A hybrid sparrow optimization Kriging model and its application in geological modeling

With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Krigi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 24610 - 19
Hlavní autoři: Shi, Xiaonan, Wang, Yumo, Wu, Haoran, Wang, Aoqian
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 19.10.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Kriging model (HSSA), in which chaos theory and Levy flight are integrated into the initial population update algorithm of the sparrow algorithm and the location update algorithm of the entrants, is proposed. Next, the golden sine optimization algorithm is introduced into the reconnaissance and early warning mechanism of the sparrow algorithm to further improve the accuracy and local escape ability. By the correlation optimization of the original sparrow algorithm, the speed and accuracy of swarm intelligence optimization are further improved. In addition, the model solves the parameters of the variation function of the ordinary Kriging interpolation and reduces the generation error of the formation data interpolation. The results of relevant experiments show that the hybrid sparrow optimization Kriging model improves the accuracy and convergence speed compared with other swarm intelligence algorithms and that the accuracy of this model is improved by 8.4% compared with the original Kriging interpolation algorithm. Based on the hybrid sparrow optimization Kriging model, we propose a three-dimensional stratigraphic model for the Yangchangwan Coal Mine, which provides further support for mining operations and three-dimensional stratigraphic research in this area. The accuracy and applicability of the hybrid sparrow optimization Kriging model are further explained using a case study with the stratigraphic model data in the Yangchangwan Coal Mine. HSSA with significant potential for applications in industries such as coal mining and geological exploration. In these fields, the efficient acquisition, processing, and modeling of stratigraphic data are critical for enhancing geological interpretation and optimizing operational workflows.
AbstractList With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Kriging model (HSSA), in which chaos theory and Levy flight are integrated into the initial population update algorithm of the sparrow algorithm and the location update algorithm of the entrants, is proposed. Next, the golden sine optimization algorithm is introduced into the reconnaissance and early warning mechanism of the sparrow algorithm to further improve the accuracy and local escape ability. By the correlation optimization of the original sparrow algorithm, the speed and accuracy of swarm intelligence optimization are further improved. In addition, the model solves the parameters of the variation function of the ordinary Kriging interpolation and reduces the generation error of the formation data interpolation. The results of relevant experiments show that the hybrid sparrow optimization Kriging model improves the accuracy and convergence speed compared with other swarm intelligence algorithms and that the accuracy of this model is improved by 8.4% compared with the original Kriging interpolation algorithm. Based on the hybrid sparrow optimization Kriging model, we propose a three-dimensional stratigraphic model for the Yangchangwan Coal Mine, which provides further support for mining operations and three-dimensional stratigraphic research in this area. The accuracy and applicability of the hybrid sparrow optimization Kriging model are further explained using a case study with the stratigraphic model data in the Yangchangwan Coal Mine. HSSA with significant potential for applications in industries such as coal mining and geological exploration. In these fields, the efficient acquisition, processing, and modeling of stratigraphic data are critical for enhancing geological interpretation and optimizing operational workflows.
With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Kriging model (HSSA), in which chaos theory and Levy flight are integrated into the initial population update algorithm of the sparrow algorithm and the location update algorithm of the entrants, is proposed. Next, the golden sine optimization algorithm is introduced into the reconnaissance and early warning mechanism of the sparrow algorithm to further improve the accuracy and local escape ability. By the correlation optimization of the original sparrow algorithm, the speed and accuracy of swarm intelligence optimization are further improved. In addition, the model solves the parameters of the variation function of the ordinary Kriging interpolation and reduces the generation error of the formation data interpolation. The results of relevant experiments show that the hybrid sparrow optimization Kriging model improves the accuracy and convergence speed compared with other swarm intelligence algorithms and that the accuracy of this model is improved by 8.4% compared with the original Kriging interpolation algorithm. Based on the hybrid sparrow optimization Kriging model, we propose a three-dimensional stratigraphic model for the Yangchangwan Coal Mine, which provides further support for mining operations and three-dimensional stratigraphic research in this area. The accuracy and applicability of the hybrid sparrow optimization Kriging model are further explained using a case study with the stratigraphic model data in the Yangchangwan Coal Mine. HSSA with significant potential for applications in industries such as coal mining and geological exploration. In these fields, the efficient acquisition, processing, and modeling of stratigraphic data are critical for enhancing geological interpretation and optimizing operational workflows.With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Kriging model (HSSA), in which chaos theory and Levy flight are integrated into the initial population update algorithm of the sparrow algorithm and the location update algorithm of the entrants, is proposed. Next, the golden sine optimization algorithm is introduced into the reconnaissance and early warning mechanism of the sparrow algorithm to further improve the accuracy and local escape ability. By the correlation optimization of the original sparrow algorithm, the speed and accuracy of swarm intelligence optimization are further improved. In addition, the model solves the parameters of the variation function of the ordinary Kriging interpolation and reduces the generation error of the formation data interpolation. The results of relevant experiments show that the hybrid sparrow optimization Kriging model improves the accuracy and convergence speed compared with other swarm intelligence algorithms and that the accuracy of this model is improved by 8.4% compared with the original Kriging interpolation algorithm. Based on the hybrid sparrow optimization Kriging model, we propose a three-dimensional stratigraphic model for the Yangchangwan Coal Mine, which provides further support for mining operations and three-dimensional stratigraphic research in this area. The accuracy and applicability of the hybrid sparrow optimization Kriging model are further explained using a case study with the stratigraphic model data in the Yangchangwan Coal Mine. HSSA with significant potential for applications in industries such as coal mining and geological exploration. In these fields, the efficient acquisition, processing, and modeling of stratigraphic data are critical for enhancing geological interpretation and optimizing operational workflows.
Abstract With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Kriging model (HSSA), in which chaos theory and Levy flight are integrated into the initial population update algorithm of the sparrow algorithm and the location update algorithm of the entrants, is proposed. Next, the golden sine optimization algorithm is introduced into the reconnaissance and early warning mechanism of the sparrow algorithm to further improve the accuracy and local escape ability. By the correlation optimization of the original sparrow algorithm, the speed and accuracy of swarm intelligence optimization are further improved. In addition, the model solves the parameters of the variation function of the ordinary Kriging interpolation and reduces the generation error of the formation data interpolation. The results of relevant experiments show that the hybrid sparrow optimization Kriging model improves the accuracy and convergence speed compared with other swarm intelligence algorithms and that the accuracy of this model is improved by 8.4% compared with the original Kriging interpolation algorithm. Based on the hybrid sparrow optimization Kriging model, we propose a three-dimensional stratigraphic model for the Yangchangwan Coal Mine, which provides further support for mining operations and three-dimensional stratigraphic research in this area. The accuracy and applicability of the hybrid sparrow optimization Kriging model are further explained using a case study with the stratigraphic model data in the Yangchangwan Coal Mine. HSSA with significant potential for applications in industries such as coal mining and geological exploration. In these fields, the efficient acquisition, processing, and modeling of stratigraphic data are critical for enhancing geological interpretation and optimizing operational workflows.
ArticleNumber 24610
Author Shi, Xiaonan
Wu, Haoran
Wang, Yumo
Wang, Aoqian
Author_xml – sequence: 1
  givenname: Xiaonan
  surname: Shi
  fullname: Shi, Xiaonan
  organization: Computer Science and Technology College, Xi’an University of Science and Technology
– sequence: 2
  givenname: Yumo
  surname: Wang
  fullname: Wang, Yumo
  email: 19407020420@stu.xust.edu.cn
  organization: Communication and Information Engineering College, Xi’an University of Science and Technology
– sequence: 3
  givenname: Haoran
  surname: Wu
  fullname: Wu, Haoran
  organization: Communication and Information Engineering College, Xi’an University of Science and Technology
– sequence: 4
  givenname: Aoqian
  surname: Wang
  fullname: Wang, Aoqian
  organization: Computer Science and Technology College, Xi’an University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39427009$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvFiEUhompsbX2D7gwk7hxM8ptuKxM03hp2qSb6pYAw0z5wsAI82nqr5d-U3tblA3k8LzvOXDOa7AXU3QAvEXwI4JEfCoUdVK0ENOWd4TyVrwABxjSrsUE470H531wVMoG1tVhSZF8BfaJpJhDKA_Az-Pm6tpk3zdl1jmnP02aFz_5v3rxKTZn2Y8-js2UehcaHfvGL6XR8xy8XQkfm9GlkMYaCCtXBW_Ay0GH4o5u90Pw4-uXy5Pv7fnFt9OT4_PWdhQtbWcGiCG3RiIuiXVGEGYQshLiwWCoBTG6twgP_dANvcGUOMwoMsRwqBlB5BCcrr590hs1Zz_pfK2S9moXSHlUOi_eBqd6OZhOajHUdJQxXPNQJi13XFuIuKten1eveWsm11sXl6zDI9PHN9FfqTH9VtVIwo7dVPPh1iGnX1tXFjX5Yl0IOrq0LYogJCiHlOGKvn-CbtI2x_pXO4pIDhmv1LuHJd3V8r9_FcArYHMqJbvhDkFQ3cyJWudE1TlRuzlRoorEE5H1y66b9Vk-PC8lq7TUPHF0-b7sZ1T_AKt-0gE
CitedBy_id crossref_primary_10_3390_app15084078
Cites_doi 10.1109/JIOT.2023.3289625
10.1109/ACCESS.2022.3233596
10.1016/j.swevo.2018.01.001
10.1007/s00521-018-3343-2
10.1007/s00521-015-1870-7
10.1080/02693799008941549
10.1109/MAES.2023.3318226
10.1016/j.physa.2008.12.071
10.1155/2021/3946958
10.1007/s12518-022-00438-y
10.1023/A:1008202821328
10.1007/s00521-019-04570-6
10.1007/s00500-020-05527-x
10.1007/s12293-017-0247-0
10.1016/j.energy.2024.130694
10.1109/ICNN.1995.488968
10.1016/j.ins.2023.119340
10.4316/AECE.2017.02010
10.1016/j.cma.2023.116664
10.1109/JIOT.2024.3355993
10.1080/21642583.2019.1708830
10.1016/j.advengsoft.2016.01.008
10.1016/j.future.2019.02.028
10.1016/j.advengsoft.2013.12.007
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-75347-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Geology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_d9fb59a8f7cb4662b11469c7e7ac017e
PMC11490561
39427009
10_1038_s41598_024_75347_8
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c541t-5bf0207cb91793ceb836b11c902fb20a83badc12fdf5fdb243e2641b3b70a6313
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339577900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:08:58 EDT 2025
Tue Nov 04 02:05:26 EST 2025
Sun Nov 09 13:42:50 EST 2025
Tue Oct 07 08:02:48 EDT 2025
Mon Jul 21 06:00:17 EDT 2025
Tue Nov 18 22:32:54 EST 2025
Sat Nov 29 05:24:27 EST 2025
Fri Feb 21 02:36:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Drilling
Sparrow optimization algorithm
Three-dimensional geological modeling
Kriging
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-5bf0207cb91793ceb836b11c902fb20a83badc12fdf5fdb243e2641b3b70a6313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/d9fb59a8f7cb4662b11469c7e7ac017e
PMID 39427009
PQID 3118397067
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_d9fb59a8f7cb4662b11469c7e7ac017e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11490561
proquest_miscellaneous_3118470462
proquest_journals_3118397067
pubmed_primary_39427009
crossref_primary_10_1038_s41598_024_75347_8
crossref_citationtrail_10_1038_s41598_024_75347_8
springer_journals_10_1038_s41598_024_75347_8
PublicationCentury 2000
PublicationDate 2024-10-19
PublicationDateYYYYMMDD 2024-10-19
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Storn, Price (CR28) 1997; 11
CR19
Ibrahim (CR32) 2023; 15
Oliver, Webster (CR1) 1990; 4
CR16
CR15
CR14
CR12
Emambocus, Jasser (CR5) 2023; 11
CR11
CR10
CR31
Mirjalili, Mirjalili, Hatamlou (CR30) 2016; 27
Yu, Gao, Cong, Wu (CR4) 2024; 10
CR2
Shehab (CR29) 2020; 32
Yu (CR25) 2018; 10
CR6
CR8
CR7
CR9
Ghaemi, Zabihinpour, Asgari (CR26) 2010; 388
CR27
CR23
Yu (CR3) 2023
CR22
CR21
CR20
Gupta, Deep (CR17) 2019; 44
Deng (CR18) 2021; 25
Ouyang, Zhu, Wang (CR13) 2021; 2021
Arora, Anand (CR24) 2019; 31
C Ouyang (75347_CR13) 2021; 2021
MA Oliver (75347_CR1) 1990; 4
Z Yu (75347_CR3) 2023
S Gupta (75347_CR17) 2019; 44
S Arora (75347_CR24) 2019; 31
75347_CR12
75347_CR11
M Ghaemi (75347_CR26) 2010; 388
M Shehab (75347_CR29) 2020; 32
75347_CR10
75347_CR31
75347_CR19
Y Yu (75347_CR25) 2018; 10
75347_CR9
75347_CR16
75347_CR8
75347_CR15
75347_CR7
75347_CR14
75347_CR6
75347_CR2
S Mirjalili (75347_CR30) 2016; 27
75347_CR23
75347_CR22
75347_CR21
75347_CR20
MB Emambocus, Jasser (75347_CR5) 2023; 11
W Deng (75347_CR18) 2021; 25
R Storn (75347_CR28) 1997; 11
75347_CR27
PO Ibrahim (75347_CR32) 2023; 15
Z Yu (75347_CR4) 2024; 10
References_xml – ident: CR22
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR12
– volume: 10
  start-page: 21670
  issue: 24
  year: 2024
  end-page: 21686
  ident: CR4
  article-title: A survey on cyber-physical systems security
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3289625
– ident: CR10
– volume: 11
  start-page: 1280
  year: 2023
  end-page: 1294
  ident: CR5
  article-title: A survey on the optimization of artificial neural networks using swarm intelligence algorithms
  publication-title: IEEE ACCESS
  doi: 10.1109/ACCESS.2022.3233596
– ident: CR6
– volume: 44
  start-page: 101
  year: 2019
  end-page: 112
  ident: CR17
  article-title: A novel random walk grey wolf optimizer
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.01.001
– ident: CR8
– volume: 31
  start-page: 4385
  issue: 8
  year: 2019
  end-page: 4405
  ident: CR24
  article-title: Chaotic grasshopper optimization algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3343-2
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  end-page: 495
  ident: CR30
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 4
  start-page: 313
  issue: 3
  year: 1990
  end-page: 332
  ident: CR1
  article-title: Kriging: a method of interpolation for geographical information systems
  publication-title: Int. J. Geogr. Inf. Syst.
  doi: 10.1080/02693799008941549
– year: 2023
  ident: CR3
  article-title: Cybersecurity of unmanned aerial vehicles: a survey
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2023.3318226
– ident: CR27
– volume: 388
  start-page: 1509
  issue: 8
  year: 2010
  end-page: 1514
  ident: CR26
  article-title: Computer simulation study of the Levy flight process
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2008.12.071
– ident: CR23
– ident: CR21
– ident: CR19
– volume: 2021
  start-page: 3946958
  year: 2021
  ident: CR13
  article-title: A learning sparrow search algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/3946958
– ident: CR15
– volume: 15
  start-page: 281
  year: 2023
  end-page: 293
  ident: CR32
  article-title: Modelling topo-bathymetric surface using a triangulation irregular network (TIN) of Tunga Dam in Nigeria
  publication-title: Appl. Geomat.
  doi: 10.1007/s12518-022-00438-y
– ident: CR31
– ident: CR11
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  ident: CR28
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim. Dec.
  doi: 10.1023/A:1008202821328
– ident: CR9
– volume: 32
  start-page: 9859
  issue: 14
  year: 2020
  end-page: 9884
  ident: CR29
  article-title: Moth–flame optimization algorithm: variants and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04570-6
– volume: 25
  start-page: 5277
  issue: 7
  year: 2021
  end-page: 5298
  ident: CR18
  article-title: An improved differential evolution algorithm and its application in optimization problem
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05527-x
– ident: CR7
– volume: 10
  start-page: 353
  issue: 4
  year: 2018
  end-page: 367
  ident: CR25
  article-title: CBSO: a memetic brain storm optimization with chaotic local search
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-017-0247-0
– ident: CR20
– ident: 75347_CR23
  doi: 10.1016/j.energy.2024.130694
– ident: 75347_CR2
  doi: 10.1109/ICNN.1995.488968
– volume: 11
  start-page: 1280
  year: 2023
  ident: 75347_CR5
  publication-title: IEEE ACCESS
  doi: 10.1109/ACCESS.2022.3233596
– ident: 75347_CR31
– ident: 75347_CR16
  doi: 10.1016/j.ins.2023.119340
– ident: 75347_CR27
  doi: 10.4316/AECE.2017.02010
– ident: 75347_CR10
  doi: 10.1016/j.cma.2023.116664
– volume: 4
  start-page: 313
  issue: 3
  year: 1990
  ident: 75347_CR1
  publication-title: Int. J. Geogr. Inf. Syst.
  doi: 10.1080/02693799008941549
– ident: 75347_CR19
– volume: 44
  start-page: 101
  year: 2019
  ident: 75347_CR17
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.01.001
– year: 2023
  ident: 75347_CR3
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2023.3318226
– ident: 75347_CR11
– ident: 75347_CR21
– volume: 32
  start-page: 9859
  issue: 14
  year: 2020
  ident: 75347_CR29
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04570-6
– volume: 31
  start-page: 4385
  issue: 8
  year: 2019
  ident: 75347_CR24
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3343-2
– ident: 75347_CR15
  doi: 10.1109/JIOT.2024.3355993
– volume: 25
  start-page: 5277
  issue: 7
  year: 2021
  ident: 75347_CR18
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05527-x
– ident: 75347_CR9
  doi: 10.1080/21642583.2019.1708830
– ident: 75347_CR22
– volume: 15
  start-page: 281
  year: 2023
  ident: 75347_CR32
  publication-title: Appl. Geomat.
  doi: 10.1007/s12518-022-00438-y
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 75347_CR30
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 388
  start-page: 1509
  issue: 8
  year: 2010
  ident: 75347_CR26
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2008.12.071
– ident: 75347_CR7
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 75347_CR8
  doi: 10.1016/j.future.2019.02.028
– ident: 75347_CR12
– volume: 2021
  start-page: 3946958
  year: 2021
  ident: 75347_CR13
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/3946958
– ident: 75347_CR20
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 75347_CR28
  publication-title: J. Global Optim. Dec.
  doi: 10.1023/A:1008202821328
– volume: 10
  start-page: 21670
  issue: 24
  year: 2024
  ident: 75347_CR4
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3289625
– ident: 75347_CR6
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 75347_CR14
  doi: 10.1016/j.energy.2024.130694
– volume: 10
  start-page: 353
  issue: 4
  year: 2018
  ident: 75347_CR25
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-017-0247-0
SSID ssj0000529419
Score 2.4554882
Snippet With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by...
Abstract With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24610
SubjectTerms 639/705
639/705/117
Accuracy
Algorithms
Chaos theory
Coal
Coal mines
Coal mining
Drilling
Geology
Humanities and Social Sciences
Intelligence
Kriging
multidisciplinary
Optimization
Science
Science (multidisciplinary)
Sparrow optimization algorithm
Three-dimensional geological modeling
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxg6hxnMT2CRVEQUJUPQDqzYodZ7sSJGWzRdp_z4zjpCyPXrglsS3ZGc94xvP4AJ5nDu0IpWVaqdylaH_J1CruUiEsDmkL5LERbEIeHqrjY30UL9yGGFY5ycQgqJve0R35nuB0lksUrq9Ov6eEGkXe1QihcRmuoGbDKaTrY34037GQF6vgOubKZELtDXheUU5ZXqSopxcooLfOo1C2_2-65p8hk7_5TcNxdHDzfxdyC25ERZTtjzvnNlzy3R24NkJTbvDpXYD83dyFL_vsZEN5XQyFD1VsZD2KmW8xf5N9CMhaCxYgdVjdNWy5HtgvfnG27NjCTzJ27IcD7sHng7ef3rxPIxpD6sqCr9PStqhaSmc18bTzVonKcu50lrc2z2olbN04nrdNW7aNzQvhUdniVliZ1ZXg4j7sdH3nHwIrtUfNpMprquZfS1RaSzT7pG_w3Yq2SYBPNDEulionxIyvJrjMhTIjHQ3S0QQ6GpXAi3nM6Vio48Ler4nUc08qsh0-9KuFiTxrGt3aUteqxUUXVZVbyuDWTnpZOxRkPoHdicImcv5gzsmbwLO5GXmWHDF15_uzsU8hKS04gQfjvppnInRBsQA6AbW147amut3SLU9CXXCcniaDMIGX0-Y8n9e__8Wji5fxGK7nxC8UxaN3YWe9OvNP4Kr7sV4Oq6eB4X4CGKMxDg
  priority: 102
  providerName: ProQuest
Title A hybrid sparrow optimization Kriging model and its application in geological modeling
URI https://link.springer.com/article/10.1038/s41598-024-75347-8
https://www.ncbi.nlm.nih.gov/pubmed/39427009
https://www.proquest.com/docview/3118397067
https://www.proquest.com/docview/3118470462
https://pubmed.ncbi.nlm.nih.gov/PMC11490561
https://doaj.org/article/d9fb59a8f7cb4662b11469c7e7ac017e
Volume 14
WOSCitedRecordID wos001339577900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDBdbu8Fexj67bN3hwd620MROYvuxLS0bo0cY27g9mdhx2oM2N3rXQf_7SXbuerfPl70YEtsgZEmWkPUTwOvMYRyhtEwrxV2K8ZdMrcpdKoTFLV2BOhabTcjxWE0mul5r9UVvwiI8cGTcXqs7W-pGddLZoqq4pTJa7aSXjUNp8mR9M6nXgqmI6s11keuhSiYTam-ONxVVk_EiRQ-9QNO8cRMFwP7feZm_Ppb8KWMaLqLjB3B_8CDZfqT8Idzy_SO4G3tKXj-GL_vs7JrKsBjaCgJYZDO0ChdDuSX7EBphnbLQAYc1fcumizlbS2Ozac9O_dIkxnW44Ql8Pj76dPguHZonpK4s8kVa2g49QWSaJhV03ipRIe-cznhnedYoYZvW5bxru7JrLS-ER98ot8LKrKlELp7CVj_r_TNgpfboSFS8IfD9RqKPWWKUJn2L31Z0bQL5kpHGDcji1ODi3IQMt1AmMt8g801gvlEJvFnt-RZxNf66-oDOZ7WSMLHDD5QUM0iK-ZekJLC7PF0zKOrciJxcRIl3dgKvVtOoYpQ3aXo_u4prCklVvAnsRGFYUSJ0Qal7nYDaEJMNUjdn-ulZgPFG8jTFbwm8XUrUDV1_5sXz_8GLF3CPkyrQ0xy9C1uLyyv_Eu6474vp_HIEt-VEhlGNYPvgaFx_HAX9wvGE1zRKHLfr9yf11x-Zfiea
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4pBaZceFMMBcQMnMDTWLIt6cAw5VHaScn0UJjehCXLaWbAKUkKkz_Fb2RXtlPCo7ceuCWxlJHsb1_W7n4AT3oO4wilZZwr7mKMv2RsVeJiISxOqVKUsYZsQg4G6vBQ76_Aj64WhtIqO50YFHU5dvSOfFMkZMslKteXx19jYo2i09WOQqOBRd_Pv2PINn2x-waf71POt98evN6JW1aB2GVpMoszW6GLJJ3VhE3nrRK5TRKne7yyvFcoYYvSJbwqq6wqLU-FR6chscLKXpGLROD_XoCLKXUWo1RBvr94p0OnZmmi29qcnlCbU7SPVMPG0xjjghQNwpL9CzQBf_Nt_0zR_O2cNpi_7Wv_2427DldbR5ttNZJxA1Z8fRMuN9Sbc_z0LlAaz2_Bxy12NKe6NYbKlTpSsjGq0S9tfSrrB-awIQuUQayoSzaaTdkv5_5sVLOh72xIMw4n3IYP57K9O7Baj2t_F1imPXpeOS-IraCQ6JRnGNZKX-J3K6oygqTDgHFtK3ZiBPlsQkqAUKbBjUHcmIAboyJ4tphz3DQiOXP0K4LWYiQ1EQ8_jCdD0-okU-rKZrpQFW46zXNuqUJdO-ll4VBR-wg2OkSZVrNNzSmcIni8uIw6iQ6aitqPT5oxqaSy5wjWGxwvViJ0SrkOOgK1hPClpS5fqUdHoe85Lk9TwBvB804YTtf173tx7-xtPIK1nYP3e2Zvd9C_D1c4ySplLOkNWJ1NTvwDuOS-zUbTycMg7Aw-nbeQ_ARj7o5K
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD8CCxgJThC1sZPYPiC0sBSqQtUDoOVkYsfpVoJ0abug_jV-HTN5dCmPve2BW9vYlZ1884pn5gN42HMYRygtw1RxF2L8JUOrIhcKYXFKEaOM1WQTcjRS-_t6vAU_2loYSqtsdWKlqPOZo3fkXRGRLZeoXLtFkxYx3us_O_waEoMUnbS2dBo1RIZ-9R3Dt8XTwR4-60ec91--e_E6bBgGQpfE0TJMbIHuknRWE06dt0qkNoqc7vHC8l6mhM1yF_EiL5IitzwWHh2IyAore1kqIoH_ewa20SWPeQe2x4O344_rNzx0hhZHuqnU6QnVXaC1pIo2HocYJcRoHjasYUUa8DdP98-Ezd9ObStj2L_0P9_Gy3CxccHZbi0zV2DLl1fhXE3KucJPryqy49U1-LDLDlZU0cZQ7VKvSjZDBfulqVxlw4pTbMIqMiGWlTmbLhfsl4wANi3ZxLfWpR6HE67D-1PZ3g3olLPS3wKWaI8-Wcoz4jHIJLrrCQa80uf43YoiDyBq8WBc06SduEI-mypZQChTY8gghkyFIaMCeLyec1i3KDlx9HOC2XoktRevfpjNJ6bRVibXhU10pgrcdJym3FLtunbSy8yhCvcB7LToMo3OW5hjaAXwYH0ZtRUdQWWlnx3VY2JJBdEB3KwxvV6J0DFlQegA1AbaN5a6eaWcHlQd0XF5mkLhAJ60gnG8rn_fi9snb-M-nEfZMG8Go-EduMBJbCmVSe9AZzk_8nfhrPu2nC7m9xrJZ_DptKXkJ_YTmJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+sparrow+optimization+Kriging+model+and+its+application+in+geological+modeling&rft.jtitle=Scientific+reports&rft.au=Shi%2C+Xiaonan&rft.au=Wang%2C+Yumo&rft.au=Wu%2C+Haoran&rft.au=Wang%2C+Aoqian&rft.date=2024-10-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-75347-8&rft_id=info%3Apmid%2F39427009&rft.externalDocID=PMC11490561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon