Identification of transcriptional programs using dense vector representations defined by mutual information with GeneVector
Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 14; H. 1; S. 4400 - 13 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
20.07.2023
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time.
In single-cell RNA-seq analyses, it would be critical to measure the relationships between genes. Here, the authors develop a framework for single-cell dimensionality reduction that incorporates gene-specific relationships - GeneVector -, and use it for tasks such as annotating cell types and analysing pathway variation after treatment. |
|---|---|
| AbstractList | Abstract Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time. Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time.In single-cell RNA-seq analyses, it would be critical to measure the relationships between genes. Here, the authors develop a framework for single-cell dimensionality reduction that incorporates gene-specific relationships - GeneVector -, and use it for tasks such as annotating cell types and analysing pathway variation after treatment. Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time.Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time. Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time. Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time. In single-cell RNA-seq analyses, it would be critical to measure the relationships between genes. Here, the authors develop a framework for single-cell dimensionality reduction that incorporates gene-specific relationships - GeneVector -, and use it for tasks such as annotating cell types and analysing pathway variation after treatment. |
| ArticleNumber | 4400 |
| Author | McPherson, Andrew Freeman, Samuel S. Sethna, Zachary Bojilova, Viktoria Kabeer, Farhia Salehi, Sohrab Burman, Bharat Greenbaum, Benjamin D. Uhlitz, Florian Shah, Sohrab P. Ceglia, Nicholas Aparicio, Samuel Rusk, Nicole Chow, Andrew |
| Author_xml | – sequence: 1 givenname: Nicholas surname: Ceglia fullname: Ceglia, Nicholas email: ceglian@mskcc.org organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center – sequence: 2 givenname: Zachary surname: Sethna fullname: Sethna, Zachary organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center – sequence: 3 givenname: Samuel S. surname: Freeman fullname: Freeman, Samuel S. organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center – sequence: 4 givenname: Florian surname: Uhlitz fullname: Uhlitz, Florian organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center – sequence: 5 givenname: Viktoria surname: Bojilova fullname: Bojilova, Viktoria organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center – sequence: 6 givenname: Nicole orcidid: 0000-0003-2663-6288 surname: Rusk fullname: Rusk, Nicole organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center – sequence: 7 givenname: Bharat surname: Burman fullname: Burman, Bharat organization: Department of Medicine, Memorial Sloan Kettering Cancer Center – sequence: 8 givenname: Andrew orcidid: 0000-0003-1151-2450 surname: Chow fullname: Chow, Andrew organization: Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center – sequence: 9 givenname: Sohrab surname: Salehi fullname: Salehi, Sohrab organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center – sequence: 10 givenname: Farhia surname: Kabeer fullname: Kabeer, Farhia organization: Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver – sequence: 11 givenname: Samuel surname: Aparicio fullname: Aparicio, Samuel organization: Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver – sequence: 12 givenname: Benjamin D. orcidid: 0000-0001-6153-8793 surname: Greenbaum fullname: Greenbaum, Benjamin D. organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College – sequence: 13 givenname: Sohrab P. orcidid: 0000-0001-6402-523X surname: Shah fullname: Shah, Sohrab P. organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center – sequence: 14 givenname: Andrew surname: McPherson fullname: McPherson, Andrew organization: Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37474509$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1TAQhSNUREvpH2CBIrFhE_AzcVYIVbRcqRIbYGv5MU59ldgXOymq-PN1b1pou6g3tsbnfDqjmdfVQYgBquotRh8xouJTZpi1XYMIbWjfC96QF9URQQw3uCP04MH7sDrJeYvKoT0WjL2qDmnHOsZRf1T93VgIs3feqNnHUEdXz0mFbJLf3RbUWO9SHJKacr1kH4a66DPUV2DmmOoEuwS5EPbuXD6dD2BrfV1Py7wUtw8upmmF__HzZX0OAX7t3W-ql06NGU7u7uPq59nXH6ffmovv55vTLxeN4QzPTWeMQxQo6whytLXY4F5p0TntbAedAOCtI5rzUkQMWY01I5QSKjC1miF6XG1Wro1qK3fJTypdy6i83BdiGqRKszcjyJYr5rgWTiDLXN9qqwGDaoF2jrfcFtbnlbVb9ATWlNaTGh9BH_8EfymHeCXL0HjPCC6ED3eEFH8vkGc5-WxgHFWAuGRJBMOIIML7In3_RLqNSyoz2asQErg0WVTvHkb6l-V-yEUgVoFJMecEThq_Dqwk9GOJdptOyHWlZFkpuV8pSYqVPLHe05810dWUizgMkP7HfsZ1AxwC4YA |
| CitedBy_id | crossref_primary_10_1038_s41592_024_02201_0 crossref_primary_10_1111_acel_14471 crossref_primary_10_1038_s41586_024_08508_4 |
| Cites_doi | 10.1093/nar/gkw377 10.1016/j.cell.2021.04.048 10.18632/oncotarget.17871 10.1186/s13059-019-1900-3 10.1186/s13059-019-1850-9 10.1016/j.cell.2018.05.061 10.1093/bioinformatics/btaa169 10.1093/bioinformatics/btr260 10.1038/s41586-022-05496-1 10.1007/s13277-015-3383-5 10.1038/s41592-021-01336-8 10.1371/journal.pcbi.1009907 10.1038/sj.bjc.6602447 10.1038/s41598-019-41695-z 10.1093/nar/gkx1013 10.1101/gr.273300.120 10.1073/pnas.0506580102 10.1186/s13059-017-1382-0 10.1038/nbt.4042 10.1016/j.gpb.2019.09.006 10.1126/science.abl5197 10.4161/cam.18953 10.1038/nbt.3192 10.1007/s12032-014-0426-5 10.18632/oncotarget.6510 10.1186/s13059-022-02601-5 10.1002/ijc.24704 10.1038/s41577-022-00806-0 10.1002/jcb.23199 10.3389/fcell.2021.786728 10.1172/JCI65416 10.1038/s41592-019-0529-1 10.1038/s41592-019-0619-0 10.1186/1471-2407-6-224 10.1038/s41586-021-03648-3 10.1038/ncomms14049 10.1038/nbt.4096 10.1038/s41592-018-0229-2 10.1016/j.cels.2017.08.014 10.1124/pr.111.005637 10.1093/nar/gkab1028 10.1126/science.1087447 10.1158/1078-0432.CCR-22-0296 10.1093/bioinformatics/btw216 10.1186/1471-2105-7-S1-S7 10.1186/s12864-018-5370-x 10.5281/zenodo.8079610 10.21105/joss.00861 10.3115/v1/d14-1162 10.5281/zenodo.8079885 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-023-39985-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_65a4f5b8f80d4f96bdbe1ea6e37f565d PMC10359421 37474509 10_1038_s41467_023_39985_2 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA269382 – fundername: NCI NIH HHS grantid: R01 CA240924 – fundername: NHGRI NIH HHS grantid: RM1 HG011014 – fundername: NCI NIH HHS grantid: U24 CA264028 – fundername: NCI NIH HHS grantid: P50 CA247749 – fundername: Cancer Research UK grantid: GC-243330 – fundername: NCI NIH HHS grantid: P50 CA257881 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: R01 CA262516 – fundername: NCI NIH HHS grantid: U01 CA228963 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-7ccf03e34720f36d1c19ab87fbfd7e78ee56f2b55ab8040db1b423323813db403 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001040020600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:44:34 EDT 2025 Tue Nov 04 02:06:31 EST 2025 Fri Sep 05 06:09:24 EDT 2025 Tue Oct 07 07:08:25 EDT 2025 Thu Apr 03 06:58:17 EDT 2025 Sat Nov 29 03:29:17 EST 2025 Tue Nov 18 21:20:03 EST 2025 Fri Feb 21 02:39:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-7ccf03e34720f36d1c19ab87fbfd7e78ee56f2b55ab8040db1b423323813db403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1151-2450 0000-0001-6153-8793 0000-0001-6402-523X 0000-0003-2663-6288 |
| OpenAccessLink | https://www.proquest.com/docview/2840081238?pq-origsite=%requestingapplication% |
| PMID | 37474509 |
| PQID | 2840081238 |
| PQPubID | 546298 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_65a4f5b8f80d4f96bdbe1ea6e37f565d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10359421 proquest_miscellaneous_2841020259 proquest_journals_2840081238 pubmed_primary_37474509 crossref_citationtrail_10_1038_s41467_023_39985_2 crossref_primary_10_1038_s41467_023_39985_2 springer_journals_10_1038_s41467_023_39985_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-20 |
| PublicationDateYYYYMMDD | 2023-07-20 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | van Dijk (CR18) 2018; 174 Han (CR28) 2018; 46 Zhang (CR27) 2020; 18 Yamano (CR40) 2010; 126 Latifi (CR47) 2011; 112 Kang (CR19) 2018; 36 Ziegler-Heitbrock, Ohteki, Ginhoux, Shortman, Spits (CR31) 2023; 23 Hu (CR42) 2015; 36 Tran (CR49) 2020; 21 Shen, Pouliot, Hall, Gottesman (CR37) 2012; 64 Xu (CR51) 2022; 28 Stuart, Segal, Koller, Kim (CR1) 2003; 302 Choi (CR43) 2016; 7 Wolf, Angerer, Theis (CR7) 2018; 19 Satija, Farrell, Gennert, Schier, Regev (CR36) 2015; 33 Kuleshov (CR35) 2016; 44 Lopez, Regier, Cole, Jordan, Yosef (CR14) 2018; 15 CR4 CR3 Salehi (CR22) 2021; 595 Lachmann, Giorgi, Lopez, Califano (CR52) 2016; 32 Duchi, Hazan, Singer (CR53) 2011; 12 Jiang, Sun, Song, Li (CR12) 2022; 23 Subramanian (CR26) 2005; 102 Du (CR5) 2019; 20 Traag, Waltman, van Eck (CR9) 2019; 9 Nieto (CR20) 2021; 31 Conde (CR30) 2022; 376 Tayama (CR46) 2017; 8 Margolin (CR15) 2006; 7 Hao (CR6) 2021; 184 Tsuyuzaki, Sato, Sato, Nikaido (CR13) 2020; 21 Stuart (CR33) 2019; 177 CR11 Liberzon (CR25) 2011; 27 Luecken (CR50) 2021; 19 CR55 CR54 Svensson, Gayoso, Yosef, Pachter (CR2) 2020; 36 van der Maaten, Hinton (CR10) 2008; 9 Vázquez-García (CR21) 2022; 612 Zhang (CR29) 2019; 16 Roberts (CR41) 2005; 92 Chan, Stumpf, Babtie (CR16) 2017; 5 Zheng (CR8) 2017; 8 Zhang (CR48) 2021; 9 Korsunsky (CR34) 2019; 16 Bhola (CR38) 2013; 123 CR23 Gillespie (CR24) 2022; 50 Butler, Hoffman, Smibert, Papalexi, Satija (CR32) 2018; 36 Zhu, Hu, Liu, Gao, Lin (CR44) 2015; 32 Imrich, Hachmeister, Gires (CR45) 2012; 6 Heydari (CR17) 2022; 18 Zhang (CR39) 2006; 6 JM Stuart (39985_CR1) 2003; 302 Q Zhang (39985_CR27) 2020; 18 MV Kuleshov (39985_CR35) 2016; 44 D-W Shen (39985_CR37) 2012; 64 L van der Maaten (39985_CR10) 2008; 9 CD Conde (39985_CR30) 2022; 376 AW Zhang (39985_CR29) 2019; 16 R Lopez (39985_CR14) 2018; 15 R Jiang (39985_CR12) 2022; 23 39985_CR4 GXY Zheng (39985_CR8) 2017; 8 39985_CR3 T Heydari (39985_CR17) 2022; 18 A Latifi (39985_CR47) 2011; 112 P Nieto (39985_CR20) 2021; 31 TE Chan (39985_CR16) 2017; 5 AA Margolin (39985_CR15) 2006; 7 Y Yamano (39985_CR40) 2010; 126 I Korsunsky (39985_CR34) 2019; 16 S Salehi (39985_CR22) 2021; 595 J Duchi (39985_CR53) 2011; 12 NE Bhola (39985_CR38) 2013; 123 S Imrich (39985_CR45) 2012; 6 M Gillespie (39985_CR24) 2022; 50 D Roberts (39985_CR41) 2005; 92 L Zhu (39985_CR44) 2015; 32 M Zhang (39985_CR48) 2021; 9 EJ Choi (39985_CR43) 2016; 7 J Du (39985_CR5) 2019; 20 FA Wolf (39985_CR7) 2018; 19 K Tsuyuzaki (39985_CR13) 2020; 21 39985_CR23 A Butler (39985_CR32) 2018; 36 I Vázquez-García (39985_CR21) 2022; 612 T Stuart (39985_CR33) 2019; 177 P Zhang (39985_CR39) 2006; 6 Z Hu (39985_CR42) 2015; 36 J Xu (39985_CR51) 2022; 28 MD Luecken (39985_CR50) 2021; 19 HTN Tran (39985_CR49) 2020; 21 V Svensson (39985_CR2) 2020; 36 A Subramanian (39985_CR26) 2005; 102 A Liberzon (39985_CR25) 2011; 27 Y Hao (39985_CR6) 2021; 184 H Han (39985_CR28) 2018; 46 HM Kang (39985_CR19) 2018; 36 A Lachmann (39985_CR52) 2016; 32 L Ziegler-Heitbrock (39985_CR31) 2023; 23 D van Dijk (39985_CR18) 2018; 174 39985_CR54 39985_CR11 39985_CR55 S Tayama (39985_CR46) 2017; 8 VA Traag (39985_CR9) 2019; 9 R Satija (39985_CR36) 2015; 33 |
| References_xml | – volume: 44 start-page: W90 year: 2016 end-page: W97 ident: CR35 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw377 – ident: CR4 – volume: 184 start-page: 3573 year: 2021 end-page: 3587.e29 ident: CR6 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 177 start-page: 1888 year: 2019 end-page: 1902.e21 ident: CR33 article-title: Comprehensive Integration of Single- publication-title: Cell Data. Cell – volume: 8 start-page: 44312 year: 2017 end-page: 44325 ident: CR46 article-title: The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer publication-title: Oncotarget doi: 10.18632/oncotarget.17871 – volume: 21 year: 2020 ident: CR13 article-title: Benchmarking principal component analysis for large-scale single-cell RNA-sequencing publication-title: Genome Biol. doi: 10.1186/s13059-019-1900-3 – ident: CR54 – volume: 21 year: 2020 ident: CR49 article-title: A benchmark of batch-effect correction methods for single-cell RNA sequencing data publication-title: Genome Biol. doi: 10.1186/s13059-019-1850-9 – volume: 174 start-page: 716 year: 2018 end-page: 729.e27 ident: CR18 article-title: Recovering gene interactions from single-cell data using data diffusion publication-title: Cell doi: 10.1016/j.cell.2018.05.061 – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: CR53 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res – volume: 36 start-page: 3418 year: 2020 end-page: 3421 ident: CR2 article-title: Interpretable factor models of single-cell RNA-seq via variational autoencoders publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa169 – volume: 27 start-page: 1739 year: 2011 end-page: 1740 ident: CR25 article-title: Molecular signatures database (MSigDB) 3.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 612 start-page: 778 year: 2022 end-page: 786 ident: CR21 article-title: Ovarian cancer mutational processes drive site-specific immune evasion publication-title: Nature doi: 10.1038/s41586-022-05496-1 – volume: 36 start-page: 7269 year: 2015 end-page: 7275 ident: CR42 article-title: Expression of FOXP1 in epithelial ovarian cancer (EOC) and its correlation with chemotherapy resistance and prognosis publication-title: Tumour Biol. doi: 10.1007/s13277-015-3383-5 – volume: 19 start-page: 41 year: 2021 end-page: 50 ident: CR50 article-title: Benchmarking atlas-level data integration in single-cell genomics publication-title: Nat. Methods doi: 10.1038/s41592-021-01336-8 – volume: 18 start-page: e1009907 year: 2022 ident: CR17 article-title: IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009907 – volume: 92 start-page: 1149 year: 2005 end-page: 1158 ident: CR41 article-title: Identification of genes associated with platinum drug sensitivity and resistance in human ovarian cancer cells publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6602447 – volume: 9 year: 2019 ident: CR9 article-title: From Louvain to Leiden: guaranteeing well-connected communities publication-title: Sci. Rep. doi: 10.1038/s41598-019-41695-z – ident: CR11 – volume: 46 start-page: D380 year: 2018 end-page: D386 ident: CR28 article-title: TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1013 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR10 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 31 start-page: 1913 year: 2021 end-page: 1926 ident: CR20 article-title: A single-cell tumor immune atlas for precision oncology publication-title: Genome Res. doi: 10.1101/gr.273300.120 – volume: 102 start-page: 15545 year: 2005 end-page: 15550 ident: CR26 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 19 year: 2018 ident: CR7 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 36 start-page: 89 year: 2018 end-page: 94 ident: CR19 article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4042 – volume: 18 start-page: 120 year: 2020 end-page: 128 ident: CR27 article-title: hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2019.09.006 – volume: 376 start-page: eabl5197 year: 2022 ident: CR30 article-title: Cross-tissue immune cell analysis reveals tissue-specific features in humans publication-title: Science doi: 10.1126/science.abl5197 – volume: 6 start-page: 30 year: 2012 end-page: 38 ident: CR45 article-title: EpCAM and its potential role in tumor-initiating cells publication-title: Cell Adh. Migr. doi: 10.4161/cam.18953 – volume: 33 start-page: 495 year: 2015 end-page: 502 ident: CR36 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3192 – volume: 32 year: 2015 ident: CR44 article-title: Gene expression profile analysis identifies metastasis and chemoresistance-associated genes in epithelial ovarian carcinoma cells publication-title: Med. Oncol. doi: 10.1007/s12032-014-0426-5 – volume: 7 start-page: 3506 year: 2016 end-page: 3519 ident: CR43 article-title: FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.6510 – volume: 23 year: 2022 ident: CR12 article-title: Statistics or biology: the zero-inflation controversy about scRNA-seq data publication-title: Genome Biol. doi: 10.1186/s13059-022-02601-5 – volume: 126 start-page: 437 year: 2010 end-page: 449 ident: CR40 article-title: Identification of cisplatin-resistance related genes in head and neck squamous cell carcinoma publication-title: Int. J. Cancer doi: 10.1002/ijc.24704 – volume: 23 start-page: 1 year: 2023 end-page: 2 ident: CR31 article-title: Reclassifying plasmacytoid dendritic cells as innate lymphocytes publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-022-00806-0 – volume: 112 start-page: 2850 year: 2011 end-page: 2864 ident: CR47 article-title: Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile publication-title: J. Cell. Biochem. doi: 10.1002/jcb.23199 – volume: 9 start-page: 786728 year: 2021 ident: CR48 article-title: TGF-β Signaling and Resistance to Cancer Therapy publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.786728 – ident: CR23 – volume: 123 start-page: 1348 year: 2013 end-page: 1358 ident: CR38 article-title: TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer publication-title: J. Clin. Invest. doi: 10.1172/JCI65416 – volume: 16 start-page: 1007 year: 2019 end-page: 1015 ident: CR29 article-title: Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling publication-title: Nat. Methods doi: 10.1038/s41592-019-0529-1 – volume: 16 start-page: 1289 year: 2019 end-page: 1296 ident: CR34 article-title: Fast, sensitive and accurate integration of single-cell data with Harmony publication-title: Nature Methods doi: 10.1038/s41592-019-0619-0 – volume: 6 year: 2006 ident: CR39 article-title: Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line publication-title: BMC Cancer doi: 10.1186/1471-2407-6-224 – ident: CR3 – volume: 595 start-page: 585 year: 2021 end-page: 590 ident: CR22 article-title: Clonal fitness inferred from time-series modelling of single-cell cancer genomes publication-title: Nature doi: 10.1038/s41586-021-03648-3 – volume: 8 start-page: 1 year: 2017 end-page: 12 ident: CR8 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: CR32 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 15 start-page: 1053 year: 2018 end-page: 1058 ident: CR14 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – volume: 5 start-page: 251 year: 2017 end-page: 267.e3 ident: CR16 article-title: Gene regulatory network inference from single-cell data using multivariate information measures publication-title: Cell Syst. doi: 10.1016/j.cels.2017.08.014 – volume: 64 start-page: 706 year: 2012 end-page: 721 ident: CR37 article-title: Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes publication-title: Pharmacol. Rev. doi: 10.1124/pr.111.005637 – volume: 50 start-page: D687 year: 2022 end-page: D692 ident: CR24 article-title: The reactome pathway knowledgebase 2022 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1028 – volume: 302 start-page: 249 year: 2003 end-page: 255 ident: CR1 article-title: A gene-coexpression network for global discovery of conserved genetic modules publication-title: Science doi: 10.1126/science.1087447 – volume: 28 start-page: 3590 year: 2022 end-page: 3602 ident: CR51 article-title: Single-cell RNA sequencing reveals the tissue architecture in human high-grade serous ovarian cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-22-0296 – ident: CR55 – volume: 32 start-page: 2233 year: 2016 end-page: 2235 ident: CR52 article-title: ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw216 – volume: 7 year: 2006 ident: CR15 article-title: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context publication-title: BMC Bioinf. doi: 10.1186/1471-2105-7-S1-S7 – volume: 20 year: 2019 ident: CR5 article-title: Gene2vec: distributed representation of genes based on co-expression publication-title: BMC Genomics doi: 10.1186/s12864-018-5370-x – volume: 15 start-page: 1053 year: 2018 ident: 39985_CR14 publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – volume: 6 start-page: 30 year: 2012 ident: 39985_CR45 publication-title: Cell Adh. Migr. doi: 10.4161/cam.18953 – ident: 39985_CR3 – volume: 7 start-page: 3506 year: 2016 ident: 39985_CR43 publication-title: Oncotarget doi: 10.18632/oncotarget.6510 – volume: 28 start-page: 3590 year: 2022 ident: 39985_CR51 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-22-0296 – volume: 44 start-page: W90 year: 2016 ident: 39985_CR35 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw377 – volume: 64 start-page: 706 year: 2012 ident: 39985_CR37 publication-title: Pharmacol. Rev. doi: 10.1124/pr.111.005637 – volume: 16 start-page: 1289 year: 2019 ident: 39985_CR34 publication-title: Nature Methods doi: 10.1038/s41592-019-0619-0 – volume: 123 start-page: 1348 year: 2013 ident: 39985_CR38 publication-title: J. Clin. Invest. doi: 10.1172/JCI65416 – volume: 20 year: 2019 ident: 39985_CR5 publication-title: BMC Genomics doi: 10.1186/s12864-018-5370-x – ident: 39985_CR54 doi: 10.5281/zenodo.8079610 – volume: 27 start-page: 1739 year: 2011 ident: 39985_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 33 start-page: 495 year: 2015 ident: 39985_CR36 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3192 – volume: 302 start-page: 249 year: 2003 ident: 39985_CR1 publication-title: Science doi: 10.1126/science.1087447 – volume: 19 year: 2018 ident: 39985_CR7 publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 92 start-page: 1149 year: 2005 ident: 39985_CR41 publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6602447 – volume: 7 year: 2006 ident: 39985_CR15 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-7-S1-S7 – volume: 612 start-page: 778 year: 2022 ident: 39985_CR21 publication-title: Nature doi: 10.1038/s41586-022-05496-1 – volume: 595 start-page: 585 year: 2021 ident: 39985_CR22 publication-title: Nature doi: 10.1038/s41586-021-03648-3 – volume: 32 year: 2015 ident: 39985_CR44 publication-title: Med. Oncol. doi: 10.1007/s12032-014-0426-5 – volume: 31 start-page: 1913 year: 2021 ident: 39985_CR20 publication-title: Genome Res. doi: 10.1101/gr.273300.120 – volume: 36 start-page: 7269 year: 2015 ident: 39985_CR42 publication-title: Tumour Biol. doi: 10.1007/s13277-015-3383-5 – volume: 8 start-page: 44312 year: 2017 ident: 39985_CR46 publication-title: Oncotarget doi: 10.18632/oncotarget.17871 – volume: 23 year: 2022 ident: 39985_CR12 publication-title: Genome Biol. doi: 10.1186/s13059-022-02601-5 – volume: 112 start-page: 2850 year: 2011 ident: 39985_CR47 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.23199 – volume: 5 start-page: 251 year: 2017 ident: 39985_CR16 publication-title: Cell Syst. doi: 10.1016/j.cels.2017.08.014 – volume: 23 start-page: 1 year: 2023 ident: 39985_CR31 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-022-00806-0 – volume: 177 start-page: 1888 year: 2019 ident: 39985_CR33 publication-title: Cell Data. Cell – volume: 9 start-page: 786728 year: 2021 ident: 39985_CR48 publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.786728 – volume: 6 year: 2006 ident: 39985_CR39 publication-title: BMC Cancer doi: 10.1186/1471-2407-6-224 – volume: 19 start-page: 41 year: 2021 ident: 39985_CR50 publication-title: Nat. Methods doi: 10.1038/s41592-021-01336-8 – ident: 39985_CR23 – ident: 39985_CR11 doi: 10.21105/joss.00861 – volume: 8 start-page: 1 year: 2017 ident: 39985_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 32 start-page: 2233 year: 2016 ident: 39985_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw216 – volume: 184 start-page: 3573 year: 2021 ident: 39985_CR6 publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 36 start-page: 411 year: 2018 ident: 39985_CR32 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 21 year: 2020 ident: 39985_CR49 publication-title: Genome Biol. doi: 10.1186/s13059-019-1850-9 – volume: 18 start-page: e1009907 year: 2022 ident: 39985_CR17 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009907 – volume: 46 start-page: D380 year: 2018 ident: 39985_CR28 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1013 – volume: 16 start-page: 1007 year: 2019 ident: 39985_CR29 publication-title: Nat. Methods doi: 10.1038/s41592-019-0529-1 – volume: 9 start-page: 2579 year: 2008 ident: 39985_CR10 publication-title: J. Mach. Learn. Res. – volume: 50 start-page: D687 year: 2022 ident: 39985_CR24 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1028 – volume: 174 start-page: 716 year: 2018 ident: 39985_CR18 publication-title: Cell doi: 10.1016/j.cell.2018.05.061 – ident: 39985_CR4 doi: 10.3115/v1/d14-1162 – volume: 126 start-page: 437 year: 2010 ident: 39985_CR40 publication-title: Int. J. Cancer doi: 10.1002/ijc.24704 – volume: 102 start-page: 15545 year: 2005 ident: 39985_CR26 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 21 year: 2020 ident: 39985_CR13 publication-title: Genome Biol. doi: 10.1186/s13059-019-1900-3 – volume: 12 start-page: 2121 year: 2011 ident: 39985_CR53 publication-title: J. Mach. Learn. Res – volume: 9 year: 2019 ident: 39985_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-019-41695-z – ident: 39985_CR55 doi: 10.5281/zenodo.8079885 – volume: 376 start-page: eabl5197 year: 2022 ident: 39985_CR30 publication-title: Science doi: 10.1126/science.abl5197 – volume: 18 start-page: 120 year: 2020 ident: 39985_CR27 publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2019.09.006 – volume: 36 start-page: 3418 year: 2020 ident: 39985_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa169 – volume: 36 start-page: 89 year: 2018 ident: 39985_CR19 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4042 |
| SSID | ssj0000391844 |
| Score | 2.4370437 |
| Snippet | Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current... Abstract Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4400 |
| SubjectTerms | 38/91 631/114/1305 631/114/794 631/208/212/2019 631/67/2329 631/67/69 Cluster Analysis Embedding Exome Sequencing Gene expression Gene Expression Profiling Gene sequencing Genes Humanities and Social Sciences multidisciplinary Phenotypes Principal Component Analysis Principal components analysis Reduction Ribonucleic acid RNA Science Science (multidisciplinary) Sequence Analysis, RNA - methods Single-Cell Analysis - methods Sparse gene Transcription Vector spaces |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFH5CFUhcEJQttCAjcYOocbzm2FZUPaCKA1S9WXZsQyXIVM1MpYo_z7PjDB3WC1cvkfP8ls_L-wzwKnJpBZOublX0NbddrC21om4cxjfvuYs5K-30nTo50Wdn3fsbT32lO2ETPfAkuD0pLI_C6agbz2MnnXeBBisDUxHBiE_eF1HPjcVU9sGsw6ULL1kyDdN7I88-AUNUjTFZi7rdiESZsP93KPPXy5I_nZjmQHR0H-4VBEn2p5E_gFth2IY705uS1w_h25R6G8teHFlEskzxaPYO2LXcyRpJuvT-iWD7MZCrvH1PMsnlnJA0jFgZEYd64q7J11XKNSGFajV_PO3iksRcfZp7P4KPR28_HB7X5YWFuhecLmvV97FhgXHVNpFJT3vaWadVdNGroHQIQsbWCYGFaO3eUYfwi6Uwz7zjDXsMW8NiCE-BUOtaFpPDwCWn5sLKSHvJO9-E4PpGVkBnaZu-0I-nVzC-mHwMzrSZZsjgDJk8Q6at4PW6z8VEvvHX1gdpEtctE3F2LkB1MkWdzL_UqYLdWQVMsebRYAhP0Al_u4KX62q0w3S4YoewWOU2iNXw57sKnkwasx4JwzUbR2RWgd7QpY2hbtYM558z1zdNFIu8pRW8mdXux7j-LItn_0MWO3C3TfbSKPSlu7C1vFyF53C7v1qej5cvssF9B08JMjE priority: 102 providerName: Directory of Open Access Journals |
| Title | Identification of transcriptional programs using dense vector representations defined by mutual information with GeneVector |
| URI | https://link.springer.com/article/10.1038/s41467-023-39985-2 https://www.ncbi.nlm.nih.gov/pubmed/37474509 https://www.proquest.com/docview/2840081238 https://www.proquest.com/docview/2841020259 https://pubmed.ncbi.nlm.nih.gov/PMC10359421 https://doaj.org/article/65a4f5b8f80d4f96bdbe1ea6e37f565d |
| Volume | 14 |
| WOSCitedRecordID | wos001040020600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iLUhc2JdAGRmJG0SNYzt2ToiiViDBKEJQDVyiOLZLJciUyUylij_Ps-NMNSy9cJlDbI_svDVv-QzwzPGiEazQaS6dSXlTurShjUgzjfbNGK5d6Eo7eienUzWblVUMuPWxrHLUiUFRm3nrY-R7qEa9-UIL8_L0R-pvjfLZ1XiFxhbseJQEL5iV-LKOsXj0c8V57JXJmNrredAMaKhStMxKpPmGPQqw_X_zNf8smfwtbxrM0eHN_z3ILbgRHVHyauCc23DFdnfg2nA15fld-Dl08LoY0iNzR5berI1KBpfG0q6e-Nr5Y4Lze0vOQhaABKzMsa-p63HQoTtriD4n31e-ZYVExNbw5z4YTDwA9lFYfQ8-HR58fP0mjRc1pK3gdJnKtnUZs4zLPHOsMLSlZaOVdNoZaaWyVhQu10LgQ1QaRlONXhzz3gIzmmfsPmx3884-BEIbnTPn9Q5-uSoumsLRtuClyazVbVYkQEdy1W1EMfeXaXyrQzadqXogcY0krgOJ6zyB5-s1pwOGx6Wz9z0XrGd6_O3wYL44rqM414VouBNaOZUZ7spCG22pbQrLpEMX2SSwOxK_jkqhry8on8DT9TCKs8_RNJ2dr8IcdPnw8GUCDwaWW--E4acfRwcvAbXBjBtb3RzpTr4GyHDqkRp5ThN4MfLtxb7-_S4eXX6Mx3A996KUSVS2u7C9XKzsE7jani1P-sUEtuRMhl81gZ39g2n1YRJCHhNfYFtNgqziSPX2ffX5F5JKRfc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwgqhx7MTOASG2qlWHEYdSzc3EsV0qQaZMZopG_Cd-I8_OUg1Lbz1wjRfZzufvPdtvAXjieF5mLNdxKpyJeVm4uKRlFica5ZsxXLvglbY_EuOxnEyKD2vws_eF8WaVPScGojbTyt-RbyKNevGFEubl0bfYZ43yr6t9Co0WFrt2-R2PbM2Lnbf4f5-m6da7vTfbcZdVIK4yTuexqCqXMMu4SBPHckMrWpRaCqedEVZIa7PcpTrL8CMi3GiqUeVgXrQxo3nCsN9zcB55XHgTMjERw52Oj7YuOe98cxImNxsemAgFY4yagMzidEX-hTQBf9Nt_zTR_O2dNoi_rav_28Jdgyudok1etTvjOqzZ-gZcbFNvLm_Cj9ZD2XVXlmTqyNyL7Z5EsWlnutYQ7xtwQLB-Y8lxeOUgIRZo77dVN1joUF03RC_J14V3ySFdRNrQub_sJj7A935ofQs-nsnMb8N6Pa3tXSC01ClznlfxZC55VuaOVjkvTGKtrpI8AtrDQ1VdlHafLOSLCtYCTKoWUgohpQKkVBrBs6HNURuj5NTarz3qhpo-vnj4MJ0dqI6uVJ6V3GVaOpkY7opcG22pLXPLhMMjgIlgoweb6kivUSdIi-DxUIx05d-gytpOF6EOqrQ4-SKCOy3Eh5EwPNpyVGAjkCvgXxnqakl9-DmERKc-EiVPaQTP-31yMq5_r8W906fxCC5t770fqdHOePc-XE79Nk4ECpYNWJ_PFvYBXKiO54fN7GHgAQKfznr__AJGbpvB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCazGsZ3HASGgrKharfYAVcXFxLFdKkG2bHaLVvwzfh1j51Etj9564BrbkZ18882M7ZkBeOJEWkqeappkzlBRFo6WrJQ01qjfjBHahai0vd1sPM7394vJGvzsY2H8tcqeEwNRm2nl98g3kUa9-kINs-m6axGTrdHLo2_UV5DyJ619OY0WIjt2-R3dt-bF9hb-66dJMnr7_s072lUYoJUUbE6zqnIxt1xkSex4aljFilLnmdPOZDbLrZWpS7SU-BDRbjTTaH5wr-a40SLm-N5zcD5DH9M7fhP5cdjf8ZnXcyG6OJ0Yp92IwEqoJClaBbmkyYouDCUD_mbn_nld87cz26AKR1f_5494Da50Bjh51UrMdViz9Q242JbkXN6EH23ksuu2MsnUkblX5z254tDuSltDfMzAAcH-jSXH4fSDhByhfTxX3WCjQzPeEL0kXxc-VId0mWrDy_0mOPGJv_fC6Fvw4UxWfhvW62lt7wJhpU6483yLHnsuZJk6VqWiMLG1uorTCFgPFVV12dt9EZEvKtwi4Llq4aUQXirASyURPBvGHLW5S07t_dojcOjp846HB9PZgepoTKWyFE7q3OWxEa5ItdGW2TK1PHPoGpgINnrgqY4MG3WCuggeD81IY_5sqqztdBH6oKmLiy8iuNPCfZgJR5dXoGEbQb4iCCtTXW2pDz-HVOnMZ6gUCYvgeS8zJ_P697e4d_oyHsElFBu1uz3euQ-XEy_RcYb6ZgPW57OFfQAXquP5YTN7GCiBwKezFp9fE46ktA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+transcriptional+programs+using+dense+vector+representations+defined+by+mutual+information+with+GeneVector&rft.jtitle=Nature+communications&rft.au=Ceglia%2C+Nicholas&rft.au=Sethna%2C+Zachary&rft.au=Freeman%2C+Samuel+S&rft.au=Uhlitz%2C+Florian&rft.date=2023-07-20&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=4400&rft_id=info:doi/10.1038%2Fs41467-023-39985-2&rft_id=info%3Apmid%2F37474509&rft.externalDocID=37474509 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |