A hybrid sparrow optimization Kriging model and its application in geological modeling
With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Krigi...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 14; číslo 1; s. 24610 - 19 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
19.10.2024
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Kriging model (HSSA), in which chaos theory and Levy flight are integrated into the initial population update algorithm of the sparrow algorithm and the location update algorithm of the entrants, is proposed. Next, the golden sine optimization algorithm is introduced into the reconnaissance and early warning mechanism of the sparrow algorithm to further improve the accuracy and local escape ability. By the correlation optimization of the original sparrow algorithm, the speed and accuracy of swarm intelligence optimization are further improved. In addition, the model solves the parameters of the variation function of the ordinary Kriging interpolation and reduces the generation error of the formation data interpolation. The results of relevant experiments show that the hybrid sparrow optimization Kriging model improves the accuracy and convergence speed compared with other swarm intelligence algorithms and that the accuracy of this model is improved by 8.4% compared with the original Kriging interpolation algorithm. Based on the hybrid sparrow optimization Kriging model, we propose a three-dimensional stratigraphic model for the Yangchangwan Coal Mine, which provides further support for mining operations and three-dimensional stratigraphic research in this area. The accuracy and applicability of the hybrid sparrow optimization Kriging model are further explained using a case study with the stratigraphic model data in the Yangchangwan Coal Mine. HSSA with significant potential for applications in industries such as coal mining and geological exploration. In these fields, the efficient acquisition, processing, and modeling of stratigraphic data are critical for enhancing geological interpretation and optimizing operational workflows. |
|---|---|
| AbstractList | With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Kriging model (HSSA), in which chaos theory and Levy flight are integrated into the initial population update algorithm of the sparrow algorithm and the location update algorithm of the entrants, is proposed. Next, the golden sine optimization algorithm is introduced into the reconnaissance and early warning mechanism of the sparrow algorithm to further improve the accuracy and local escape ability. By the correlation optimization of the original sparrow algorithm, the speed and accuracy of swarm intelligence optimization are further improved. In addition, the model solves the parameters of the variation function of the ordinary Kriging interpolation and reduces the generation error of the formation data interpolation. The results of relevant experiments show that the hybrid sparrow optimization Kriging model improves the accuracy and convergence speed compared with other swarm intelligence algorithms and that the accuracy of this model is improved by 8.4% compared with the original Kriging interpolation algorithm. Based on the hybrid sparrow optimization Kriging model, we propose a three-dimensional stratigraphic model for the Yangchangwan Coal Mine, which provides further support for mining operations and three-dimensional stratigraphic research in this area. The accuracy and applicability of the hybrid sparrow optimization Kriging model are further explained using a case study with the stratigraphic model data in the Yangchangwan Coal Mine. HSSA with significant potential for applications in industries such as coal mining and geological exploration. In these fields, the efficient acquisition, processing, and modeling of stratigraphic data are critical for enhancing geological interpretation and optimizing operational workflows. With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Kriging model (HSSA), in which chaos theory and Levy flight are integrated into the initial population update algorithm of the sparrow algorithm and the location update algorithm of the entrants, is proposed. Next, the golden sine optimization algorithm is introduced into the reconnaissance and early warning mechanism of the sparrow algorithm to further improve the accuracy and local escape ability. By the correlation optimization of the original sparrow algorithm, the speed and accuracy of swarm intelligence optimization are further improved. In addition, the model solves the parameters of the variation function of the ordinary Kriging interpolation and reduces the generation error of the formation data interpolation. The results of relevant experiments show that the hybrid sparrow optimization Kriging model improves the accuracy and convergence speed compared with other swarm intelligence algorithms and that the accuracy of this model is improved by 8.4% compared with the original Kriging interpolation algorithm. Based on the hybrid sparrow optimization Kriging model, we propose a three-dimensional stratigraphic model for the Yangchangwan Coal Mine, which provides further support for mining operations and three-dimensional stratigraphic research in this area. The accuracy and applicability of the hybrid sparrow optimization Kriging model are further explained using a case study with the stratigraphic model data in the Yangchangwan Coal Mine. HSSA with significant potential for applications in industries such as coal mining and geological exploration. In these fields, the efficient acquisition, processing, and modeling of stratigraphic data are critical for enhancing geological interpretation and optimizing operational workflows.With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Kriging model (HSSA), in which chaos theory and Levy flight are integrated into the initial population update algorithm of the sparrow algorithm and the location update algorithm of the entrants, is proposed. Next, the golden sine optimization algorithm is introduced into the reconnaissance and early warning mechanism of the sparrow algorithm to further improve the accuracy and local escape ability. By the correlation optimization of the original sparrow algorithm, the speed and accuracy of swarm intelligence optimization are further improved. In addition, the model solves the parameters of the variation function of the ordinary Kriging interpolation and reduces the generation error of the formation data interpolation. The results of relevant experiments show that the hybrid sparrow optimization Kriging model improves the accuracy and convergence speed compared with other swarm intelligence algorithms and that the accuracy of this model is improved by 8.4% compared with the original Kriging interpolation algorithm. Based on the hybrid sparrow optimization Kriging model, we propose a three-dimensional stratigraphic model for the Yangchangwan Coal Mine, which provides further support for mining operations and three-dimensional stratigraphic research in this area. The accuracy and applicability of the hybrid sparrow optimization Kriging model are further explained using a case study with the stratigraphic model data in the Yangchangwan Coal Mine. HSSA with significant potential for applications in industries such as coal mining and geological exploration. In these fields, the efficient acquisition, processing, and modeling of stratigraphic data are critical for enhancing geological interpretation and optimizing operational workflows. Abstract With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by interpolation of limited drilling data for subsequent three-dimensional geological modeling. In this paper, a hybrid sparrow optimization Kriging model (HSSA), in which chaos theory and Levy flight are integrated into the initial population update algorithm of the sparrow algorithm and the location update algorithm of the entrants, is proposed. Next, the golden sine optimization algorithm is introduced into the reconnaissance and early warning mechanism of the sparrow algorithm to further improve the accuracy and local escape ability. By the correlation optimization of the original sparrow algorithm, the speed and accuracy of swarm intelligence optimization are further improved. In addition, the model solves the parameters of the variation function of the ordinary Kriging interpolation and reduces the generation error of the formation data interpolation. The results of relevant experiments show that the hybrid sparrow optimization Kriging model improves the accuracy and convergence speed compared with other swarm intelligence algorithms and that the accuracy of this model is improved by 8.4% compared with the original Kriging interpolation algorithm. Based on the hybrid sparrow optimization Kriging model, we propose a three-dimensional stratigraphic model for the Yangchangwan Coal Mine, which provides further support for mining operations and three-dimensional stratigraphic research in this area. The accuracy and applicability of the hybrid sparrow optimization Kriging model are further explained using a case study with the stratigraphic model data in the Yangchangwan Coal Mine. HSSA with significant potential for applications in industries such as coal mining and geological exploration. In these fields, the efficient acquisition, processing, and modeling of stratigraphic data are critical for enhancing geological interpretation and optimizing operational workflows. |
| ArticleNumber | 24610 |
| Author | Shi, Xiaonan Wu, Haoran Wang, Yumo Wang, Aoqian |
| Author_xml | – sequence: 1 givenname: Xiaonan surname: Shi fullname: Shi, Xiaonan organization: Computer Science and Technology College, Xi’an University of Science and Technology – sequence: 2 givenname: Yumo surname: Wang fullname: Wang, Yumo email: 19407020420@stu.xust.edu.cn organization: Communication and Information Engineering College, Xi’an University of Science and Technology – sequence: 3 givenname: Haoran surname: Wu fullname: Wu, Haoran organization: Communication and Information Engineering College, Xi’an University of Science and Technology – sequence: 4 givenname: Aoqian surname: Wang fullname: Wang, Aoqian organization: Computer Science and Technology College, Xi’an University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39427009$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktvFiEUhompsbX2D7gwk7hxM8ptuKxM03hp2qSb6pYAw0z5wsAI82nqr5d-U3tblA3k8LzvOXDOa7AXU3QAvEXwI4JEfCoUdVK0ENOWd4TyVrwABxjSrsUE470H531wVMoG1tVhSZF8BfaJpJhDKA_Az-Pm6tpk3zdl1jmnP02aFz_5v3rxKTZn2Y8-js2UehcaHfvGL6XR8xy8XQkfm9GlkMYaCCtXBW_Ay0GH4o5u90Pw4-uXy5Pv7fnFt9OT4_PWdhQtbWcGiCG3RiIuiXVGEGYQshLiwWCoBTG6twgP_dANvcGUOMwoMsRwqBlB5BCcrr590hs1Zz_pfK2S9moXSHlUOi_eBqd6OZhOajHUdJQxXPNQJi13XFuIuKten1eveWsm11sXl6zDI9PHN9FfqTH9VtVIwo7dVPPh1iGnX1tXFjX5Yl0IOrq0LYogJCiHlOGKvn-CbtI2x_pXO4pIDhmv1LuHJd3V8r9_FcArYHMqJbvhDkFQ3cyJWudE1TlRuzlRoorEE5H1y66b9Vk-PC8lq7TUPHF0-b7sZ1T_AKt-0gE |
| CitedBy_id | crossref_primary_10_3390_app15084078 |
| Cites_doi | 10.1109/JIOT.2023.3289625 10.1109/ACCESS.2022.3233596 10.1016/j.swevo.2018.01.001 10.1007/s00521-018-3343-2 10.1007/s00521-015-1870-7 10.1080/02693799008941549 10.1109/MAES.2023.3318226 10.1016/j.physa.2008.12.071 10.1155/2021/3946958 10.1007/s12518-022-00438-y 10.1023/A:1008202821328 10.1007/s00521-019-04570-6 10.1007/s00500-020-05527-x 10.1007/s12293-017-0247-0 10.1016/j.energy.2024.130694 10.1109/ICNN.1995.488968 10.1016/j.ins.2023.119340 10.4316/AECE.2017.02010 10.1016/j.cma.2023.116664 10.1109/JIOT.2024.3355993 10.1080/21642583.2019.1708830 10.1016/j.advengsoft.2016.01.008 10.1016/j.future.2019.02.028 10.1016/j.advengsoft.2013.12.007 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-75347-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Geology |
| EISSN | 2045-2322 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_d9fb59a8f7cb4662b11469c7e7ac017e PMC11490561 39427009 10_1038_s41598_024_75347_8 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c541t-5bf0207cb91793ceb836b11c902fb20a83badc12fdf5fdb243e2641b3b70a6313 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339577900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:08:58 EDT 2025 Tue Nov 04 02:05:26 EST 2025 Sun Nov 09 13:42:50 EST 2025 Tue Oct 07 08:02:48 EDT 2025 Mon Jul 21 06:00:17 EDT 2025 Tue Nov 18 22:32:54 EST 2025 Sat Nov 29 05:24:27 EST 2025 Fri Feb 21 02:36:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Drilling Sparrow optimization algorithm Three-dimensional geological modeling Kriging |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-5bf0207cb91793ceb836b11c902fb20a83badc12fdf5fdb243e2641b3b70a6313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/d9fb59a8f7cb4662b11469c7e7ac017e |
| PMID | 39427009 |
| PQID | 3118397067 |
| PQPubID | 2041939 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d9fb59a8f7cb4662b11469c7e7ac017e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11490561 proquest_miscellaneous_3118470462 proquest_journals_3118397067 pubmed_primary_39427009 crossref_primary_10_1038_s41598_024_75347_8 crossref_citationtrail_10_1038_s41598_024_75347_8 springer_journals_10_1038_s41598_024_75347_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-19 |
| PublicationDateYYYYMMDD | 2024-10-19 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Storn, Price (CR28) 1997; 11 CR19 Ibrahim (CR32) 2023; 15 Oliver, Webster (CR1) 1990; 4 CR16 CR15 CR14 CR12 Emambocus, Jasser (CR5) 2023; 11 CR11 CR10 CR31 Mirjalili, Mirjalili, Hatamlou (CR30) 2016; 27 Yu, Gao, Cong, Wu (CR4) 2024; 10 CR2 Shehab (CR29) 2020; 32 Yu (CR25) 2018; 10 CR6 CR8 CR7 CR9 Ghaemi, Zabihinpour, Asgari (CR26) 2010; 388 CR27 CR23 Yu (CR3) 2023 CR22 CR21 CR20 Gupta, Deep (CR17) 2019; 44 Deng (CR18) 2021; 25 Ouyang, Zhu, Wang (CR13) 2021; 2021 Arora, Anand (CR24) 2019; 31 C Ouyang (75347_CR13) 2021; 2021 MA Oliver (75347_CR1) 1990; 4 Z Yu (75347_CR3) 2023 S Gupta (75347_CR17) 2019; 44 S Arora (75347_CR24) 2019; 31 75347_CR12 75347_CR11 M Ghaemi (75347_CR26) 2010; 388 M Shehab (75347_CR29) 2020; 32 75347_CR10 75347_CR31 75347_CR19 Y Yu (75347_CR25) 2018; 10 75347_CR9 75347_CR16 75347_CR8 75347_CR15 75347_CR7 75347_CR14 75347_CR6 75347_CR2 S Mirjalili (75347_CR30) 2016; 27 75347_CR23 75347_CR22 75347_CR21 75347_CR20 MB Emambocus, Jasser (75347_CR5) 2023; 11 W Deng (75347_CR18) 2021; 25 R Storn (75347_CR28) 1997; 11 75347_CR27 PO Ibrahim (75347_CR32) 2023; 15 Z Yu (75347_CR4) 2024; 10 |
| References_xml | – ident: CR22 – ident: CR14 – ident: CR2 – ident: CR16 – ident: CR12 – volume: 10 start-page: 21670 issue: 24 year: 2024 end-page: 21686 ident: CR4 article-title: A survey on cyber-physical systems security publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3289625 – ident: CR10 – volume: 11 start-page: 1280 year: 2023 end-page: 1294 ident: CR5 article-title: A survey on the optimization of artificial neural networks using swarm intelligence algorithms publication-title: IEEE ACCESS doi: 10.1109/ACCESS.2022.3233596 – ident: CR6 – volume: 44 start-page: 101 year: 2019 end-page: 112 ident: CR17 article-title: A novel random walk grey wolf optimizer publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.01.001 – ident: CR8 – volume: 31 start-page: 4385 issue: 8 year: 2019 end-page: 4405 ident: CR24 article-title: Chaotic grasshopper optimization algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3343-2 – volume: 27 start-page: 495 issue: 2 year: 2016 end-page: 495 ident: CR30 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 4 start-page: 313 issue: 3 year: 1990 end-page: 332 ident: CR1 article-title: Kriging: a method of interpolation for geographical information systems publication-title: Int. J. Geogr. Inf. Syst. doi: 10.1080/02693799008941549 – year: 2023 ident: CR3 article-title: Cybersecurity of unmanned aerial vehicles: a survey publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2023.3318226 – ident: CR27 – volume: 388 start-page: 1509 issue: 8 year: 2010 end-page: 1514 ident: CR26 article-title: Computer simulation study of the Levy flight process publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2008.12.071 – ident: CR23 – ident: CR21 – ident: CR19 – volume: 2021 start-page: 3946958 year: 2021 ident: CR13 article-title: A learning sparrow search algorithm publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/3946958 – ident: CR15 – volume: 15 start-page: 281 year: 2023 end-page: 293 ident: CR32 article-title: Modelling topo-bathymetric surface using a triangulation irregular network (TIN) of Tunga Dam in Nigeria publication-title: Appl. Geomat. doi: 10.1007/s12518-022-00438-y – ident: CR31 – ident: CR11 – volume: 11 start-page: 341 issue: 4 year: 1997 end-page: 359 ident: CR28 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. Dec. doi: 10.1023/A:1008202821328 – ident: CR9 – volume: 32 start-page: 9859 issue: 14 year: 2020 end-page: 9884 ident: CR29 article-title: Moth–flame optimization algorithm: variants and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04570-6 – volume: 25 start-page: 5277 issue: 7 year: 2021 end-page: 5298 ident: CR18 article-title: An improved differential evolution algorithm and its application in optimization problem publication-title: Soft Comput. doi: 10.1007/s00500-020-05527-x – ident: CR7 – volume: 10 start-page: 353 issue: 4 year: 2018 end-page: 367 ident: CR25 article-title: CBSO: a memetic brain storm optimization with chaotic local search publication-title: Memetic Comput. doi: 10.1007/s12293-017-0247-0 – ident: CR20 – ident: 75347_CR23 doi: 10.1016/j.energy.2024.130694 – ident: 75347_CR2 doi: 10.1109/ICNN.1995.488968 – volume: 11 start-page: 1280 year: 2023 ident: 75347_CR5 publication-title: IEEE ACCESS doi: 10.1109/ACCESS.2022.3233596 – ident: 75347_CR31 – ident: 75347_CR16 doi: 10.1016/j.ins.2023.119340 – ident: 75347_CR27 doi: 10.4316/AECE.2017.02010 – ident: 75347_CR10 doi: 10.1016/j.cma.2023.116664 – volume: 4 start-page: 313 issue: 3 year: 1990 ident: 75347_CR1 publication-title: Int. J. Geogr. Inf. Syst. doi: 10.1080/02693799008941549 – ident: 75347_CR19 – volume: 44 start-page: 101 year: 2019 ident: 75347_CR17 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.01.001 – year: 2023 ident: 75347_CR3 publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2023.3318226 – ident: 75347_CR11 – ident: 75347_CR21 – volume: 32 start-page: 9859 issue: 14 year: 2020 ident: 75347_CR29 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04570-6 – volume: 31 start-page: 4385 issue: 8 year: 2019 ident: 75347_CR24 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3343-2 – ident: 75347_CR15 doi: 10.1109/JIOT.2024.3355993 – volume: 25 start-page: 5277 issue: 7 year: 2021 ident: 75347_CR18 publication-title: Soft Comput. doi: 10.1007/s00500-020-05527-x – ident: 75347_CR9 doi: 10.1080/21642583.2019.1708830 – ident: 75347_CR22 – volume: 15 start-page: 281 year: 2023 ident: 75347_CR32 publication-title: Appl. Geomat. doi: 10.1007/s12518-022-00438-y – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 75347_CR30 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 388 start-page: 1509 issue: 8 year: 2010 ident: 75347_CR26 publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2008.12.071 – ident: 75347_CR7 doi: 10.1016/j.advengsoft.2016.01.008 – ident: 75347_CR8 doi: 10.1016/j.future.2019.02.028 – ident: 75347_CR12 – volume: 2021 start-page: 3946958 year: 2021 ident: 75347_CR13 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/3946958 – ident: 75347_CR20 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 75347_CR28 publication-title: J. Global Optim. Dec. doi: 10.1023/A:1008202821328 – volume: 10 start-page: 21670 issue: 24 year: 2024 ident: 75347_CR4 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3289625 – ident: 75347_CR6 doi: 10.1016/j.advengsoft.2013.12.007 – ident: 75347_CR14 doi: 10.1016/j.energy.2024.130694 – volume: 10 start-page: 353 issue: 4 year: 2018 ident: 75347_CR25 publication-title: Memetic Comput. doi: 10.1007/s12293-017-0247-0 |
| SSID | ssj0000529419 |
| Score | 2.4554882 |
| Snippet | With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological data by... Abstract With the proposal of intelligent mines, the demand for drilling is increasing daily. Therefore, it is particularly crucial to gather more geological... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 24610 |
| SubjectTerms | 639/705 639/705/117 Accuracy Algorithms Chaos theory Coal Coal mines Coal mining Drilling Geology Humanities and Social Sciences Intelligence Kriging multidisciplinary Optimization Science Science (multidisciplinary) Sparrow optimization algorithm Three-dimensional geological modeling |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxg6hxnMT2CRVEQUJUPQDqzYodZ7sSJGWzRdp_z4zjpCyPXrglsS3ZGc94xvP4AJ5nDu0IpWVaqdylaH_J1CruUiEsDmkL5LERbEIeHqrjY30UL9yGGFY5ycQgqJve0R35nuB0lksUrq9Ov6eEGkXe1QihcRmuoGbDKaTrY34037GQF6vgOubKZELtDXheUU5ZXqSopxcooLfOo1C2_2-65p8hk7_5TcNxdHDzfxdyC25ERZTtjzvnNlzy3R24NkJTbvDpXYD83dyFL_vsZEN5XQyFD1VsZD2KmW8xf5N9CMhaCxYgdVjdNWy5HtgvfnG27NjCTzJ27IcD7sHng7ef3rxPIxpD6sqCr9PStqhaSmc18bTzVonKcu50lrc2z2olbN04nrdNW7aNzQvhUdniVliZ1ZXg4j7sdH3nHwIrtUfNpMprquZfS1RaSzT7pG_w3Yq2SYBPNDEulionxIyvJrjMhTIjHQ3S0QQ6GpXAi3nM6Vio48Ler4nUc08qsh0-9KuFiTxrGt3aUteqxUUXVZVbyuDWTnpZOxRkPoHdicImcv5gzsmbwLO5GXmWHDF15_uzsU8hKS04gQfjvppnInRBsQA6AbW147amut3SLU9CXXCcniaDMIGX0-Y8n9e__8Wji5fxGK7nxC8UxaN3YWe9OvNP4Kr7sV4Oq6eB4X4CGKMxDg priority: 102 providerName: ProQuest |
| Title | A hybrid sparrow optimization Kriging model and its application in geological modeling |
| URI | https://link.springer.com/article/10.1038/s41598-024-75347-8 https://www.ncbi.nlm.nih.gov/pubmed/39427009 https://www.proquest.com/docview/3118397067 https://www.proquest.com/docview/3118470462 https://pubmed.ncbi.nlm.nih.gov/PMC11490561 https://doaj.org/article/d9fb59a8f7cb4662b11469c7e7ac017e |
| Volume | 14 |
| WOSCitedRecordID | wos001339577900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDBdbu8Fexj67bN3hwd620MROYvuxLS0bo0cY27g9mdhx2oM2N3rXQf_7SXbuerfPl70YEtsgZEmWkPUTwOvMYRyhtEwrxV2K8ZdMrcpdKoTFLV2BOhabTcjxWE0mul5r9UVvwiI8cGTcXqs7W-pGddLZoqq4pTJa7aSXjUNp8mR9M6nXgqmI6s11keuhSiYTam-ONxVVk_EiRQ-9QNO8cRMFwP7feZm_Ppb8KWMaLqLjB3B_8CDZfqT8Idzy_SO4G3tKXj-GL_vs7JrKsBjaCgJYZDO0ChdDuSX7EBphnbLQAYc1fcumizlbS2Ozac9O_dIkxnW44Ql8Pj76dPguHZonpK4s8kVa2g49QWSaJhV03ipRIe-cznhnedYoYZvW5bxru7JrLS-ER98ot8LKrKlELp7CVj_r_TNgpfboSFS8IfD9RqKPWWKUJn2L31Z0bQL5kpHGDcji1ODi3IQMt1AmMt8g801gvlEJvFnt-RZxNf66-oDOZ7WSMLHDD5QUM0iK-ZekJLC7PF0zKOrciJxcRIl3dgKvVtOoYpQ3aXo_u4prCklVvAnsRGFYUSJ0Qal7nYDaEJMNUjdn-ulZgPFG8jTFbwm8XUrUDV1_5sXz_8GLF3CPkyrQ0xy9C1uLyyv_Eu6474vp_HIEt-VEhlGNYPvgaFx_HAX9wvGE1zRKHLfr9yf11x-Zfiea |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4pBaZceFMMBcQMnMDTWLIt6cAw5VHaScn0UJjehCXLaWbAKUkKkz_Fb2RXtlPCo7ceuCWxlJHsb1_W7n4AT3oO4wilZZwr7mKMv2RsVeJiISxOqVKUsYZsQg4G6vBQ76_Aj64WhtIqO50YFHU5dvSOfFMkZMslKteXx19jYo2i09WOQqOBRd_Pv2PINn2x-waf71POt98evN6JW1aB2GVpMoszW6GLJJ3VhE3nrRK5TRKne7yyvFcoYYvSJbwqq6wqLU-FR6chscLKXpGLROD_XoCLKXUWo1RBvr94p0OnZmmi29qcnlCbU7SPVMPG0xjjghQNwpL9CzQBf_Nt_0zR_O2cNpi_7Wv_2427DldbR5ttNZJxA1Z8fRMuN9Sbc_z0LlAaz2_Bxy12NKe6NYbKlTpSsjGq0S9tfSrrB-awIQuUQayoSzaaTdkv5_5sVLOh72xIMw4n3IYP57K9O7Baj2t_F1imPXpeOS-IraCQ6JRnGNZKX-J3K6oygqTDgHFtK3ZiBPlsQkqAUKbBjUHcmIAboyJ4tphz3DQiOXP0K4LWYiQ1EQ8_jCdD0-okU-rKZrpQFW46zXNuqUJdO-ll4VBR-wg2OkSZVrNNzSmcIni8uIw6iQ6aitqPT5oxqaSy5wjWGxwvViJ0SrkOOgK1hPClpS5fqUdHoe85Lk9TwBvB804YTtf173tx7-xtPIK1nYP3e2Zvd9C_D1c4ySplLOkNWJ1NTvwDuOS-zUbTycMg7Aw-nbeQ_ARj7o5K |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD8CCxgJThC1sZPYPiC0sBSqQtUDoOVkYsfpVoJ0abug_jV-HTN5dCmPve2BW9vYlZ1884pn5gN42HMYRygtw1RxF2L8JUOrIhcKYXFKEaOM1WQTcjRS-_t6vAU_2loYSqtsdWKlqPOZo3fkXRGRLZeoXLtFkxYx3us_O_waEoMUnbS2dBo1RIZ-9R3Dt8XTwR4-60ec91--e_E6bBgGQpfE0TJMbIHuknRWE06dt0qkNoqc7vHC8l6mhM1yF_EiL5IitzwWHh2IyAore1kqIoH_ewa20SWPeQe2x4O344_rNzx0hhZHuqnU6QnVXaC1pIo2HocYJcRoHjasYUUa8DdP98-Ezd9ObStj2L_0P9_Gy3CxccHZbi0zV2DLl1fhXE3KucJPryqy49U1-LDLDlZU0cZQ7VKvSjZDBfulqVxlw4pTbMIqMiGWlTmbLhfsl4wANi3ZxLfWpR6HE67D-1PZ3g3olLPS3wKWaI8-Wcoz4jHIJLrrCQa80uf43YoiDyBq8WBc06SduEI-mypZQChTY8gghkyFIaMCeLyec1i3KDlx9HOC2XoktRevfpjNJ6bRVibXhU10pgrcdJym3FLtunbSy8yhCvcB7LToMo3OW5hjaAXwYH0ZtRUdQWWlnx3VY2JJBdEB3KwxvV6J0DFlQegA1AbaN5a6eaWcHlQd0XF5mkLhAJ60gnG8rn_fi9snb-M-nEfZMG8Go-EduMBJbCmVSe9AZzk_8nfhrPu2nC7m9xrJZ_DptKXkJ_YTmJM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+sparrow+optimization+Kriging+model+and+its+application+in+geological+modeling&rft.jtitle=Scientific+reports&rft.au=Shi%2C+Xiaonan&rft.au=Wang%2C+Yumo&rft.au=Wu%2C+Haoran&rft.au=Wang%2C+Aoqian&rft.date=2024-10-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-75347-8&rft_id=info%3Apmid%2F39427009&rft.externalDocID=PMC11490561 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |