldsACYaoJZhangLOptimal well placement using an adjoint gradientJ. Petrol. Sci. Eng.2010733-422022610.1016/j.petrol.2010.07.002 FathinasabMAyatollahiSHemmati-SarapardehAA rigorous approach to predict nitrogen-crude oil minimum miscibility pressure of pure and nitrogen mixturesFluid. Phase. Equilibria2015399303910.1016/j.fluid.2015.04.003 Abukhamsin, A. Y. Optimization of well design and location in a real field. Unpublished MS thesis, Stanford University, CA. (2009). Van Veldhuizen, D. A. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Air Force Inst. Technol. (1999). Awotunde, A. A. & Naranjo, C. Well placement optimization constrained to minimum well spacing. SPE Latin America and Caribbean petroleum engineering conference. SPE. (2014), May. Haupt, R. L. & Haupt, S. E. Practical genetic algorithms. John Wiley Sons (2004). Comberiati, J. R. & Zammerilli, A. M. Effects of petroleum-reservoir conditions on oil recovery by carbon dioxide injection. Department of Energy, Morgantown, WV (USA). Morgantown Energy Technology Center. (1982). Arsenyev-Obraztsov, S. S., Ermolaev, A. I., Kuvichko, A. M., Naevdal, G. & Shafieirad, A. Improvement of oil and gas recovery by optimal well placement. IOR -16th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers. (2011, April). (2011). GuyagulerBHorneRNRogersLRosenzweigJJOptimization of well placement in a Gulf of Mexico waterflooding projectSPE Reserv. Evaluation Engineering200250322923610.2118/78266-PA Onwunalu, J., Litvak, M., Durlofsky, L. J. & Aziz K Application of statistical proxies to speed up field development optimization procedures. Abu Dhabi international petroleum exhibition and conference. SPE. (2008), November. Bittencourt, A. C. & Horne, R. N. Reservoir development and design optimization. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. (1997). GoldbergDEDebKA comparative analysis of selection schemes used in genetic algorithmsFound. Genetic Algorithms1991169931147425 SheikhalishahiMEbrahimipourVShiriHZamanHJeihoonianMA hybrid GA–PSO approach for reliability optimization in redundancy allocation problemInt. J. Adv. Manuf. Technol.20136831733810.1007/s00170-013-4730-6 Haupt, R. L. Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. Antennas and Propagation Society International Symposium, IEEE. (2000). Emerick, A. A. et al. Well placement optimization using a genetic algorithm with nonlinear constraints. SPE reservoir simulation symposium. OnePetro. (2009). HeYChangPLiuYChenJLiCOptimize well Placement based on genetic algorithm and Productivity potential mapsFront. Energy Res.20221086022010.3389/fenrg.2022.860220 Montes, G., Bartolome, P. & Udias, A. L. The use of genetic algorithms in well placement optimization. SPE Latin American and Caribbean petroleum engineering conference. OnePetro. (2001). Farmer, C., Fowkes, J. & Gould, N. Optimal multilateral well placement. (2010). Goldberg, D. E. Genetic algorithms in search optimization and machine learning. Addison-wesley Read. Menlo Park412, (1989). PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell.200711335710.1007/s11721-007-0002-0 DingSLuRXiYLiuGMaJEfficient well placement optimization coupling hybrid objective function with particle swarm optimization algorithmAppl. Soft Comput.20209510651110.1016/j.asoc.2020.106511 Onwunalu, J. Optimization of nonconventional well placement using genetic algorithms and statistical proxy. Stanford University (2006). BangerthWKlieHWheelerMFStoffaPLSenMKOn optimization algorithms for the reservoir oil well placement problemComput. GeoSci.20061030331910.1007/s10596-006-9025-7 HumphriesTDHaynesRDJoint optimization of well placement and control for nonconventional well typesJ. Petrol. Sci. Eng.201512624225310.1016/j.petrol.2014.12.016 Jesmani, M., Bellout, M. C., Hanea, R. & Foss, B. Particle swarm optimization algorithm for optimum well placement subject to realistic field development constraints. SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE. (2015), September. Onwunalu, J. E. Optimization of field development using particle swarm optimization and new well pattern descriptions. Stanford University (2010). BiswasKVasantPMVintanedJAGWatadaJCellular automata-based multi-objective hybrid Grey Wolf optimization and particle swarm optimization algorithm for wellbore trajectory optimizationJ. Nat. Gas Sci. Eng.20218510369510.1016/j.jngse.2020.103695 Zangl, G., Graf, T. & Al-Kinani, A. Proxy modeling in production optimization. SPE Europec/EAGE Annual Conference and Exhibition. OnePetro. (2006). Jasbir, S. Arora. Introduction to Optimum Design (Second Edition), 8 - Numerical methods for unconstrained Optimum Design. Acad. Press. 277–304. (2004). 78196_CR1 78196_CR2 K Biswas (78196_CR33) 2021; 85 78196_CR3 78196_CR42 78196_CR5 R Poli (78196_CR44) 2007; 1 78196_CR7 78196_CR9 C Roy (78196_CR36) 2021; 46 M Fathinasab (78196_CR39) 2015; 399 H Wang (78196_CR29) 2012; 17 RA Khan (78196_CR32) 2018; 162 78196_CR37 78196_CR38 B Guyaguler (78196_CR6) 2002; 5 H Garg (78196_CR35) 2016; 274 S Ding (78196_CR46) 2020; 95 Y He (78196_CR24) 2022; 10 M Sheikhalishahi (78196_CR34) 2013; 68 TD Humphries (78196_CR31) 2015; 126 M Fathinasab (78196_CR40) 2016; 173 78196_CR47 78196_CR48 78196_CR49 78196_CR43 DE Goldberg (78196_CR41) 1991; 1 78196_CR45 HY Park (78196_CR23) 2017; 152 78196_CR20 B Güyagüler (78196_CR13) 2004; 7 78196_CR18 78196_CR19 78196_CR14 78196_CR15 78196_CR17 78196_CR10 78196_CR11 78196_CR12 78196_CR30 W Bangerth (78196_CR4) 2006; 10 EJ Baumann (78196_CR8) 2020; 135 K Zhang (78196_CR16) 2010; 73 78196_CR25 78196_CR26 78196_CR27 78196_CR28 78196_CR21 78196_CR22 |
| References_xml | – reference: Comberiati, J. R. & Zammerilli, A. M. Effects of petroleum-reservoir conditions on oil recovery by carbon dioxide injection. Department of Energy, Morgantown, WV (USA). Morgantown Energy Technology Center. (1982). – reference: Panwar, A., Tripathi, K. K. & Jha, K. N. A qualitative framework for selection of optimization algorithm for multi-objective trade-off problem in construction projects. Engineering Constr. Architectural Management (2019). – reference: Onwunalu, J., Litvak, M., Durlofsky, L. J. & Aziz K Application of statistical proxies to speed up field development optimization procedures. Abu Dhabi international petroleum exhibition and conference. SPE. (2008), November. – reference: PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell.200711335710.1007/s11721-007-0002-0 – reference: WangHCiaurriDEDurlofskyLJCominelliAOptimal well placement under uncertainty using a retrospective optimization frameworkSPE J.2012170111212110.2118/141950-PA – reference: HeYChangPLiuYChenJLiCOptimize well Placement based on genetic algorithm and Productivity potential mapsFront. Energy Res.20221086022010.3389/fenrg.2022.860220 – reference: BaumannEJDaleSIBelloutMCFieldOptA powerful and effective programming framework tailored for field development optimizationComputers Geosciences202013510437910.1016/j.cageo.2019.104379 – reference: FathinasabMAyatollahiSHemmati-SarapardehAA rigorous approach to predict nitrogen-crude oil minimum miscibility pressure of pure and nitrogen mixturesFluid. Phase. Equilibria2015399303910.1016/j.fluid.2015.04.003 – reference: DingSLuRXiYLiuGMaJEfficient well placement optimization coupling hybrid objective function with particle swarm optimization algorithmAppl. Soft Comput.20209510651110.1016/j.asoc.2020.106511 – reference: Awotunde, A. A. & Naranjo, C. Well placement optimization constrained to minimum well spacing. SPE Latin America and Caribbean petroleum engineering conference. SPE. (2014), May. – reference: ParkHYYangCAl-AruriADFjerstadPAImproved decision making with new efficient workflows for well placement optimizationJ. Petrol. Sci. Eng.2017152819010.1016/j.petrol.2017.02.011 – reference: Van Veldhuizen, D. A. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Air Force Inst. Technol. (1999). – reference: GuyagulerBHorneRNRogersLRosenzweigJJOptimization of well placement in a Gulf of Mexico waterflooding projectSPE Reserv. Evaluation Engineering200250322923610.2118/78266-PA – reference: Abukhamsin, A. Y. Optimization of well design and location in a real field. Unpublished MS thesis, Stanford University, CA. (2009). – reference: Montes, G., Bartolome, P. & Udias, A. L. The use of genetic algorithms in well placement optimization. SPE Latin American and Caribbean petroleum engineering conference. OnePetro. (2001). – reference: Jesmani, M., Bellout, M. C., Hanea, R. & Foss, B. Particle swarm optimization algorithm for optimum well placement subject to realistic field development constraints. SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE. (2015), September. – reference: Haupt, R. L. & Haupt, S. E. Practical genetic algorithms. John Wiley Sons (2004). – reference: Morales, A. N., Nasrabadi, H. & Zhu, D. A new modified genetic algorithm for well placement optimization under geological uncertainties. SPE Europec featured at EAGE Conference and Exhibition. SPE. (2011), May. – reference: Guyaguler, B. Optimization of well placement and assessment of uncertainty. Stanford University (2002). – reference: Arsenyev-Obraztsov, S. S., Ermolaev, A. I., Kuvichko, A. M., Naevdal, G. & Shafieirad, A. Improvement of oil and gas recovery by optimal well placement. IOR -16th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers. (2011, April). (2011). – reference: Bittencourt, A. C. & Horne, R. N. Reservoir development and design optimization. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. (1997). – reference: Eberhart, R. C. & Kennedy, J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science. New York, NY. (1995). – reference: Zangl, G., Graf, T. & Al-Kinani, A. Proxy modeling in production optimization. SPE Europec/EAGE Annual Conference and Exhibition. OnePetro. (2006). – reference: Goldberg, D. E. Genetic algorithms in search optimization and machine learning. Addison-wesley Read. Menlo Park412, (1989). – reference: Haupt, R. L. Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. Antennas and Propagation Society International Symposium, IEEE. (2000). – reference: Emerick, A. A. et al. Well placement optimization using a genetic algorithm with nonlinear constraints. SPE reservoir simulation symposium. OnePetro. (2009). – reference: Jasbir, S. Arora. Introduction to Optimum Design (Second Edition), 8 - Numerical methods for unconstrained Optimum Design. Acad. Press. 277–304. (2004). – reference: Engelbrecht, A. P. Fundamentals of computational swarm intelligence. John Wiley Sons (2006). – reference: BangerthWKlieHWheelerMFStoffaPLSenMKOn optimization algorithms for the reservoir oil well placement problemComput. GeoSci.20061030331910.1007/s10596-006-9025-7 – reference: Farshi, M. M. Improving genetic algorithms for optimum well placement. Stanford Univ. Stanf. CA (2008). – reference: SheikhalishahiMEbrahimipourVShiriHZamanHJeihoonianMA hybrid GA–PSO approach for reliability optimization in redundancy allocation problemInt. J. Adv. Manuf. Technol.20136831733810.1007/s00170-013-4730-6 – reference: Farmer, C., Fowkes, J. & Gould, N. Optimal multilateral well placement. (2010). – reference: Onwunalu, J. Optimization of nonconventional well placement using genetic algorithms and statistical proxy. Stanford University (2006). – reference: BiswasKVasantPMVintanedJAGWatadaJCellular automata-based multi-objective hybrid Grey Wolf optimization and particle swarm optimization algorithm for wellbore trajectory optimizationJ. Nat. Gas Sci. Eng.20218510369510.1016/j.jngse.2020.103695 – reference: Michalewicz, Z. Genetic algorithms + data structures = evolution programs. Springer Science Business Media (2013). – reference: ZhangKLiGReynoldsACYaoJZhangLOptimal well placement using an adjoint gradientJ. Petrol. Sci. Eng.2010733-422022610.1016/j.petrol.2010.07.002 – reference: FathinasabMAyatollahiSOn the determination of CO2–crude oil minimum miscibility pressure using genetic programming combined with constrained multivariable search methodsFuel201617318018810.1016/j.fuel.2016.01.009 – reference: Yeten, B., Durlofsky, L. J. & Aziz, K. Optimization of nonconventional well type, location, and trajectory. SPE J.8(03), 200–210 (2003). – reference: GargHA hybrid PSO-GA algorithm for constrained optimization problemsAppl. Math. Comput.20162742923053433137 – reference: AlQahtani, G., Vadapalli, R., Siddiqui, S. & Bhattacharya S Well optimization strategies in conventional reservoirs. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. SPE. (2012), April. – reference: HumphriesTDHaynesRDJoint optimization of well placement and control for nonconventional well typesJ. Petrol. Sci. Eng.201512624225310.1016/j.petrol.2014.12.016 – reference: Litvak, M. L. et al. Field development optimization technology. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers. (2007). – reference: Lee, J. W., Park, C., Kang, J. M. & Jeong, C. K. Horizontal well design incorporated with interwell interference, drilling location, and trajectory for the recovery optimization. SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE. (2009), October. – reference: GoldbergDEDebKA comparative analysis of selection schemes used in genetic algorithmsFound. Genetic Algorithms1991169931147425 – reference: Onwunalu, J. E. Optimization of field development using particle swarm optimization and new well pattern descriptions. Stanford University (2010). – reference: KhanRAAwotundeAADetermination of vertical/horizontal well type from generalized field development optimizationJ. Petrol. Sci. Eng.201816265266510.1016/j.petrol.2017.10.083 – reference: RoyCDasDKA hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimizationSādhanā2021462101426769210.1007/s12046-021-01626-z – reference: Rosen, K. H. & Kamala Krithivasan. Discrete mathematics and its applications. New. York: McGraw-Hill6, 410 (1999). – reference: GüyagülerBHorneRNUncertainty assessment of well-placement optimizationSPE Reserv. Evaluation Engineering2004701243210.2118/87663-PA – ident: 78196_CR25 doi: 10.2523/106426-MS – ident: 78196_CR27 doi: 10.2118/143617-MS – ident: 78196_CR20 doi: 10.3997/2214-4609-pdb.170.spe125539 – ident: 78196_CR1 doi: 10.2172/6276441 – ident: 78196_CR2 doi: 10.2118/38895-MS – volume: 5 start-page: 229 issue: 03 year: 2002 ident: 78196_CR6 publication-title: SPE Reserv. Evaluation Engineering doi: 10.2118/78266-PA – volume: 46 start-page: 101 issue: 2 year: 2021 ident: 78196_CR36 publication-title: Sādhanā doi: 10.1007/s12046-021-01626-z – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 78196_CR44 publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – ident: 78196_CR3 – volume: 7 start-page: 24 issue: 01 year: 2004 ident: 78196_CR13 publication-title: SPE Reserv. Evaluation Engineering doi: 10.2118/87663-PA – ident: 78196_CR18 doi: 10.2118/86880-PA – ident: 78196_CR17 doi: 10.3997/2214-4609.20144994 – ident: 78196_CR26 doi: 10.2118/69439-MS – volume: 85 start-page: 103695 year: 2021 ident: 78196_CR33 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103695 – volume: 126 start-page: 242 year: 2015 ident: 78196_CR31 publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2014.12.016 – ident: 78196_CR28 – ident: 78196_CR45 – ident: 78196_CR38 – volume: 68 start-page: 317 year: 2013 ident: 78196_CR34 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-4730-6 – volume: 10 start-page: 303 year: 2006 ident: 78196_CR4 publication-title: Comput. GeoSci. doi: 10.1007/s10596-006-9025-7 – ident: 78196_CR7 doi: 10.2118/160861-MS – ident: 78196_CR19 doi: 10.3997/2214-4609.201404805 – volume: 162 start-page: 652 year: 2018 ident: 78196_CR32 publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2017.10.083 – ident: 78196_CR48 doi: 10.1145/298151.298382 – volume: 95 start-page: 106511 year: 2020 ident: 78196_CR46 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106511 – volume: 152 start-page: 81 year: 2017 ident: 78196_CR23 publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2017.02.011 – volume: 274 start-page: 292 year: 2016 ident: 78196_CR35 publication-title: Appl. Math. Comput. – ident: 78196_CR42 – ident: 78196_CR14 – volume: 173 start-page: 180 year: 2016 ident: 78196_CR40 publication-title: Fuel doi: 10.1016/j.fuel.2016.01.009 – ident: 78196_CR15 doi: 10.2118/169272-MS – ident: 78196_CR30 doi: 10.2118/175590-MS – volume: 10 start-page: 860220 year: 2022 ident: 78196_CR24 publication-title: Front. Energy Res. doi: 10.3389/fenrg.2022.860220 – ident: 78196_CR10 – ident: 78196_CR43 doi: 10.1002/0471671746 – ident: 78196_CR37 – ident: 78196_CR11 doi: 10.2118/117323-MS – ident: 78196_CR21 doi: 10.2118/118808-MS – ident: 78196_CR49 doi: 10.1016/B978-012064155-0/50008-2 – ident: 78196_CR5 – volume: 1 start-page: 69 year: 1991 ident: 78196_CR41 publication-title: Found. Genetic Algorithms – ident: 78196_CR22 – volume: 135 start-page: 104379 year: 2020 ident: 78196_CR8 publication-title: Computers Geosciences doi: 10.1016/j.cageo.2019.104379 – volume: 17 start-page: 112 issue: 01 year: 2012 ident: 78196_CR29 publication-title: SPE J. doi: 10.2118/141950-PA – ident: 78196_CR47 – ident: 78196_CR12 doi: 10.2523/100131-MS – volume: 399 start-page: 30 year: 2015 ident: 78196_CR39 publication-title: Fluid. Phase. Equilibria doi: 10.1016/j.fluid.2015.04.003 – ident: 78196_CR9 doi: 10.1108/ECAM-06-2018-0246 – volume: 73 start-page: 220 issue: 3-4 year: 2010 ident: 78196_CR16 publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2010.07.002 |
| SSID | ssj0000529419 |
| Score | 2.4455638 |
| Snippet | Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These... Abstract Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development.... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 26725 |
| SubjectTerms | 639/166/4073 639/166/898 639/166/988 Algorithms Fluid flow Genetic algorithm Genetic algorithms Humanities and Social Sciences multidisciplinary Optimization algorithms Particle swarm optimization Reservoir Simulation Science Science (multidisciplinary) Well Placement Pattern |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFd2GhICNxA6t2nPhxQoCoOEC1BxA9YTm2s62UJstmW4l_z9jxptoCvXCNHcnOeDxf5vENQq8Ao2sllCA6sIqUpVekFr4kzAWvgpVKu8Qz-1keHqqjIz3PDrchp1Vu7sR0UfveRR_5PocrVseyTfZ2-ZPErlExuppbaFxHNwDZsJjS9aWYTz6WGMUqmc61MpSr_QHsVawpK0oiwRYKIrfsUaLt_xvW_DNl8lLcNJmjg7v_u5F76E4GovjdeHLuo2uhe4Buja0pfz1EP76HtsXzxL7Z4R4ultNcsYntgC1e5mZHeDlWGuCYQL-Aga4_Dy3OtVjBX3q1XcBS1senj9C3g49fP3wiuRcDcVXJ1kR61nALYEUH7Sh3QtRKV0E5xoVXFlAAl430gN9qpTirlJSVb1wtGgu_TIHyXbTT9V14gnBFfR1xhrXOlpGOvmA1D1o6y-uCOjZDbCMR4zJReeyX0ZoUMOfKjFI0IEWTpGjkDL2e3lmONB1Xzn4fBT3NjBTb6UG_WpissabSouaVCoUCjGaps9Q731Ctah98qekM7W3ka7LeD-ZCuDP0choGjY1hGNuF_izNKQFWAtaeocfjqZpWwnWphaIworbO29ZSt0e6k-PECg4KEIPEsLk3m6N5sa5_f4unV2_jGbpdRG2JjvRqD-2sV2fhObrpztcnw-pFUrffV94xyQ priority: 102 providerName: ProQuest |
| Title | Well Pattern optimization as a planning process using a novel developed optimization algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-024-78196-7 https://www.ncbi.nlm.nih.gov/pubmed/39496806 https://www.proquest.com/docview/3123927891 https://www.proquest.com/docview/3124125016 https://pubmed.ncbi.nlm.nih.gov/PMC11535017 https://doaj.org/article/596b358e28584a0ca0dcdf098bded490 |
| Volume | 14 |
| WOSCitedRecordID | wos001348039700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4lkWyspI3CCqHTt-HClqBRJdRQjEcsFybKddKU1Wu9tK_HvGTnbplteFiw-xLU08M5nPsecbhF4CRtdKKJHpQIuMc6-ySnieURe8ClYq7RLP7Ac5majpVJdXSn3FO2E9PXC_cAeFFhUrVMgVhEpLnCXe-ZpoVfnguU67dSL1lc1Uz-qda071kCVDmDpYQqSK2WQ5zyREQZHJrUiUCPt_hzJ_vSx57cQ0BaLje-jugCDxm17y--hGaB-g231Nye8P0bcvoWlwmWgzW9zBF-F8SLXEdoktng9VivC8TxHA8eb7KXS03WVo8JBEFfy1qc1pt5itzs4foc_HR5_evsuGIgqZKzhdZdLTmllAGTpoR5gTolK6CMpRJryyEL6ZrKUH4FUpxWihpCx87SpRW9jrBMIeo522a8MThAviqwgQrHWWRx75nFYsaOksq3Li6AjR9YIaNzCMx0IXjUkn3UyZXgkGlGCSEowcoVebOfOeX-Ovow-jnjYjIzd2egAWYwaLMf-ymBHaX2vZDA67NAwiuI5ZwfAWLzbd4Grx_MS2obtIYzjgQQDJI7TXG8VGEqa5FopAj9oyly1Rt3va2Vmi8wZMHk934eVery3rp1x_Xoun_2MtnqE7eXSJ-J-82Ec7q8VFeI5uucvVbLkYo5tyKlOrxmj38GhSfhwnP4P2JC9jK6HdLd-flF9_AEH6Kzs |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9mWggJHgBFHj2IntA0JsVasOox6K6Anj2J5ppWkyzEyL-qf4jTw7yVRToLceuOY5ke18b7HfBvACbXQlC1kkytM84dzJpCwcT6j1TnojpLKxzmxfDAZyb0_trMCvLhcmhFV2MjEKalfbcEe-zlDEqpC2Sd9OfiSha1TwrnYtNBpYbPuTn3hkm73Z-oj_92WWbXza_bCZtF0FEptzOk-Eo0NmUO0qr2zKbFGUUuVeWsoKJw3qMyaGwqElUkrJaC6FyN3QlsXQoPHvU4bfvQSXeagsFkIFs53FnU7wmnGq2tyclMn1GerHkMOW8USg7i0SsaT_YpuAv9m2f4ZonvHTRvW3cfN_27hbcKM1tMm7hjNuw4qv7sDVpvXmyV349tWPx2QnVhetSI2C87DNSCVmRgyZtM2cyKTJpCAhQWCEhKo-9mPS5pp5d-bV8QiXPt8_vAdfLmRx92G1qiv_EEieujLYUcZYw0O5_YyWzCthDSuz1NIe0A4B2raF2EM_kLGOAQFM6gY1GlGjI2q06MGrxTuTpgzJuaPfB2AtRoYS4vFBPR3pViLpXBUly6XPJNqgJrUmddYNUyVL5x1XaQ_WOjzpVq7N9CmYevB8QUaJFNxMpvL1URzD0WzGs0QPHjQoXsyEKa4KmSJFLuF7aarLlOpgP1Y9x6NLcILj4l53rHA6r3_vxaPzl_EMrm3ufu7r_tZg-zFczwKnBqdBvgar8-mRfwJX7PH8YDZ9GlmdwPeLZpHfl3-NGQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLdGB4gL32yFAUaCE0SNYye2DwgBo6LaqHoAsV0wju10k7qktN3Q_jX-Op4Tp1MH7LYD19iJ_Jzf-_Lzew-h52CjS5GJLJKOpBFjVkR5ZllEjLPCaS6kqevM7vLhUOztydEa-tXmwvhrla1MrAW1rYw_I-9RELHSp22SXhGuRYy2-2-mPyLfQcpHWtt2Gg1EdtzpT3Df5q8H2_CvXyRJ_8Pn9x-j0GEgMikji4hbUlANKlg6aWJqsiwXMnXCEJpZoUG3UV5wC1ZJLgQlqeA8tYXJs0KDI-BiCt-9gtbBJGdJB62PBp9G-8sTHh9DY0SGTJ2Yit4ctKXPaEtYxEETZxFf0YZ104C_Wbp_Xtg8F7WtlWH_1v-8jbfRzWCC47cNz9xBa668i641TTlP76FvX91kgkd13dESVyBSj0KuKtZzrPE0tHnC0ybHAvvUgTEMlNWJm-CQhebsuVcnYyB9cXB0H325FOIeoE5ZlW4T4TS2ubewtDaa-UL8Ccmpk9xomiexIV1EWjQoE0q0-04hE1VfFaBCNQhSgCBVI0jxLnq5fGfaFCi5cPY7D7LlTF9cvH5QzcYqyCqVyiynqXCJAOtUx0bH1tgiliK3zjIZd9FWiy0VJN5cnQGri54th0FW-QCULl11XM9hYFCDl9FFGw2ilyuhkslMxDAiVrC-stTVkfLwoK6HDk6ND48Dca9atjhb17_34uHFZDxF14Ez1O5guPMI3Ug80_poQrqFOovZsXuMrpqTxeF89iTwPUbfL5tHfgMUMpdi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well+Pattern+optimization+as+a+planning+process+using+a+novel+developed+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Zaheri%2C+Seyed+Hayan&rft.au=Hosseini%2C+Mahdi&rft.au=Fathinasab%2C+Mohammad&rft.date=2024-11-05&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=26725&rft_id=info:doi/10.1038%2Fs41598-024-78196-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |