Well Pattern optimization as a planning process using a novel developed optimization algorithm

Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 14; H. 1; S. 26725 - 14
Hauptverfasser: Zaheri, Seyed Hayan, Hosseini, Mahdi, Fathinasab, Mohammad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 05.11.2024
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simulations for various parameters can be time-consuming and costly. Also, due to the high dimension of the possible solutions, there is still no general approach to address this problem. The application of searching algorithm as a general approach to solve such problems has received much attention in recent years. In this study, the efficiency, and reliability of genetic algorithm, particle swarm optimization and in particular a newly developed algorithm was analyzed and compared. The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. In traditional genetic algorithms, solutions lacking adequate qualifications are deleted from the algorithmic process; however, the new algorithm provides these solutions with additional opportunities to prove themselves by acquiring new velocities from particle swarm optimization. The results indicate that while the genetic algorithm and particle swarm optimization do not guarantee optimal outcomes, the newly developed algorithm outperforms both methods. This performance was tested across various scenarios focused on well pattern optimization, highlighting its innovative contribution to the field development.
AbstractList Abstract Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simulations for various parameters can be time-consuming and costly. Also, due to the high dimension of the possible solutions, there is still no general approach to address this problem. The application of searching algorithm as a general approach to solve such problems has received much attention in recent years. In this study, the efficiency, and reliability of genetic algorithm, particle swarm optimization and in particular a newly developed algorithm was analyzed and compared. The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. In traditional genetic algorithms, solutions lacking adequate qualifications are deleted from the algorithmic process; however, the new algorithm provides these solutions with additional opportunities to prove themselves by acquiring new velocities from particle swarm optimization. The results indicate that while the genetic algorithm and particle swarm optimization do not guarantee optimal outcomes, the newly developed algorithm outperforms both methods. This performance was tested across various scenarios focused on well pattern optimization, highlighting its innovative contribution to the field development.
Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simulations for various parameters can be time-consuming and costly. Also, due to the high dimension of the possible solutions, there is still no general approach to address this problem. The application of searching algorithm as a general approach to solve such problems has received much attention in recent years. In this study, the efficiency, and reliability of genetic algorithm, particle swarm optimization and in particular a newly developed algorithm was analyzed and compared. The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. In traditional genetic algorithms, solutions lacking adequate qualifications are deleted from the algorithmic process; however, the new algorithm provides these solutions with additional opportunities to prove themselves by acquiring new velocities from particle swarm optimization. The results indicate that while the genetic algorithm and particle swarm optimization do not guarantee optimal outcomes, the newly developed algorithm outperforms both methods. This performance was tested across various scenarios focused on well pattern optimization, highlighting its innovative contribution to the field development.Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simulations for various parameters can be time-consuming and costly. Also, due to the high dimension of the possible solutions, there is still no general approach to address this problem. The application of searching algorithm as a general approach to solve such problems has received much attention in recent years. In this study, the efficiency, and reliability of genetic algorithm, particle swarm optimization and in particular a newly developed algorithm was analyzed and compared. The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. In traditional genetic algorithms, solutions lacking adequate qualifications are deleted from the algorithmic process; however, the new algorithm provides these solutions with additional opportunities to prove themselves by acquiring new velocities from particle swarm optimization. The results indicate that while the genetic algorithm and particle swarm optimization do not guarantee optimal outcomes, the newly developed algorithm outperforms both methods. This performance was tested across various scenarios focused on well pattern optimization, highlighting its innovative contribution to the field development.
Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These optimum conditions depend on geological and petrophysical factors, fluid flow regimes, and economic variables. However, conducting numerous simulations for various parameters can be time-consuming and costly. Also, due to the high dimension of the possible solutions, there is still no general approach to address this problem. The application of searching algorithm as a general approach to solve such problems has received much attention in recent years. In this study, the efficiency, and reliability of genetic algorithm, particle swarm optimization and in particular a newly developed algorithm was analyzed and compared. The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. In traditional genetic algorithms, solutions lacking adequate qualifications are deleted from the algorithmic process; however, the new algorithm provides these solutions with additional opportunities to prove themselves by acquiring new velocities from particle swarm optimization. The results indicate that while the genetic algorithm and particle swarm optimization do not guarantee optimal outcomes, the newly developed algorithm outperforms both methods. This performance was tested across various scenarios focused on well pattern optimization, highlighting its innovative contribution to the field development.
ArticleNumber 26725
Author Zaheri, Seyed Hayan
Hosseini, Mahdi
Fathinasab, Mohammad
Author_xml – sequence: 1
  givenname: Seyed Hayan
  surname: Zaheri
  fullname: Zaheri, Seyed Hayan
  email: hayanzaheri88@gmail.com
  organization: National Iranian Oil Company
– sequence: 2
  givenname: Mahdi
  surname: Hosseini
  fullname: Hosseini, Mahdi
  organization: National Iranian Oil Company
– sequence: 3
  givenname: Mohammad
  surname: Fathinasab
  fullname: Fathinasab, Mohammad
  organization: Research Institute of Petroleum Industry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39496806$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAURS1UREvpDzBAkZgwCfgRO_YIoYpHpUowADHDcmwn9VViB9upVL4e56aF9g7qgZ9rb20dn-fgyAdvAXiJ4FsECX-XGkQFryFu6pYjwer2CTjBsKE1Jhgf3dsfg7OUdrAMikWDxDNwTEQjGIfsBPz6acex-qZyttFXYc5ucn9UdsFXKlWqmkflvfNDNcegbUrVktaTqny4tmNlbJnDbM2BdBxCdPlqegGe9mpM9ux2PQU_Pn38fv6lvvz6-eL8w2WtaYNy3RrUE8UbJqzQkGjGOi6o5RoRZrhCFJO2bw2nqOOcIMrblpped6xXDDMLySm42HxNUDs5RzepeCODcnJ_EeIgVcxOj1ZSwTpCucWc8kZBraDRpoeCd8aaRqxe7zeveekma7T1OarxgenDF--u5BCuJUKUUIja4vDm1iGG34tNWU4u6VJo5W1YkiQINwgXlBX09QG6C0v0pVYrRQRuuUCFenU_0r8sd_9YAL4BOoaUou2ldnn_FyWhGyWCcu0auXWNLF0j910j17D4QHrn_qiIbKJUYD_Y-D_2I6q_cHHU5Q
CitedBy_id crossref_primary_10_3390_pr13030599
crossref_primary_10_17341_gazimmfd_1308301
Cites_doi 10.2523/106426-MS
10.2118/143617-MS
10.3997/2214-4609-pdb.170.spe125539
10.2172/6276441
10.2118/38895-MS
10.2118/78266-PA
10.1007/s12046-021-01626-z
10.1007/s11721-007-0002-0
10.2118/87663-PA
10.2118/86880-PA
10.3997/2214-4609.20144994
10.2118/69439-MS
10.1016/j.jngse.2020.103695
10.1016/j.petrol.2014.12.016
10.1007/s00170-013-4730-6
10.1007/s10596-006-9025-7
10.2118/160861-MS
10.3997/2214-4609.201404805
10.1016/j.petrol.2017.10.083
10.1145/298151.298382
10.1016/j.asoc.2020.106511
10.1016/j.petrol.2017.02.011
10.1016/j.fuel.2016.01.009
10.2118/169272-MS
10.2118/175590-MS
10.3389/fenrg.2022.860220
10.1002/0471671746
10.2118/117323-MS
10.2118/118808-MS
10.1016/B978-012064155-0/50008-2
10.1016/j.cageo.2019.104379
10.2118/141950-PA
10.2523/100131-MS
10.1016/j.fluid.2015.04.003
10.1108/ECAM-06-2018-0246
10.1016/j.petrol.2010.07.002
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-78196-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_596b358e28584a0ca0dcdf098bded490
PMC11535017
39496806
10_1038_s41598_024_78196_7
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-7d1f3a8469e9c03c66b895e8c136d8a15237f7d851b883158775dfcb6fa626e03
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001348039700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:52:36 EDT 2025
Tue Nov 04 02:05:45 EST 2025
Thu Sep 04 16:56:31 EDT 2025
Tue Oct 28 13:16:35 EDT 2025
Thu Apr 03 06:55:25 EDT 2025
Tue Nov 18 22:30:28 EST 2025
Sat Nov 29 05:24:38 EST 2025
Fri Feb 21 02:36:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Reservoir Simulation
Genetic algorithm
Particle swarm optimization
Well Placement Pattern
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-7d1f3a8469e9c03c66b895e8c136d8a15237f7d851b883158775dfcb6fa626e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/596b358e28584a0ca0dcdf098bded490
PMID 39496806
PQID 3123927891
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_596b358e28584a0ca0dcdf098bded490
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11535017
proquest_miscellaneous_3124125016
proquest_journals_3123927891
pubmed_primary_39496806
crossref_citationtrail_10_1038_s41598_024_78196_7
crossref_primary_10_1038_s41598_024_78196_7
springer_journals_10_1038_s41598_024_78196_7
PublicationCentury 2000
PublicationDate 2024-11-05
PublicationDateYYYYMMDD 2024-11-05
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Lee, J. W., Park, C., Kang, J. M. & Jeong, C. K. Horizontal well design incorporated with interwell interference, drilling location, and trajectory for the recovery optimization. SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE. (2009), October.
Farshi, M. M. Improving genetic algorithms for optimum well placement. Stanford Univ. Stanf. CA (2008).
Michalewicz, Z. Genetic algorithms + data structures = evolution programs. Springer Science Business Media (2013).
RoyCDasDKA hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimizationSādhanā2021462101426769210.1007/s12046-021-01626-z
Engelbrecht, A. P. Fundamentals of computational swarm intelligence. John Wiley Sons (2006).
Rosen, K. H. & Kamala Krithivasan. Discrete mathematics and its applications. New. York: McGraw-Hill6, 410 (1999).
Litvak, M. L. et al. Field development optimization technology. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers. (2007).
ParkHYYangCAl-AruriADFjerstadPAImproved decision making with new efficient workflows for well placement optimizationJ. Petrol. Sci. Eng.2017152819010.1016/j.petrol.2017.02.011
Morales, A. N., Nasrabadi, H. & Zhu, D. A new modified genetic algorithm for well placement optimization under geological uncertainties. SPE Europec featured at EAGE Conference and Exhibition. SPE. (2011), May.
BaumannEJDaleSIBelloutMCFieldOptA powerful and effective programming framework tailored for field development optimizationComputers Geosciences202013510437910.1016/j.cageo.2019.104379
KhanRAAwotundeAADetermination of vertical/horizontal well type from generalized field development optimizationJ. Petrol. Sci. Eng.201816265266510.1016/j.petrol.2017.10.083
AlQahtani, G., Vadapalli, R., Siddiqui, S. & Bhattacharya S Well optimization strategies in conventional reservoirs. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. SPE. (2012), April.
GargHA hybrid PSO-GA algorithm for constrained optimization problemsAppl. Math. Comput.20162742923053433137
Eberhart, R. C. & Kennedy, J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science. New York, NY. (1995).
Guyaguler, B. Optimization of well placement and assessment of uncertainty. Stanford University (2002).
FathinasabMAyatollahiSOn the determination of CO2–crude oil minimum miscibility pressure using genetic programming combined with constrained multivariable search methodsFuel201617318018810.1016/j.fuel.2016.01.009
Yeten, B., Durlofsky, L. J. & Aziz, K. Optimization of nonconventional well type, location, and trajectory. SPE J.8(03), 200–210 (2003).
Panwar, A., Tripathi, K. K. & Jha, K. N. A qualitative framework for selection of optimization algorithm for multi-objective trade-off problem in construction projects. Engineering Constr. Architectural Management (2019).
GüyagülerBHorneRNUncertainty assessment of well-placement optimizationSPE Reserv. Evaluation Engineering2004701243210.2118/87663-PA
WangHCiaurriDEDurlofskyLJCominelliAOptimal well placement under uncertainty using a retrospective optimization frameworkSPE J.2012170111212110.2118/141950-PA
ZhangKLiGReynoldsACYaoJZhangLOptimal well placement using an adjoint gradientJ. Petrol. Sci. Eng.2010733-422022610.1016/j.petrol.2010.07.002
FathinasabMAyatollahiSHemmati-SarapardehAA rigorous approach to predict nitrogen-crude oil minimum miscibility pressure of pure and nitrogen mixturesFluid. Phase. Equilibria2015399303910.1016/j.fluid.2015.04.003
Abukhamsin, A. Y. Optimization of well design and location in a real field. Unpublished MS thesis, Stanford University, CA. (2009).
Van Veldhuizen, D. A. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Air Force Inst. Technol. (1999).
Awotunde, A. A. & Naranjo, C. Well placement optimization constrained to minimum well spacing. SPE Latin America and Caribbean petroleum engineering conference. SPE. (2014), May.
Haupt, R. L. & Haupt, S. E. Practical genetic algorithms. John Wiley Sons (2004).
Comberiati, J. R. & Zammerilli, A. M. Effects of petroleum-reservoir conditions on oil recovery by carbon dioxide injection. Department of Energy, Morgantown, WV (USA). Morgantown Energy Technology Center. (1982).
Arsenyev-Obraztsov, S. S., Ermolaev, A. I., Kuvichko, A. M., Naevdal, G. & Shafieirad, A. Improvement of oil and gas recovery by optimal well placement. IOR -16th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers. (2011, April). (2011).
GuyagulerBHorneRNRogersLRosenzweigJJOptimization of well placement in a Gulf of Mexico waterflooding projectSPE Reserv. Evaluation Engineering200250322923610.2118/78266-PA
Onwunalu, J., Litvak, M., Durlofsky, L. J. & Aziz K Application of statistical proxies to speed up field development optimization procedures. Abu Dhabi international petroleum exhibition and conference. SPE. (2008), November.
Bittencourt, A. C. & Horne, R. N. Reservoir development and design optimization. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. (1997).
GoldbergDEDebKA comparative analysis of selection schemes used in genetic algorithmsFound. Genetic Algorithms1991169931147425
SheikhalishahiMEbrahimipourVShiriHZamanHJeihoonianMA hybrid GA–PSO approach for reliability optimization in redundancy allocation problemInt. J. Adv. Manuf. Technol.20136831733810.1007/s00170-013-4730-6
Haupt, R. L. Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. Antennas and Propagation Society International Symposium, IEEE. (2000).
Emerick, A. A. et al. Well placement optimization using a genetic algorithm with nonlinear constraints. SPE reservoir simulation symposium. OnePetro. (2009).
HeYChangPLiuYChenJLiCOptimize well Placement based on genetic algorithm and Productivity potential mapsFront. Energy Res.20221086022010.3389/fenrg.2022.860220
Montes, G., Bartolome, P. & Udias, A. L. The use of genetic algorithms in well placement optimization. SPE Latin American and Caribbean petroleum engineering conference. OnePetro. (2001).
Farmer, C., Fowkes, J. & Gould, N. Optimal multilateral well placement. (2010).
Goldberg, D. E. Genetic algorithms in search optimization and machine learning. Addison-wesley Read. Menlo Park412, (1989).
PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell.200711335710.1007/s11721-007-0002-0
DingSLuRXiYLiuGMaJEfficient well placement optimization coupling hybrid objective function with particle swarm optimization algorithmAppl. Soft Comput.20209510651110.1016/j.asoc.2020.106511
Onwunalu, J. Optimization of nonconventional well placement using genetic algorithms and statistical proxy. Stanford University (2006).
BangerthWKlieHWheelerMFStoffaPLSenMKOn optimization algorithms for the reservoir oil well placement problemComput. GeoSci.20061030331910.1007/s10596-006-9025-7
HumphriesTDHaynesRDJoint optimization of well placement and control for nonconventional well typesJ. Petrol. Sci. Eng.201512624225310.1016/j.petrol.2014.12.016
Jesmani, M., Bellout, M. C., Hanea, R. & Foss, B. Particle swarm optimization algorithm for optimum well placement subject to realistic field development constraints. SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE. (2015), September.
Onwunalu, J. E. Optimization of field development using particle swarm optimization and new well pattern descriptions. Stanford University (2010).
BiswasKVasantPMVintanedJAGWatadaJCellular automata-based multi-objective hybrid Grey Wolf optimization and particle swarm optimization algorithm for wellbore trajectory optimizationJ. Nat. Gas Sci. Eng.20218510369510.1016/j.jngse.2020.103695
Zangl, G., Graf, T. & Al-Kinani, A. Proxy modeling in production optimization. SPE Europec/EAGE Annual Conference and Exhibition. OnePetro. (2006).
Jasbir, S. Arora. Introduction to Optimum Design (Second Edition), 8 - Numerical methods for unconstrained Optimum Design. Acad. Press. 277–304. (2004).
78196_CR1
78196_CR2
K Biswas (78196_CR33) 2021; 85
78196_CR3
78196_CR42
78196_CR5
R Poli (78196_CR44) 2007; 1
78196_CR7
78196_CR9
C Roy (78196_CR36) 2021; 46
M Fathinasab (78196_CR39) 2015; 399
H Wang (78196_CR29) 2012; 17
RA Khan (78196_CR32) 2018; 162
78196_CR37
78196_CR38
B Guyaguler (78196_CR6) 2002; 5
H Garg (78196_CR35) 2016; 274
S Ding (78196_CR46) 2020; 95
Y He (78196_CR24) 2022; 10
M Sheikhalishahi (78196_CR34) 2013; 68
TD Humphries (78196_CR31) 2015; 126
M Fathinasab (78196_CR40) 2016; 173
78196_CR47
78196_CR48
78196_CR49
78196_CR43
DE Goldberg (78196_CR41) 1991; 1
78196_CR45
HY Park (78196_CR23) 2017; 152
78196_CR20
B Güyagüler (78196_CR13) 2004; 7
78196_CR18
78196_CR19
78196_CR14
78196_CR15
78196_CR17
78196_CR10
78196_CR11
78196_CR12
78196_CR30
W Bangerth (78196_CR4) 2006; 10
EJ Baumann (78196_CR8) 2020; 135
K Zhang (78196_CR16) 2010; 73
78196_CR25
78196_CR26
78196_CR27
78196_CR28
78196_CR21
78196_CR22
References_xml – reference: Comberiati, J. R. & Zammerilli, A. M. Effects of petroleum-reservoir conditions on oil recovery by carbon dioxide injection. Department of Energy, Morgantown, WV (USA). Morgantown Energy Technology Center. (1982).
– reference: Panwar, A., Tripathi, K. K. & Jha, K. N. A qualitative framework for selection of optimization algorithm for multi-objective trade-off problem in construction projects. Engineering Constr. Architectural Management (2019).
– reference: Onwunalu, J., Litvak, M., Durlofsky, L. J. & Aziz K Application of statistical proxies to speed up field development optimization procedures. Abu Dhabi international petroleum exhibition and conference. SPE. (2008), November.
– reference: PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell.200711335710.1007/s11721-007-0002-0
– reference: WangHCiaurriDEDurlofskyLJCominelliAOptimal well placement under uncertainty using a retrospective optimization frameworkSPE J.2012170111212110.2118/141950-PA
– reference: HeYChangPLiuYChenJLiCOptimize well Placement based on genetic algorithm and Productivity potential mapsFront. Energy Res.20221086022010.3389/fenrg.2022.860220
– reference: BaumannEJDaleSIBelloutMCFieldOptA powerful and effective programming framework tailored for field development optimizationComputers Geosciences202013510437910.1016/j.cageo.2019.104379
– reference: FathinasabMAyatollahiSHemmati-SarapardehAA rigorous approach to predict nitrogen-crude oil minimum miscibility pressure of pure and nitrogen mixturesFluid. Phase. Equilibria2015399303910.1016/j.fluid.2015.04.003
– reference: DingSLuRXiYLiuGMaJEfficient well placement optimization coupling hybrid objective function with particle swarm optimization algorithmAppl. Soft Comput.20209510651110.1016/j.asoc.2020.106511
– reference: Awotunde, A. A. & Naranjo, C. Well placement optimization constrained to minimum well spacing. SPE Latin America and Caribbean petroleum engineering conference. SPE. (2014), May.
– reference: ParkHYYangCAl-AruriADFjerstadPAImproved decision making with new efficient workflows for well placement optimizationJ. Petrol. Sci. Eng.2017152819010.1016/j.petrol.2017.02.011
– reference: Van Veldhuizen, D. A. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Air Force Inst. Technol. (1999).
– reference: GuyagulerBHorneRNRogersLRosenzweigJJOptimization of well placement in a Gulf of Mexico waterflooding projectSPE Reserv. Evaluation Engineering200250322923610.2118/78266-PA
– reference: Abukhamsin, A. Y. Optimization of well design and location in a real field. Unpublished MS thesis, Stanford University, CA. (2009).
– reference: Montes, G., Bartolome, P. & Udias, A. L. The use of genetic algorithms in well placement optimization. SPE Latin American and Caribbean petroleum engineering conference. OnePetro. (2001).
– reference: Jesmani, M., Bellout, M. C., Hanea, R. & Foss, B. Particle swarm optimization algorithm for optimum well placement subject to realistic field development constraints. SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE. (2015), September.
– reference: Haupt, R. L. & Haupt, S. E. Practical genetic algorithms. John Wiley Sons (2004).
– reference: Morales, A. N., Nasrabadi, H. & Zhu, D. A new modified genetic algorithm for well placement optimization under geological uncertainties. SPE Europec featured at EAGE Conference and Exhibition. SPE. (2011), May.
– reference: Guyaguler, B. Optimization of well placement and assessment of uncertainty. Stanford University (2002).
– reference: Arsenyev-Obraztsov, S. S., Ermolaev, A. I., Kuvichko, A. M., Naevdal, G. & Shafieirad, A. Improvement of oil and gas recovery by optimal well placement. IOR -16th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers. (2011, April). (2011).
– reference: Bittencourt, A. C. & Horne, R. N. Reservoir development and design optimization. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. (1997).
– reference: Eberhart, R. C. & Kennedy, J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science. New York, NY. (1995).
– reference: Zangl, G., Graf, T. & Al-Kinani, A. Proxy modeling in production optimization. SPE Europec/EAGE Annual Conference and Exhibition. OnePetro. (2006).
– reference: Goldberg, D. E. Genetic algorithms in search optimization and machine learning. Addison-wesley Read. Menlo Park412, (1989).
– reference: Haupt, R. L. Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. Antennas and Propagation Society International Symposium, IEEE. (2000).
– reference: Emerick, A. A. et al. Well placement optimization using a genetic algorithm with nonlinear constraints. SPE reservoir simulation symposium. OnePetro. (2009).
– reference: Jasbir, S. Arora. Introduction to Optimum Design (Second Edition), 8 - Numerical methods for unconstrained Optimum Design. Acad. Press. 277–304. (2004).
– reference: Engelbrecht, A. P. Fundamentals of computational swarm intelligence. John Wiley Sons (2006).
– reference: BangerthWKlieHWheelerMFStoffaPLSenMKOn optimization algorithms for the reservoir oil well placement problemComput. GeoSci.20061030331910.1007/s10596-006-9025-7
– reference: Farshi, M. M. Improving genetic algorithms for optimum well placement. Stanford Univ. Stanf. CA (2008).
– reference: SheikhalishahiMEbrahimipourVShiriHZamanHJeihoonianMA hybrid GA–PSO approach for reliability optimization in redundancy allocation problemInt. J. Adv. Manuf. Technol.20136831733810.1007/s00170-013-4730-6
– reference: Farmer, C., Fowkes, J. & Gould, N. Optimal multilateral well placement. (2010).
– reference: Onwunalu, J. Optimization of nonconventional well placement using genetic algorithms and statistical proxy. Stanford University (2006).
– reference: BiswasKVasantPMVintanedJAGWatadaJCellular automata-based multi-objective hybrid Grey Wolf optimization and particle swarm optimization algorithm for wellbore trajectory optimizationJ. Nat. Gas Sci. Eng.20218510369510.1016/j.jngse.2020.103695
– reference: Michalewicz, Z. Genetic algorithms + data structures = evolution programs. Springer Science Business Media (2013).
– reference: ZhangKLiGReynoldsACYaoJZhangLOptimal well placement using an adjoint gradientJ. Petrol. Sci. Eng.2010733-422022610.1016/j.petrol.2010.07.002
– reference: FathinasabMAyatollahiSOn the determination of CO2–crude oil minimum miscibility pressure using genetic programming combined with constrained multivariable search methodsFuel201617318018810.1016/j.fuel.2016.01.009
– reference: Yeten, B., Durlofsky, L. J. & Aziz, K. Optimization of nonconventional well type, location, and trajectory. SPE J.8(03), 200–210 (2003).
– reference: GargHA hybrid PSO-GA algorithm for constrained optimization problemsAppl. Math. Comput.20162742923053433137
– reference: AlQahtani, G., Vadapalli, R., Siddiqui, S. & Bhattacharya S Well optimization strategies in conventional reservoirs. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. SPE. (2012), April.
– reference: HumphriesTDHaynesRDJoint optimization of well placement and control for nonconventional well typesJ. Petrol. Sci. Eng.201512624225310.1016/j.petrol.2014.12.016
– reference: Litvak, M. L. et al. Field development optimization technology. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers. (2007).
– reference: Lee, J. W., Park, C., Kang, J. M. & Jeong, C. K. Horizontal well design incorporated with interwell interference, drilling location, and trajectory for the recovery optimization. SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE. (2009), October.
– reference: GoldbergDEDebKA comparative analysis of selection schemes used in genetic algorithmsFound. Genetic Algorithms1991169931147425
– reference: Onwunalu, J. E. Optimization of field development using particle swarm optimization and new well pattern descriptions. Stanford University (2010).
– reference: KhanRAAwotundeAADetermination of vertical/horizontal well type from generalized field development optimizationJ. Petrol. Sci. Eng.201816265266510.1016/j.petrol.2017.10.083
– reference: RoyCDasDKA hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimizationSādhanā2021462101426769210.1007/s12046-021-01626-z
– reference: Rosen, K. H. & Kamala Krithivasan. Discrete mathematics and its applications. New. York: McGraw-Hill6, 410 (1999).
– reference: GüyagülerBHorneRNUncertainty assessment of well-placement optimizationSPE Reserv. Evaluation Engineering2004701243210.2118/87663-PA
– ident: 78196_CR25
  doi: 10.2523/106426-MS
– ident: 78196_CR27
  doi: 10.2118/143617-MS
– ident: 78196_CR20
  doi: 10.3997/2214-4609-pdb.170.spe125539
– ident: 78196_CR1
  doi: 10.2172/6276441
– ident: 78196_CR2
  doi: 10.2118/38895-MS
– volume: 5
  start-page: 229
  issue: 03
  year: 2002
  ident: 78196_CR6
  publication-title: SPE Reserv. Evaluation Engineering
  doi: 10.2118/78266-PA
– volume: 46
  start-page: 101
  issue: 2
  year: 2021
  ident: 78196_CR36
  publication-title: Sādhanā
  doi: 10.1007/s12046-021-01626-z
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 78196_CR44
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– ident: 78196_CR3
– volume: 7
  start-page: 24
  issue: 01
  year: 2004
  ident: 78196_CR13
  publication-title: SPE Reserv. Evaluation Engineering
  doi: 10.2118/87663-PA
– ident: 78196_CR18
  doi: 10.2118/86880-PA
– ident: 78196_CR17
  doi: 10.3997/2214-4609.20144994
– ident: 78196_CR26
  doi: 10.2118/69439-MS
– volume: 85
  start-page: 103695
  year: 2021
  ident: 78196_CR33
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103695
– volume: 126
  start-page: 242
  year: 2015
  ident: 78196_CR31
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2014.12.016
– ident: 78196_CR28
– ident: 78196_CR45
– ident: 78196_CR38
– volume: 68
  start-page: 317
  year: 2013
  ident: 78196_CR34
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-4730-6
– volume: 10
  start-page: 303
  year: 2006
  ident: 78196_CR4
  publication-title: Comput. GeoSci.
  doi: 10.1007/s10596-006-9025-7
– ident: 78196_CR7
  doi: 10.2118/160861-MS
– ident: 78196_CR19
  doi: 10.3997/2214-4609.201404805
– volume: 162
  start-page: 652
  year: 2018
  ident: 78196_CR32
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2017.10.083
– ident: 78196_CR48
  doi: 10.1145/298151.298382
– volume: 95
  start-page: 106511
  year: 2020
  ident: 78196_CR46
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106511
– volume: 152
  start-page: 81
  year: 2017
  ident: 78196_CR23
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2017.02.011
– volume: 274
  start-page: 292
  year: 2016
  ident: 78196_CR35
  publication-title: Appl. Math. Comput.
– ident: 78196_CR42
– ident: 78196_CR14
– volume: 173
  start-page: 180
  year: 2016
  ident: 78196_CR40
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.01.009
– ident: 78196_CR15
  doi: 10.2118/169272-MS
– ident: 78196_CR30
  doi: 10.2118/175590-MS
– volume: 10
  start-page: 860220
  year: 2022
  ident: 78196_CR24
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.860220
– ident: 78196_CR10
– ident: 78196_CR43
  doi: 10.1002/0471671746
– ident: 78196_CR37
– ident: 78196_CR11
  doi: 10.2118/117323-MS
– ident: 78196_CR21
  doi: 10.2118/118808-MS
– ident: 78196_CR49
  doi: 10.1016/B978-012064155-0/50008-2
– ident: 78196_CR5
– volume: 1
  start-page: 69
  year: 1991
  ident: 78196_CR41
  publication-title: Found. Genetic Algorithms
– ident: 78196_CR22
– volume: 135
  start-page: 104379
  year: 2020
  ident: 78196_CR8
  publication-title: Computers Geosciences
  doi: 10.1016/j.cageo.2019.104379
– volume: 17
  start-page: 112
  issue: 01
  year: 2012
  ident: 78196_CR29
  publication-title: SPE J.
  doi: 10.2118/141950-PA
– ident: 78196_CR47
– ident: 78196_CR12
  doi: 10.2523/100131-MS
– volume: 399
  start-page: 30
  year: 2015
  ident: 78196_CR39
  publication-title: Fluid. Phase. Equilibria
  doi: 10.1016/j.fluid.2015.04.003
– ident: 78196_CR9
  doi: 10.1108/ECAM-06-2018-0246
– volume: 73
  start-page: 220
  issue: 3-4
  year: 2010
  ident: 78196_CR16
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2010.07.002
SSID ssj0000529419
Score 2.4455638
Snippet Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development. These...
Abstract Determination of optimum well location and operational settings for existing and new wells is crucial for maximizing production in field development....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26725
SubjectTerms 639/166/4073
639/166/898
639/166/988
Algorithms
Fluid flow
Genetic algorithm
Genetic algorithms
Humanities and Social Sciences
multidisciplinary
Optimization algorithms
Particle swarm optimization
Reservoir Simulation
Science
Science (multidisciplinary)
Well Placement Pattern
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFd2GhICNxA6t2nPhxQoCoOEC1BxA9YTm2s62UJstmW4l_z9jxptoCvXCNHcnOeDxf5vENQq8Ao2sllCA6sIqUpVekFr4kzAWvgpVKu8Qz-1keHqqjIz3PDrchp1Vu7sR0UfveRR_5PocrVseyTfZ2-ZPErlExuppbaFxHNwDZsJjS9aWYTz6WGMUqmc61MpSr_QHsVawpK0oiwRYKIrfsUaLt_xvW_DNl8lLcNJmjg7v_u5F76E4GovjdeHLuo2uhe4Buja0pfz1EP76HtsXzxL7Z4R4ultNcsYntgC1e5mZHeDlWGuCYQL-Aga4_Dy3OtVjBX3q1XcBS1senj9C3g49fP3wiuRcDcVXJ1kR61nALYEUH7Sh3QtRKV0E5xoVXFlAAl430gN9qpTirlJSVb1wtGgu_TIHyXbTT9V14gnBFfR1xhrXOlpGOvmA1D1o6y-uCOjZDbCMR4zJReeyX0ZoUMOfKjFI0IEWTpGjkDL2e3lmONB1Xzn4fBT3NjBTb6UG_WpissabSouaVCoUCjGaps9Q731Ctah98qekM7W3ka7LeD-ZCuDP0choGjY1hGNuF_izNKQFWAtaeocfjqZpWwnWphaIworbO29ZSt0e6k-PECg4KEIPEsLk3m6N5sa5_f4unV2_jGbpdRG2JjvRqD-2sV2fhObrpztcnw-pFUrffV94xyQ
  priority: 102
  providerName: ProQuest
Title Well Pattern optimization as a planning process using a novel developed optimization algorithm
URI https://link.springer.com/article/10.1038/s41598-024-78196-7
https://www.ncbi.nlm.nih.gov/pubmed/39496806
https://www.proquest.com/docview/3123927891
https://www.proquest.com/docview/3124125016
https://pubmed.ncbi.nlm.nih.gov/PMC11535017
https://doaj.org/article/596b358e28584a0ca0dcdf098bded490
Volume 14
WOSCitedRecordID wos001348039700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4lkWyspI3CCqHTt-HClqBRJdRQjEcsFybKddKU1Wu9tK_HvGTnbplteFiw-xLU08M5nPsecbhF4CRtdKKJHpQIuMc6-ySnieURe8ClYq7RLP7Ac5majpVJdXSn3FO2E9PXC_cAeFFhUrVMgVhEpLnCXe-ZpoVfnguU67dSL1lc1Uz-qda071kCVDmDpYQqSK2WQ5zyREQZHJrUiUCPt_hzJ_vSx57cQ0BaLje-jugCDxm17y--hGaB-g231Nye8P0bcvoWlwmWgzW9zBF-F8SLXEdoktng9VivC8TxHA8eb7KXS03WVo8JBEFfy1qc1pt5itzs4foc_HR5_evsuGIgqZKzhdZdLTmllAGTpoR5gTolK6CMpRJryyEL6ZrKUH4FUpxWihpCx87SpRW9jrBMIeo522a8MThAviqwgQrHWWRx75nFYsaOksq3Li6AjR9YIaNzCMx0IXjUkn3UyZXgkGlGCSEowcoVebOfOeX-Ovow-jnjYjIzd2egAWYwaLMf-ymBHaX2vZDA67NAwiuI5ZwfAWLzbd4Grx_MS2obtIYzjgQQDJI7TXG8VGEqa5FopAj9oyly1Rt3va2Vmi8wZMHk934eVery3rp1x_Xoun_2MtnqE7eXSJ-J-82Ec7q8VFeI5uucvVbLkYo5tyKlOrxmj38GhSfhwnP4P2JC9jK6HdLd-flF9_AEH6Kzs
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9mWggJHgBFHj2IntA0JsVasOox6K6Anj2J5ppWkyzEyL-qf4jTw7yVRToLceuOY5ke18b7HfBvACbXQlC1kkytM84dzJpCwcT6j1TnojpLKxzmxfDAZyb0_trMCvLhcmhFV2MjEKalfbcEe-zlDEqpC2Sd9OfiSha1TwrnYtNBpYbPuTn3hkm73Z-oj_92WWbXza_bCZtF0FEptzOk-Eo0NmUO0qr2zKbFGUUuVeWsoKJw3qMyaGwqElUkrJaC6FyN3QlsXQoPHvU4bfvQSXeagsFkIFs53FnU7wmnGq2tyclMn1GerHkMOW8USg7i0SsaT_YpuAv9m2f4ZonvHTRvW3cfN_27hbcKM1tMm7hjNuw4qv7sDVpvXmyV349tWPx2QnVhetSI2C87DNSCVmRgyZtM2cyKTJpCAhQWCEhKo-9mPS5pp5d-bV8QiXPt8_vAdfLmRx92G1qiv_EEieujLYUcZYw0O5_YyWzCthDSuz1NIe0A4B2raF2EM_kLGOAQFM6gY1GlGjI2q06MGrxTuTpgzJuaPfB2AtRoYS4vFBPR3pViLpXBUly6XPJNqgJrUmddYNUyVL5x1XaQ_WOjzpVq7N9CmYevB8QUaJFNxMpvL1URzD0WzGs0QPHjQoXsyEKa4KmSJFLuF7aarLlOpgP1Y9x6NLcILj4l53rHA6r3_vxaPzl_EMrm3ufu7r_tZg-zFczwKnBqdBvgar8-mRfwJX7PH8YDZ9GlmdwPeLZpHfl3-NGQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLdGB4gL32yFAUaCE0SNYye2DwgBo6LaqHoAsV0wju10k7qktN3Q_jX-Op4Tp1MH7LYD19iJ_Jzf-_Lzew-h52CjS5GJLJKOpBFjVkR5ZllEjLPCaS6kqevM7vLhUOztydEa-tXmwvhrla1MrAW1rYw_I-9RELHSp22SXhGuRYy2-2-mPyLfQcpHWtt2Gg1EdtzpT3Df5q8H2_CvXyRJ_8Pn9x-j0GEgMikji4hbUlANKlg6aWJqsiwXMnXCEJpZoUG3UV5wC1ZJLgQlqeA8tYXJs0KDI-BiCt-9gtbBJGdJB62PBp9G-8sTHh9DY0SGTJ2Yit4ctKXPaEtYxEETZxFf0YZ104C_Wbp_Xtg8F7WtlWH_1v-8jbfRzWCC47cNz9xBa668i641TTlP76FvX91kgkd13dESVyBSj0KuKtZzrPE0tHnC0ybHAvvUgTEMlNWJm-CQhebsuVcnYyB9cXB0H325FOIeoE5ZlW4T4TS2ubewtDaa-UL8Ccmpk9xomiexIV1EWjQoE0q0-04hE1VfFaBCNQhSgCBVI0jxLnq5fGfaFCi5cPY7D7LlTF9cvH5QzcYqyCqVyiynqXCJAOtUx0bH1tgiliK3zjIZd9FWiy0VJN5cnQGri54th0FW-QCULl11XM9hYFCDl9FFGw2ilyuhkslMxDAiVrC-stTVkfLwoK6HDk6ND48Dca9atjhb17_34uHFZDxF14Ez1O5guPMI3Ug80_poQrqFOovZsXuMrpqTxeF89iTwPUbfL5tHfgMUMpdi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well+Pattern+optimization+as+a+planning+process+using+a+novel+developed+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Zaheri%2C+Seyed+Hayan&rft.au=Hosseini%2C+Mahdi&rft.au=Fathinasab%2C+Mohammad&rft.date=2024-11-05&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=26725&rft_id=info:doi/10.1038%2Fs41598-024-78196-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon