Identification of transcriptional programs using dense vector representations defined by mutual information with GeneVector

Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 14; H. 1; S. 4400 - 13
Hauptverfasser: Ceglia, Nicholas, Sethna, Zachary, Freeman, Samuel S., Uhlitz, Florian, Bojilova, Viktoria, Rusk, Nicole, Burman, Bharat, Chow, Andrew, Salehi, Sohrab, Kabeer, Farhia, Aparicio, Samuel, Greenbaum, Benjamin D., Shah, Sohrab P., McPherson, Andrew
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 20.07.2023
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time. In single-cell RNA-seq analyses, it would be critical to measure the relationships between genes. Here, the authors develop a framework for single-cell dimensionality reduction that incorporates gene-specific relationships - GeneVector -, and use it for tasks such as annotating cell types and analysing pathway variation after treatment.
AbstractList Abstract Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time.
Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time.In single-cell RNA-seq analyses, it would be critical to measure the relationships between genes. Here, the authors develop a framework for single-cell dimensionality reduction that incorporates gene-specific relationships - GeneVector -, and use it for tasks such as annotating cell types and analysing pathway variation after treatment.
Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time.Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time.
Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time.
Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time. In single-cell RNA-seq analyses, it would be critical to measure the relationships between genes. Here, the authors develop a framework for single-cell dimensionality reduction that incorporates gene-specific relationships - GeneVector -, and use it for tasks such as annotating cell types and analysing pathway variation after treatment.
ArticleNumber 4400
Author McPherson, Andrew
Freeman, Samuel S.
Sethna, Zachary
Bojilova, Viktoria
Kabeer, Farhia
Salehi, Sohrab
Burman, Bharat
Greenbaum, Benjamin D.
Uhlitz, Florian
Shah, Sohrab P.
Ceglia, Nicholas
Aparicio, Samuel
Rusk, Nicole
Chow, Andrew
Author_xml – sequence: 1
  givenname: Nicholas
  surname: Ceglia
  fullname: Ceglia, Nicholas
  email: ceglian@mskcc.org
  organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
– sequence: 2
  givenname: Zachary
  surname: Sethna
  fullname: Sethna, Zachary
  organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
– sequence: 3
  givenname: Samuel S.
  surname: Freeman
  fullname: Freeman, Samuel S.
  organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
– sequence: 4
  givenname: Florian
  surname: Uhlitz
  fullname: Uhlitz, Florian
  organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
– sequence: 5
  givenname: Viktoria
  surname: Bojilova
  fullname: Bojilova, Viktoria
  organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
– sequence: 6
  givenname: Nicole
  orcidid: 0000-0003-2663-6288
  surname: Rusk
  fullname: Rusk, Nicole
  organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
– sequence: 7
  givenname: Bharat
  surname: Burman
  fullname: Burman, Bharat
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center
– sequence: 8
  givenname: Andrew
  orcidid: 0000-0003-1151-2450
  surname: Chow
  fullname: Chow, Andrew
  organization: Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center
– sequence: 9
  givenname: Sohrab
  surname: Salehi
  fullname: Salehi, Sohrab
  organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
– sequence: 10
  givenname: Farhia
  surname: Kabeer
  fullname: Kabeer, Farhia
  organization: Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver
– sequence: 11
  givenname: Samuel
  surname: Aparicio
  fullname: Aparicio, Samuel
  organization: Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver
– sequence: 12
  givenname: Benjamin D.
  orcidid: 0000-0001-6153-8793
  surname: Greenbaum
  fullname: Greenbaum, Benjamin D.
  organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College
– sequence: 13
  givenname: Sohrab P.
  orcidid: 0000-0001-6402-523X
  surname: Shah
  fullname: Shah, Sohrab P.
  organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
– sequence: 14
  givenname: Andrew
  surname: McPherson
  fullname: McPherson, Andrew
  organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37474509$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhSNUREvpH2CBIrFhE_AzcVYIVbRcqRIbYGv5MU59ldgXOymq-PN1b1pou6g3tsbnfDqjmdfVQYgBquotRh8xouJTZpi1XYMIbWjfC96QF9URQQw3uCP04MH7sDrJeYvKoT0WjL2qDmnHOsZRf1T93VgIs3feqNnHUEdXz0mFbJLf3RbUWO9SHJKacr1kH4a66DPUV2DmmOoEuwS5EPbuXD6dD2BrfV1Py7wUtw8upmmF__HzZX0OAX7t3W-ql06NGU7u7uPq59nXH6ffmovv55vTLxeN4QzPTWeMQxQo6whytLXY4F5p0TntbAedAOCtI5rzUkQMWY01I5QSKjC1miF6XG1Wro1qK3fJTypdy6i83BdiGqRKszcjyJYr5rgWTiDLXN9qqwGDaoF2jrfcFtbnlbVb9ATWlNaTGh9BH_8EfymHeCXL0HjPCC6ED3eEFH8vkGc5-WxgHFWAuGRJBMOIIML7In3_RLqNSyoz2asQErg0WVTvHkb6l-V-yEUgVoFJMecEThq_Dqwk9GOJdptOyHWlZFkpuV8pSYqVPLHe05810dWUizgMkP7HfsZ1AxwC4YA
CitedBy_id crossref_primary_10_1038_s41592_024_02201_0
crossref_primary_10_1111_acel_14471
crossref_primary_10_1038_s41586_024_08508_4
Cites_doi 10.1093/nar/gkw377
10.1016/j.cell.2021.04.048
10.18632/oncotarget.17871
10.1186/s13059-019-1900-3
10.1186/s13059-019-1850-9
10.1016/j.cell.2018.05.061
10.1093/bioinformatics/btaa169
10.1093/bioinformatics/btr260
10.1038/s41586-022-05496-1
10.1007/s13277-015-3383-5
10.1038/s41592-021-01336-8
10.1371/journal.pcbi.1009907
10.1038/sj.bjc.6602447
10.1038/s41598-019-41695-z
10.1093/nar/gkx1013
10.1101/gr.273300.120
10.1073/pnas.0506580102
10.1186/s13059-017-1382-0
10.1038/nbt.4042
10.1016/j.gpb.2019.09.006
10.1126/science.abl5197
10.4161/cam.18953
10.1038/nbt.3192
10.1007/s12032-014-0426-5
10.18632/oncotarget.6510
10.1186/s13059-022-02601-5
10.1002/ijc.24704
10.1038/s41577-022-00806-0
10.1002/jcb.23199
10.3389/fcell.2021.786728
10.1172/JCI65416
10.1038/s41592-019-0529-1
10.1038/s41592-019-0619-0
10.1186/1471-2407-6-224
10.1038/s41586-021-03648-3
10.1038/ncomms14049
10.1038/nbt.4096
10.1038/s41592-018-0229-2
10.1016/j.cels.2017.08.014
10.1124/pr.111.005637
10.1093/nar/gkab1028
10.1126/science.1087447
10.1158/1078-0432.CCR-22-0296
10.1093/bioinformatics/btw216
10.1186/1471-2105-7-S1-S7
10.1186/s12864-018-5370-x
10.5281/zenodo.8079610
10.21105/joss.00861
10.3115/v1/d14-1162
10.5281/zenodo.8079885
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-39985-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_65a4f5b8f80d4f96bdbe1ea6e37f565d
PMC10359421
37474509
10_1038_s41467_023_39985_2
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA269382
– fundername: NCI NIH HHS
  grantid: R01 CA240924
– fundername: NHGRI NIH HHS
  grantid: RM1 HG011014
– fundername: NCI NIH HHS
  grantid: U24 CA264028
– fundername: NCI NIH HHS
  grantid: P50 CA247749
– fundername: Cancer Research UK
  grantid: GC-243330
– fundername: NCI NIH HHS
  grantid: P50 CA257881
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: R01 CA262516
– fundername: NCI NIH HHS
  grantid: U01 CA228963
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-7ccf03e34720f36d1c19ab87fbfd7e78ee56f2b55ab8040db1b423323813db403
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001040020600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:44:34 EDT 2025
Tue Nov 04 02:06:31 EST 2025
Fri Sep 05 06:09:24 EDT 2025
Tue Oct 07 07:08:25 EDT 2025
Thu Apr 03 06:58:17 EDT 2025
Sat Nov 29 03:29:17 EST 2025
Tue Nov 18 21:20:03 EST 2025
Fri Feb 21 02:39:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-7ccf03e34720f36d1c19ab87fbfd7e78ee56f2b55ab8040db1b423323813db403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1151-2450
0000-0001-6153-8793
0000-0001-6402-523X
0000-0003-2663-6288
OpenAccessLink https://www.proquest.com/docview/2840081238?pq-origsite=%requestingapplication%
PMID 37474509
PQID 2840081238
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_65a4f5b8f80d4f96bdbe1ea6e37f565d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10359421
proquest_miscellaneous_2841020259
proquest_journals_2840081238
pubmed_primary_37474509
crossref_citationtrail_10_1038_s41467_023_39985_2
crossref_primary_10_1038_s41467_023_39985_2
springer_journals_10_1038_s41467_023_39985_2
PublicationCentury 2000
PublicationDate 2023-07-20
PublicationDateYYYYMMDD 2023-07-20
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References van Dijk (CR18) 2018; 174
Han (CR28) 2018; 46
Zhang (CR27) 2020; 18
Yamano (CR40) 2010; 126
Latifi (CR47) 2011; 112
Kang (CR19) 2018; 36
Ziegler-Heitbrock, Ohteki, Ginhoux, Shortman, Spits (CR31) 2023; 23
Hu (CR42) 2015; 36
Tran (CR49) 2020; 21
Shen, Pouliot, Hall, Gottesman (CR37) 2012; 64
Xu (CR51) 2022; 28
Stuart, Segal, Koller, Kim (CR1) 2003; 302
Choi (CR43) 2016; 7
Wolf, Angerer, Theis (CR7) 2018; 19
Satija, Farrell, Gennert, Schier, Regev (CR36) 2015; 33
Kuleshov (CR35) 2016; 44
Lopez, Regier, Cole, Jordan, Yosef (CR14) 2018; 15
CR4
CR3
Salehi (CR22) 2021; 595
Lachmann, Giorgi, Lopez, Califano (CR52) 2016; 32
Duchi, Hazan, Singer (CR53) 2011; 12
Jiang, Sun, Song, Li (CR12) 2022; 23
Subramanian (CR26) 2005; 102
Du (CR5) 2019; 20
Traag, Waltman, van Eck (CR9) 2019; 9
Nieto (CR20) 2021; 31
Conde (CR30) 2022; 376
Tayama (CR46) 2017; 8
Margolin (CR15) 2006; 7
Hao (CR6) 2021; 184
Tsuyuzaki, Sato, Sato, Nikaido (CR13) 2020; 21
Stuart (CR33) 2019; 177
CR11
Liberzon (CR25) 2011; 27
Luecken (CR50) 2021; 19
CR55
CR54
Svensson, Gayoso, Yosef, Pachter (CR2) 2020; 36
van der Maaten, Hinton (CR10) 2008; 9
Vázquez-García (CR21) 2022; 612
Zhang (CR29) 2019; 16
Roberts (CR41) 2005; 92
Chan, Stumpf, Babtie (CR16) 2017; 5
Zheng (CR8) 2017; 8
Zhang (CR48) 2021; 9
Korsunsky (CR34) 2019; 16
Bhola (CR38) 2013; 123
CR23
Gillespie (CR24) 2022; 50
Butler, Hoffman, Smibert, Papalexi, Satija (CR32) 2018; 36
Zhu, Hu, Liu, Gao, Lin (CR44) 2015; 32
Imrich, Hachmeister, Gires (CR45) 2012; 6
Heydari (CR17) 2022; 18
Zhang (CR39) 2006; 6
JM Stuart (39985_CR1) 2003; 302
Q Zhang (39985_CR27) 2020; 18
MV Kuleshov (39985_CR35) 2016; 44
D-W Shen (39985_CR37) 2012; 64
L van der Maaten (39985_CR10) 2008; 9
CD Conde (39985_CR30) 2022; 376
AW Zhang (39985_CR29) 2019; 16
R Lopez (39985_CR14) 2018; 15
R Jiang (39985_CR12) 2022; 23
39985_CR4
GXY Zheng (39985_CR8) 2017; 8
39985_CR3
T Heydari (39985_CR17) 2022; 18
A Latifi (39985_CR47) 2011; 112
P Nieto (39985_CR20) 2021; 31
TE Chan (39985_CR16) 2017; 5
AA Margolin (39985_CR15) 2006; 7
Y Yamano (39985_CR40) 2010; 126
I Korsunsky (39985_CR34) 2019; 16
S Salehi (39985_CR22) 2021; 595
J Duchi (39985_CR53) 2011; 12
NE Bhola (39985_CR38) 2013; 123
S Imrich (39985_CR45) 2012; 6
M Gillespie (39985_CR24) 2022; 50
D Roberts (39985_CR41) 2005; 92
L Zhu (39985_CR44) 2015; 32
M Zhang (39985_CR48) 2021; 9
EJ Choi (39985_CR43) 2016; 7
J Du (39985_CR5) 2019; 20
FA Wolf (39985_CR7) 2018; 19
K Tsuyuzaki (39985_CR13) 2020; 21
39985_CR23
A Butler (39985_CR32) 2018; 36
I Vázquez-García (39985_CR21) 2022; 612
T Stuart (39985_CR33) 2019; 177
P Zhang (39985_CR39) 2006; 6
Z Hu (39985_CR42) 2015; 36
J Xu (39985_CR51) 2022; 28
MD Luecken (39985_CR50) 2021; 19
HTN Tran (39985_CR49) 2020; 21
V Svensson (39985_CR2) 2020; 36
A Subramanian (39985_CR26) 2005; 102
A Liberzon (39985_CR25) 2011; 27
Y Hao (39985_CR6) 2021; 184
H Han (39985_CR28) 2018; 46
HM Kang (39985_CR19) 2018; 36
A Lachmann (39985_CR52) 2016; 32
L Ziegler-Heitbrock (39985_CR31) 2023; 23
D van Dijk (39985_CR18) 2018; 174
39985_CR54
39985_CR11
39985_CR55
S Tayama (39985_CR46) 2017; 8
VA Traag (39985_CR9) 2019; 9
R Satija (39985_CR36) 2015; 33
References_xml – volume: 44
  start-page: W90
  year: 2016
  end-page: W97
  ident: CR35
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– ident: CR4
– volume: 184
  start-page: 3573
  year: 2021
  end-page: 3587.e29
  ident: CR6
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902.e21
  ident: CR33
  article-title: Comprehensive Integration of Single-
  publication-title: Cell Data. Cell
– volume: 8
  start-page: 44312
  year: 2017
  end-page: 44325
  ident: CR46
  article-title: The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17871
– volume: 21
  year: 2020
  ident: CR13
  article-title: Benchmarking principal component analysis for large-scale single-cell RNA-sequencing
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1900-3
– ident: CR54
– volume: 21
  year: 2020
  ident: CR49
  article-title: A benchmark of batch-effect correction methods for single-cell RNA sequencing data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1850-9
– volume: 174
  start-page: 716
  year: 2018
  end-page: 729.e27
  ident: CR18
  article-title: Recovering gene interactions from single-cell data using data diffusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: CR53
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res
– volume: 36
  start-page: 3418
  year: 2020
  end-page: 3421
  ident: CR2
  article-title: Interpretable factor models of single-cell RNA-seq via variational autoencoders
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa169
– volume: 27
  start-page: 1739
  year: 2011
  end-page: 1740
  ident: CR25
  article-title: Molecular signatures database (MSigDB) 3.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 612
  start-page: 778
  year: 2022
  end-page: 786
  ident: CR21
  article-title: Ovarian cancer mutational processes drive site-specific immune evasion
  publication-title: Nature
  doi: 10.1038/s41586-022-05496-1
– volume: 36
  start-page: 7269
  year: 2015
  end-page: 7275
  ident: CR42
  article-title: Expression of FOXP1 in epithelial ovarian cancer (EOC) and its correlation with chemotherapy resistance and prognosis
  publication-title: Tumour Biol.
  doi: 10.1007/s13277-015-3383-5
– volume: 19
  start-page: 41
  year: 2021
  end-page: 50
  ident: CR50
  article-title: Benchmarking atlas-level data integration in single-cell genomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01336-8
– volume: 18
  start-page: e1009907
  year: 2022
  ident: CR17
  article-title: IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009907
– volume: 92
  start-page: 1149
  year: 2005
  end-page: 1158
  ident: CR41
  article-title: Identification of genes associated with platinum drug sensitivity and resistance in human ovarian cancer cells
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6602447
– volume: 9
  year: 2019
  ident: CR9
  article-title: From Louvain to Leiden: guaranteeing well-connected communities
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41695-z
– ident: CR11
– volume: 46
  start-page: D380
  year: 2018
  end-page: D386
  ident: CR28
  article-title: TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1013
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR10
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 31
  start-page: 1913
  year: 2021
  end-page: 1926
  ident: CR20
  article-title: A single-cell tumor immune atlas for precision oncology
  publication-title: Genome Res.
  doi: 10.1101/gr.273300.120
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  ident: CR26
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 19
  year: 2018
  ident: CR7
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 36
  start-page: 89
  year: 2018
  end-page: 94
  ident: CR19
  article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4042
– volume: 18
  start-page: 120
  year: 2020
  end-page: 128
  ident: CR27
  article-title: hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2019.09.006
– volume: 376
  start-page: eabl5197
  year: 2022
  ident: CR30
  article-title: Cross-tissue immune cell analysis reveals tissue-specific features in humans
  publication-title: Science
  doi: 10.1126/science.abl5197
– volume: 6
  start-page: 30
  year: 2012
  end-page: 38
  ident: CR45
  article-title: EpCAM and its potential role in tumor-initiating cells
  publication-title: Cell Adh. Migr.
  doi: 10.4161/cam.18953
– volume: 33
  start-page: 495
  year: 2015
  end-page: 502
  ident: CR36
  article-title: Spatial reconstruction of single-cell gene expression data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3192
– volume: 32
  year: 2015
  ident: CR44
  article-title: Gene expression profile analysis identifies metastasis and chemoresistance-associated genes in epithelial ovarian carcinoma cells
  publication-title: Med. Oncol.
  doi: 10.1007/s12032-014-0426-5
– volume: 7
  start-page: 3506
  year: 2016
  end-page: 3519
  ident: CR43
  article-title: FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6510
– volume: 23
  year: 2022
  ident: CR12
  article-title: Statistics or biology: the zero-inflation controversy about scRNA-seq data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-022-02601-5
– volume: 126
  start-page: 437
  year: 2010
  end-page: 449
  ident: CR40
  article-title: Identification of cisplatin-resistance related genes in head and neck squamous cell carcinoma
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.24704
– volume: 23
  start-page: 1
  year: 2023
  end-page: 2
  ident: CR31
  article-title: Reclassifying plasmacytoid dendritic cells as innate lymphocytes
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-022-00806-0
– volume: 112
  start-page: 2850
  year: 2011
  end-page: 2864
  ident: CR47
  article-title: Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.23199
– volume: 9
  start-page: 786728
  year: 2021
  ident: CR48
  article-title: TGF-β Signaling and Resistance to Cancer Therapy
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.786728
– ident: CR23
– volume: 123
  start-page: 1348
  year: 2013
  end-page: 1358
  ident: CR38
  article-title: TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI65416
– volume: 16
  start-page: 1007
  year: 2019
  end-page: 1015
  ident: CR29
  article-title: Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0529-1
– volume: 16
  start-page: 1289
  year: 2019
  end-page: 1296
  ident: CR34
  article-title: Fast, sensitive and accurate integration of single-cell data with Harmony
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0619-0
– volume: 6
  year: 2006
  ident: CR39
  article-title: Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-6-224
– ident: CR3
– volume: 595
  start-page: 585
  year: 2021
  end-page: 590
  ident: CR22
  article-title: Clonal fitness inferred from time-series modelling of single-cell cancer genomes
  publication-title: Nature
  doi: 10.1038/s41586-021-03648-3
– volume: 8
  start-page: 1
  year: 2017
  end-page: 12
  ident: CR8
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: CR32
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 15
  start-page: 1053
  year: 2018
  end-page: 1058
  ident: CR14
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 5
  start-page: 251
  year: 2017
  end-page: 267.e3
  ident: CR16
  article-title: Gene regulatory network inference from single-cell data using multivariate information measures
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.08.014
– volume: 64
  start-page: 706
  year: 2012
  end-page: 721
  ident: CR37
  article-title: Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.111.005637
– volume: 50
  start-page: D687
  year: 2022
  end-page: D692
  ident: CR24
  article-title: The reactome pathway knowledgebase 2022
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1028
– volume: 302
  start-page: 249
  year: 2003
  end-page: 255
  ident: CR1
  article-title: A gene-coexpression network for global discovery of conserved genetic modules
  publication-title: Science
  doi: 10.1126/science.1087447
– volume: 28
  start-page: 3590
  year: 2022
  end-page: 3602
  ident: CR51
  article-title: Single-cell RNA sequencing reveals the tissue architecture in human high-grade serous ovarian cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-22-0296
– ident: CR55
– volume: 32
  start-page: 2233
  year: 2016
  end-page: 2235
  ident: CR52
  article-title: ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw216
– volume: 7
  year: 2006
  ident: CR15
  article-title: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-7-S1-S7
– volume: 20
  year: 2019
  ident: CR5
  article-title: Gene2vec: distributed representation of genes based on co-expression
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5370-x
– volume: 15
  start-page: 1053
  year: 2018
  ident: 39985_CR14
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 6
  start-page: 30
  year: 2012
  ident: 39985_CR45
  publication-title: Cell Adh. Migr.
  doi: 10.4161/cam.18953
– ident: 39985_CR3
– volume: 7
  start-page: 3506
  year: 2016
  ident: 39985_CR43
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6510
– volume: 28
  start-page: 3590
  year: 2022
  ident: 39985_CR51
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-22-0296
– volume: 44
  start-page: W90
  year: 2016
  ident: 39985_CR35
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 64
  start-page: 706
  year: 2012
  ident: 39985_CR37
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.111.005637
– volume: 16
  start-page: 1289
  year: 2019
  ident: 39985_CR34
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0619-0
– volume: 123
  start-page: 1348
  year: 2013
  ident: 39985_CR38
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI65416
– volume: 20
  year: 2019
  ident: 39985_CR5
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5370-x
– ident: 39985_CR54
  doi: 10.5281/zenodo.8079610
– volume: 27
  start-page: 1739
  year: 2011
  ident: 39985_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 33
  start-page: 495
  year: 2015
  ident: 39985_CR36
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3192
– volume: 302
  start-page: 249
  year: 2003
  ident: 39985_CR1
  publication-title: Science
  doi: 10.1126/science.1087447
– volume: 19
  year: 2018
  ident: 39985_CR7
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 92
  start-page: 1149
  year: 2005
  ident: 39985_CR41
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6602447
– volume: 7
  year: 2006
  ident: 39985_CR15
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-7-S1-S7
– volume: 612
  start-page: 778
  year: 2022
  ident: 39985_CR21
  publication-title: Nature
  doi: 10.1038/s41586-022-05496-1
– volume: 595
  start-page: 585
  year: 2021
  ident: 39985_CR22
  publication-title: Nature
  doi: 10.1038/s41586-021-03648-3
– volume: 32
  year: 2015
  ident: 39985_CR44
  publication-title: Med. Oncol.
  doi: 10.1007/s12032-014-0426-5
– volume: 31
  start-page: 1913
  year: 2021
  ident: 39985_CR20
  publication-title: Genome Res.
  doi: 10.1101/gr.273300.120
– volume: 36
  start-page: 7269
  year: 2015
  ident: 39985_CR42
  publication-title: Tumour Biol.
  doi: 10.1007/s13277-015-3383-5
– volume: 8
  start-page: 44312
  year: 2017
  ident: 39985_CR46
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17871
– volume: 23
  year: 2022
  ident: 39985_CR12
  publication-title: Genome Biol.
  doi: 10.1186/s13059-022-02601-5
– volume: 112
  start-page: 2850
  year: 2011
  ident: 39985_CR47
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.23199
– volume: 5
  start-page: 251
  year: 2017
  ident: 39985_CR16
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.08.014
– volume: 23
  start-page: 1
  year: 2023
  ident: 39985_CR31
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-022-00806-0
– volume: 177
  start-page: 1888
  year: 2019
  ident: 39985_CR33
  publication-title: Cell Data. Cell
– volume: 9
  start-page: 786728
  year: 2021
  ident: 39985_CR48
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.786728
– volume: 6
  year: 2006
  ident: 39985_CR39
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-6-224
– volume: 19
  start-page: 41
  year: 2021
  ident: 39985_CR50
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01336-8
– ident: 39985_CR23
– ident: 39985_CR11
  doi: 10.21105/joss.00861
– volume: 8
  start-page: 1
  year: 2017
  ident: 39985_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 32
  start-page: 2233
  year: 2016
  ident: 39985_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw216
– volume: 184
  start-page: 3573
  year: 2021
  ident: 39985_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 36
  start-page: 411
  year: 2018
  ident: 39985_CR32
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 21
  year: 2020
  ident: 39985_CR49
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1850-9
– volume: 18
  start-page: e1009907
  year: 2022
  ident: 39985_CR17
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009907
– volume: 46
  start-page: D380
  year: 2018
  ident: 39985_CR28
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1013
– volume: 16
  start-page: 1007
  year: 2019
  ident: 39985_CR29
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0529-1
– volume: 9
  start-page: 2579
  year: 2008
  ident: 39985_CR10
  publication-title: J. Mach. Learn. Res.
– volume: 50
  start-page: D687
  year: 2022
  ident: 39985_CR24
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1028
– volume: 174
  start-page: 716
  year: 2018
  ident: 39985_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– ident: 39985_CR4
  doi: 10.3115/v1/d14-1162
– volume: 126
  start-page: 437
  year: 2010
  ident: 39985_CR40
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.24704
– volume: 102
  start-page: 15545
  year: 2005
  ident: 39985_CR26
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 21
  year: 2020
  ident: 39985_CR13
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1900-3
– volume: 12
  start-page: 2121
  year: 2011
  ident: 39985_CR53
  publication-title: J. Mach. Learn. Res
– volume: 9
  year: 2019
  ident: 39985_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41695-z
– ident: 39985_CR55
  doi: 10.5281/zenodo.8079885
– volume: 376
  start-page: eabl5197
  year: 2022
  ident: 39985_CR30
  publication-title: Science
  doi: 10.1126/science.abl5197
– volume: 18
  start-page: 120
  year: 2020
  ident: 39985_CR27
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2019.09.006
– volume: 36
  start-page: 3418
  year: 2020
  ident: 39985_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa169
– volume: 36
  start-page: 89
  year: 2018
  ident: 39985_CR19
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4042
SSID ssj0000391844
Score 2.4370437
Snippet Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current...
Abstract Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4400
SubjectTerms 38/91
631/114/1305
631/114/794
631/208/212/2019
631/67/2329
631/67/69
Cluster Analysis
Embedding
Exome Sequencing
Gene expression
Gene Expression Profiling
Gene sequencing
Genes
Humanities and Social Sciences
multidisciplinary
Phenotypes
Principal Component Analysis
Principal components analysis
Reduction
Ribonucleic acid
RNA
Science
Science (multidisciplinary)
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Sparse gene
Transcription
Vector spaces
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFH5CFUhcEJQttCAjcYOocbzm2FZUPaCKA1S9WXZsQyXIVM1MpYo_z7PjDB3WC1cvkfP8ls_L-wzwKnJpBZOublX0NbddrC21om4cxjfvuYs5K-30nTo50Wdn3fsbT32lO2ETPfAkuD0pLI_C6agbz2MnnXeBBisDUxHBiE_eF1HPjcVU9sGsw6ULL1kyDdN7I88-AUNUjTFZi7rdiESZsP93KPPXy5I_nZjmQHR0H-4VBEn2p5E_gFth2IY705uS1w_h25R6G8teHFlEskzxaPYO2LXcyRpJuvT-iWD7MZCrvH1PMsnlnJA0jFgZEYd64q7J11XKNSGFajV_PO3iksRcfZp7P4KPR28_HB7X5YWFuhecLmvV97FhgXHVNpFJT3vaWadVdNGroHQIQsbWCYGFaO3eUYfwi6Uwz7zjDXsMW8NiCE-BUOtaFpPDwCWn5sLKSHvJO9-E4PpGVkBnaZu-0I-nVzC-mHwMzrSZZsjgDJk8Q6at4PW6z8VEvvHX1gdpEtctE3F2LkB1MkWdzL_UqYLdWQVMsebRYAhP0Al_u4KX62q0w3S4YoewWOU2iNXw57sKnkwasx4JwzUbR2RWgd7QpY2hbtYM558z1zdNFIu8pRW8mdXux7j-LItn_0MWO3C3TfbSKPSlu7C1vFyF53C7v1qej5cvssF9B08JMjE
  priority: 102
  providerName: Directory of Open Access Journals
Title Identification of transcriptional programs using dense vector representations defined by mutual information with GeneVector
URI https://link.springer.com/article/10.1038/s41467-023-39985-2
https://www.ncbi.nlm.nih.gov/pubmed/37474509
https://www.proquest.com/docview/2840081238
https://www.proquest.com/docview/2841020259
https://pubmed.ncbi.nlm.nih.gov/PMC10359421
https://doaj.org/article/65a4f5b8f80d4f96bdbe1ea6e37f565d
Volume 14
WOSCitedRecordID wos001040020600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iLUhc2JdAGRmJG0SNYzt2ToiiViDBKEJQDVyiOLZLJciUyUylij_Ps-NMNSy9cJlDbI_svDVv-QzwzPGiEazQaS6dSXlTurShjUgzjfbNGK5d6Eo7eienUzWblVUMuPWxrHLUiUFRm3nrY-R7qEa9-UIL8_L0R-pvjfLZ1XiFxhbseJQEL5iV-LKOsXj0c8V57JXJmNrredAMaKhStMxKpPmGPQqw_X_zNf8smfwtbxrM0eHN_z3ILbgRHVHyauCc23DFdnfg2nA15fld-Dl08LoY0iNzR5berI1KBpfG0q6e-Nr5Y4Lze0vOQhaABKzMsa-p63HQoTtriD4n31e-ZYVExNbw5z4YTDwA9lFYfQ8-HR58fP0mjRc1pK3gdJnKtnUZs4zLPHOsMLSlZaOVdNoZaaWyVhQu10LgQ1QaRlONXhzz3gIzmmfsPmx3884-BEIbnTPn9Q5-uSoumsLRtuClyazVbVYkQEdy1W1EMfeXaXyrQzadqXogcY0krgOJ6zyB5-s1pwOGx6Wz9z0XrGd6_O3wYL44rqM414VouBNaOZUZ7spCG22pbQrLpEMX2SSwOxK_jkqhry8on8DT9TCKs8_RNJ2dr8IcdPnw8GUCDwaWW--E4acfRwcvAbXBjBtb3RzpTr4GyHDqkRp5ThN4MfLtxb7-_S4eXX6Mx3A996KUSVS2u7C9XKzsE7jani1P-sUEtuRMhl81gZ39g2n1YRJCHhNfYFtNgqziSPX2ffX5F5JKRfc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwgqhx7MTOASG2qlWHEYdSzc3EsV0qQaZMZopG_Cd-I8_OUg1Lbz1wjRfZzufvPdtvAXjieF5mLNdxKpyJeVm4uKRlFica5ZsxXLvglbY_EuOxnEyKD2vws_eF8WaVPScGojbTyt-RbyKNevGFEubl0bfYZ43yr6t9Co0WFrt2-R2PbM2Lnbf4f5-m6da7vTfbcZdVIK4yTuexqCqXMMu4SBPHckMrWpRaCqedEVZIa7PcpTrL8CMi3GiqUeVgXrQxo3nCsN9zcB55XHgTMjERw52Oj7YuOe98cxImNxsemAgFY4yagMzidEX-hTQBf9Nt_zTR_O2dNoi_rav_28Jdgyudok1etTvjOqzZ-gZcbFNvLm_Cj9ZD2XVXlmTqyNyL7Z5EsWlnutYQ7xtwQLB-Y8lxeOUgIRZo77dVN1joUF03RC_J14V3ySFdRNrQub_sJj7A935ofQs-nsnMb8N6Pa3tXSC01ClznlfxZC55VuaOVjkvTGKtrpI8AtrDQ1VdlHafLOSLCtYCTKoWUgohpQKkVBrBs6HNURuj5NTarz3qhpo-vnj4MJ0dqI6uVJ6V3GVaOpkY7opcG22pLXPLhMMjgIlgoweb6kivUSdIi-DxUIx05d-gytpOF6EOqrQ4-SKCOy3Eh5EwPNpyVGAjkCvgXxnqakl9-DmERKc-EiVPaQTP-31yMq5_r8W906fxCC5t770fqdHOePc-XE79Nk4ECpYNWJ_PFvYBXKiO54fN7GHgAQKfznr__AJGbpvB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCazGsZ3HASGgrKharfYAVcXFxLFdKkG2bHaLVvwzfh1j51Etj9564BrbkZ18882M7ZkBeOJEWkqeappkzlBRFo6WrJQ01qjfjBHahai0vd1sPM7394vJGvzsY2H8tcqeEwNRm2nl98g3kUa9-kINs-m6axGTrdHLo2_UV5DyJ619OY0WIjt2-R3dt-bF9hb-66dJMnr7_s072lUYoJUUbE6zqnIxt1xkSex4aljFilLnmdPOZDbLrZWpS7SU-BDRbjTTaH5wr-a40SLm-N5zcD5DH9M7fhP5cdjf8ZnXcyG6OJ0Yp92IwEqoJClaBbmkyYouDCUD_mbn_nld87cz26AKR1f_5494Da50Bjh51UrMdViz9Q242JbkXN6EH23ksuu2MsnUkblX5z254tDuSltDfMzAAcH-jSXH4fSDhByhfTxX3WCjQzPeEL0kXxc-VId0mWrDy_0mOPGJv_fC6Fvw4UxWfhvW62lt7wJhpU6483yLHnsuZJk6VqWiMLG1uorTCFgPFVV12dt9EZEvKtwi4Llq4aUQXirASyURPBvGHLW5S07t_dojcOjp846HB9PZgepoTKWyFE7q3OWxEa5ItdGW2TK1PHPoGpgINnrgqY4MG3WCuggeD81IY_5sqqztdBH6oKmLiy8iuNPCfZgJR5dXoGEbQb4iCCtTXW2pDz-HVOnMZ6gUCYvgeS8zJ_P697e4d_oyHsElFBu1uz3euQ-XEy_RcYb6ZgPW57OFfQAXquP5YTN7GCiBwKezFp9fE46ktA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+transcriptional+programs+using+dense+vector+representations+defined+by+mutual+information+with+GeneVector&rft.jtitle=Nature+communications&rft.au=Ceglia%2C+Nicholas&rft.au=Sethna%2C+Zachary&rft.au=Freeman%2C+Samuel+S&rft.au=Uhlitz%2C+Florian&rft.date=2023-07-20&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=4400&rft_id=info:doi/10.1038%2Fs41467-023-39985-2&rft_id=info%3Apmid%2F37474509&rft.externalDocID=37474509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon