REMoDNaV: robust eye-movement classification for dynamic stimulation
Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms ar...
Gespeichert in:
| Veröffentlicht in: | Behavior research methods Jg. 53; H. 1; S. 399 - 414 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.02.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1554-3528, 1554-351X, 1554-3528 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms are lackluster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an event classification algorithm—built on an existing velocity-based approach—that is suitable for both static and dynamic stimulation, and is capable of classifying saccades, post-saccadic oscillations, fixations, and smooth pursuit events. We validated classification performance and robustness on three public datasets: 1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short video sequences, 2) lab-quality gaze recordings for a feature-length movie, and 3) gaze recordings acquired under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for the same full-length movie. We found that the proposed algorithm performs on par or better compared to state-of-the-art alternatives for static stimulation. Moreover, it yields eye-movement events with biologically plausible characteristics on prolonged dynamic recordings. Lastly, algorithm performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying noise level. These results indicate that the proposed algorithm is a robust tool with improved classification accuracy across a range of use cases. The algorithm is cross-platform compatible, implemented using the Python programming language, and readily available as free and open-source software from public sources. |
|---|---|
| AbstractList | Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms are lackluster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an event classification algorithm-built on an existing velocity-based approach-that is suitable for both static and dynamic stimulation, and is capable of classifying saccades, post-saccadic oscillations, fixations, and smooth pursuit events. We validated classification performance and robustness on three public datasets: 1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short video sequences, 2) lab-quality gaze recordings for a feature-length movie, and 3) gaze recordings acquired under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for the same full-length movie. We found that the proposed algorithm performs on par or better compared to state-of-the-art alternatives for static stimulation. Moreover, it yields eye-movement events with biologically plausible characteristics on prolonged dynamic recordings. Lastly, algorithm performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying noise level. These results indicate that the proposed algorithm is a robust tool with improved classification accuracy across a range of use cases. The algorithm is cross-platform compatible, implemented using the Python programming language, and readily available as free and open-source software from public sources.Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms are lackluster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an event classification algorithm-built on an existing velocity-based approach-that is suitable for both static and dynamic stimulation, and is capable of classifying saccades, post-saccadic oscillations, fixations, and smooth pursuit events. We validated classification performance and robustness on three public datasets: 1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short video sequences, 2) lab-quality gaze recordings for a feature-length movie, and 3) gaze recordings acquired under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for the same full-length movie. We found that the proposed algorithm performs on par or better compared to state-of-the-art alternatives for static stimulation. Moreover, it yields eye-movement events with biologically plausible characteristics on prolonged dynamic recordings. Lastly, algorithm performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying noise level. These results indicate that the proposed algorithm is a robust tool with improved classification accuracy across a range of use cases. The algorithm is cross-platform compatible, implemented using the Python programming language, and readily available as free and open-source software from public sources. Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms are lackluster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an event classification algorithm—built on an existing velocity-based approach—that is suitable for both static and dynamic stimulation, and is capable of classifying saccades, post-saccadic oscillations, fixations, and smooth pursuit events. We validated classification performance and robustness on three public datasets: 1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short video sequences, 2) lab-quality gaze recordings for a feature-length movie, and 3) gaze recordings acquired under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for the same full-length movie. We found that the proposed algorithm performs on par or better compared to state-of-the-art alternatives for static stimulation. Moreover, it yields eye-movement events with biologically plausible characteristics on prolonged dynamic recordings. Lastly, algorithm performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying noise level. These results indicate that the proposed algorithm is a robust tool with improved classification accuracy across a range of use cases. The algorithm is cross-platform compatible, implemented using the Python programming language, and readily available as free and open-source software from public sources. |
| Author | Hanke, Michael Wagner, Adina S. Dar, Asim H. |
| Author_xml | – sequence: 1 givenname: Asim H. surname: Dar fullname: Dar, Asim H. organization: Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology – sequence: 2 givenname: Adina S. surname: Wagner fullname: Wagner, Adina S. organization: Psychoinformatics Lab, Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich – sequence: 3 givenname: Michael orcidid: 0000-0001-6398-6370 surname: Hanke fullname: Hanke, Michael email: michael.hanke@gmail.com organization: Psychoinformatics Lab, Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32710238$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1PHSEUhomx8av-ARdmEjdupvI5gAsT40c1sW3StG4Jw4BiZkBhxnj_vdx71VoXrjiB5z2857ybYDXEYAHYQfAb4UwcZEQoFjXEsIZoXj2tgA3EGK0Jw2L1Xb0ONnO-g5AIjOgaWCeYI4iJ2ACnv89-xNOf-vqwSrGd8ljZma2H-GgHG8bK9Dpn77zRo4-hcjFV3SzowZsqj36Y-sX9V_DF6T7b7ZdzC_w9P_tzclFf_fp-eXJ8VRtG0VizlraoEU3HGdeC8bYh2DYtcU5ITpyWHSXCda7V0lqHCGs57xoriNSGSUfJFjha9r2f2sF2pjhMulf3yQ86zVTUXv3_EvytuomPigsBJZOlwf5LgxQfJptHNfhsbN_rYOOUFaaYY0kJ4gXd-4DexSmFMl6hhIRYSDx3tPve0ZuV1wUXAC8Bk2LOybo3BEE1T1EtU1QlRbVIUT0VkfggMn5cbLpM5fvPpWQpzeWfcGPTP9ufqJ4BIamyqw |
| CitedBy_id | crossref_primary_10_1111_opo_13267 crossref_primary_10_1109_JBHI_2023_3285940 crossref_primary_10_3390_jemr18040028 crossref_primary_10_3389_fpsyg_2023_1129422 crossref_primary_10_3758_s13414_024_02917_3 crossref_primary_10_3758_s13428_021_01782_4 crossref_primary_10_1177_09567976241279198 crossref_primary_10_3758_s13428_024_02482_5 crossref_primary_10_1007_s10015_023_00868_w crossref_primary_10_3390_s24041260 crossref_primary_10_1017_wtc_2024_27 crossref_primary_10_1109_TBME_2023_3330976 crossref_primary_10_1109_ACCESS_2025_3608621 crossref_primary_10_1167_iovs_65_14_11 crossref_primary_10_3389_fbioe_2024_1285107 crossref_primary_10_3390_jimaging10100255 crossref_primary_10_3758_s13414_024_02961_z crossref_primary_10_1016_j_infbeh_2025_102029 crossref_primary_10_1016_j_bspc_2024_106862 crossref_primary_10_3758_s13428_024_02529_7 crossref_primary_10_1016_j_displa_2024_102788 crossref_primary_10_3390_bs15040502 crossref_primary_10_1007_s10055_025_01127_y crossref_primary_10_1080_20008198_2021_1991609 crossref_primary_10_1523_ENEURO_0573_24_2025 crossref_primary_10_3758_s13428_021_01762_8 crossref_primary_10_3758_s13428_021_01763_7 |
| Cites_doi | 10.1152/jn.1987.57.5.1446 10.1109/TBME.2013.2258918 10.1016/j.neuron.2014.03.020 10.1016/j.bspc.2014.12.008 10.3758/s13428-016-0822-1 10.3389/fnhum.2010.00166 10.3758/s13428-018-1050-7 10.1167/11.5.9 10.3758/BRM.42.1.188 10.1038/s41598-017-00881-7 10.1016/j.visres.2016.09.002 10.1037/0278-7393.32.6.1304 10.1016/j.neuropsychologia.2014.01.005 10.3389/fnhum.2012.00298 10.1109/TBME.2010.2057429 10.1016/J.NEUROIMAGE.2013.11.017 10.1016/j.visres.2014.12.018 10.1109/TCSVT.2011.2133770 10.1109/MCSE.2007.55 10.1016/j.neuroimage.2012.01.009 10.3758/BF03204486 10.1109/ACCESS.2019.2951506 10.1167/12.6.31 10.1098/rsos.180502 10.1038/sdata.2016.44 10.3758/s13428-012-0234-9 10.1177/001316446002000104 10.3758/s13428-016-0738-9 10.1016/0025-5564(75)90075-9 10.1167/10.10.28 10.1016/S0042-6989(96)00217-9 10.1038/sdata.2016.92 10.3758/s13428-017-0909-3 10.3758/s13428-017-0955-x 10.1162/jocn_e_01276 10.3758/s13428-018-1133-5 10.1145/2168556.2168563 10.5281/zenodo.1470735 10.3758/s13428-018-1144-2 10.25080/Majora-92bf1922-00a 10.25080/Majora-92bf1922-011 10.1007/978-3-642-33709-3_60 10.5281/zenodo.2651042 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 7TK K9. 7X8 5PM |
| DOI | 10.3758/s13428-020-01428-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Docstoc MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1554-3528 |
| EndPage | 414 |
| ExternalDocumentID | PMC7880959 32710238 10_3758_s13428_020_01428_x |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -55 -5G -BR -DZ -EM -ET -~C -~X 0-V 06D 0R~ 0VY 199 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40E 53G 5GY 7X7 875 88E 8AO 8FI 8FJ 8G5 8TC 8UJ 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABIVO ABJNI ABJOX ABJUD ABKCH ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABXPI ACAOD ACBXY ACDTI ACGFS ACHQT ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFFNX AFKRA AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BAWUL BENPR BGNMA BPHCQ BVXVI C1A C6C CAG CCPQU COF CSCUP DDRTE DIK DNIVK DPUIP DWQXO E3Z EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ3 GQ6 GQ7 GUQSH H13 HF~ HMCUK HMJXF HRMNR HVGLF HZ~ H~9 IAO IHR IKXTQ INH IPY IRVIT ITC ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M1P M2M M2O M2R M4Y MVM N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J OHT OK1 P2P P9L PADUT PF- PQQKQ PROAC PSQYO PSYQQ PT4 R9I RIG ROL RPV RSV S16 S1Z S27 S3B SBS SBU SCLPG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TN5 TR2 TSG TUC TUS U2A U9L UG4 UKHRP UOJIU UPT UTJUX UZXMN VFIZW VXZ W48 WH7 WK8 XJT XOL XSW Z7R Z7S Z7W Z81 Z83 Z88 Z8N Z92 ZMTXR ZOVNA ZUP AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PRQQA CGR CUY CVF ECM EIF NPM 4T- 7TK K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c541t-5b4b1686d757a857b632e6b3ff8973fa9d438fdfba9eef135b77d6e839ac59f43 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552180600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1554-3528 1554-351X |
| IngestDate | Tue Nov 04 01:57:23 EST 2025 Sun Aug 24 03:27:36 EDT 2025 Sat Nov 15 08:11:33 EST 2025 Wed Feb 19 02:28:12 EST 2025 Sat Nov 29 02:18:09 EST 2025 Tue Nov 18 22:33:41 EST 2025 Fri Feb 21 02:49:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Glissade classification Data preprocessing Saccade classification algorithm Adaptive threshold algorithm Eye tracking Statistical saccade analysis Adaptive classification algorithm |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-5b4b1686d757a857b632e6b3ff8973fa9d438fdfba9eef135b77d6e839ac59f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6398-6370 |
| OpenAccessLink | https://link.springer.com/10.3758/s13428-020-01428-x |
| PMID | 32710238 |
| PQID | 2489028924 |
| PQPubID | 976348 |
| PageCount | 16 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7880959 proquest_miscellaneous_2427294317 proquest_journals_2489028924 pubmed_primary_32710238 crossref_primary_10_3758_s13428_020_01428_x crossref_citationtrail_10_3758_s13428_020_01428_x springer_journals_10_3758_s13428_020_01428_x |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Behavior research methods |
| PublicationTitleAbbrev | Behav Res |
| PublicationTitleAlternate | Behav Res Methods |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Schutz, Braun, Gegenfurtner (CR41) 2011; 11 Toiviainen, Alluri, Brattico, Wallentin, Vuust (CR47) 2014; 88 Friedman, Rigas, Abdulin, Komogortsev (CR10) 2018; 50 Tikka, Väljamäe, de Borst, Pugliese, Ravaja, Kaipainen, Takala (CR46) 2012; 6 Bahill, Clark, Stark (CR3) 1975; 24 CR16 CR38 CR14 CR36 Hannula, Althoff, Warren, Riggs, Cohen, Ryan (CR17) 2010; 4 CR34 Stampe (CR43) 1993; 25 Hessels, Niehorster, Kemner, Hooge (CR19) 2017; 49 Gorgolewski, Auer, Calhoun, Craddock, Das, Duff, Flandin, Ghosh, Glatard, Halchenko (CR13) 2016; 3 Komogortsev, Karpov (CR28) 2013; 45 Amit, Abeles, Bar-Gad, Yuval-Greenberg (CR1) 2017; 7 Gordon, Hendrick, Johnson, Lee (CR12) 2006; 32 Andersson, Larsson, Holmqvist, Stridh, Nyström (CR2) 2017; 49 Cohen (CR7) 1960; 20 Jaccard (CR26) 1901; 37 Komogortsev, Gobert, Jayarathna, Koh, Gowda (CR29) 2010; 57 Hooge, Holmqvist, Nyström (CR23) 2016; 128 Tagliazucchi, Laufs (CR45) 2014; 82 Larsson, Nyström, Andersson, Stridh (CR31) 2015; 18 van Renswoude, Raijmakers, Koornneef, Johnson, Hunnius, Visser (CR39) 2018; 50 Hessels, Niehorster, Nyström, Andersson, Hooge (CR20) 2018; 5 Maguire (CR33) 2012; 62 Choe, Blake, Lee (CR6) 2016; 118 CR27 CR48 Harris, Young, Andrews (CR18) 2014; 56 Nyström, Holmqvist (CR37) 2010; 42 Matusz, Dikker, Huth, Perrodin (CR35) 2019; 31 CR22 CR44 CR21 Hooge, Niehorster, Nyström, Andersson, Hessels (CR24) 2018; 50 Cherici, Kuang, Poletti, Rucci (CR5) 2012; 12 CR42 Dalveren, Cagiltay (CR8) 2019; 7 CR40 Carl, Gellman (CR4) 1987; 57 Dorr, Martinetz, Gegenfurtner, Barth (CR9) 2010; 10 Goltz, Irving, Steinbach, Eizenman (CR11) 1997; 37 Hunter (CR25) 2007; 9 Liu, Heynderickx (CR32) 2011; 21 Hanke, Adelhöfer, Kottke, Iacovella, Sengupta, Kaule, Nigbur, Waite, Baumgartner, Stadler (CR15) 2016; 3 Larsson, Nyström, Stridh (CR30) 2013; 60 J Cohen (1428_CR7) 1960; 20 GGM Dalveren (1428_CR8) 2019; 7 M Hanke (1428_CR15) 2016; 3 L Larsson (1428_CR31) 2015; 18 AT Bahill (1428_CR3) 1975; 24 P Jaccard (1428_CR26) 1901; 37 H Liu (1428_CR32) 2011; 21 DM Stampe (1428_CR43) 1993; 25 M Nyström (1428_CR37) 2010; 42 R Andersson (1428_CR2) 2017; 49 1428_CR34 M Dorr (1428_CR9) 2010; 10 DE Hannula (1428_CR17) 2010; 4 C Cherici (1428_CR5) 2012; 12 OV Komogortsev (1428_CR29) 2010; 57 H Goltz (1428_CR11) 1997; 37 AC Schutz (1428_CR41) 2011; 11 RS Hessels (1428_CR20) 2018; 5 1428_CR16 1428_CR38 KW Choe (1428_CR6) 2016; 118 KJ Gorgolewski (1428_CR13) 2016; 3 L Friedman (1428_CR10) 2018; 50 1428_CR14 1428_CR36 E Tagliazucchi (1428_CR45) 2014; 82 P Toiviainen (1428_CR47) 2014; 88 I Hooge (1428_CR23) 2016; 128 ITC Hooge (1428_CR24) 2018; 50 EA Maguire (1428_CR33) 2012; 62 JD Hunter (1428_CR25) 2007; 9 R Amit (1428_CR1) 2017; 7 DR van Renswoude (1428_CR39) 2018; 50 PC Gordon (1428_CR12) 2006; 32 1428_CR22 L Larsson (1428_CR30) 2013; 60 1428_CR44 1428_CR21 1428_CR42 P Tikka (1428_CR46) 2012; 6 1428_CR40 RS Hessels (1428_CR19) 2017; 49 JR Carl (1428_CR4) 1987; 57 RJ Harris (1428_CR18) 2014; 56 PJ Matusz (1428_CR35) 2019; 31 1428_CR27 OV Komogortsev (1428_CR28) 2013; 45 1428_CR48 |
| References_xml | – volume: 57 start-page: 1446 issue: 5 year: 1987 end-page: 1463, pMID: 3585475 ident: CR4 article-title: Human smooth pursuit: stimulus-dependent responses publication-title: Journal of Neurophysiology doi: 10.1152/jn.1987.57.5.1446 – volume: 60 start-page: 2484 issue: 9 year: 2013 end-page: 2493 ident: CR30 article-title: Detection of saccades and postsaccadic oscillations in the presence of smooth pursuit publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2013.2258918 – ident: CR22 – volume: 82 start-page: 695 issue: 3 year: 2014 end-page: 708 ident: CR45 article-title: Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep publication-title: Neuron doi: 10.1016/j.neuron.2014.03.020 – volume: 18 start-page: 145 year: 2015 end-page: 152 ident: CR31 article-title: Detection of fixations and smooth pursuit movements in high-speed eye-tracking data publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2014.12.008 – volume: 49 start-page: 1802 issue: 5 year: 2017 end-page: 1823 ident: CR19 article-title: Noise-robust fixation detection in eye movement data: identification by two-means clustering (i2mc) publication-title: Behavior Research Methods doi: 10.3758/s13428-016-0822-1 – ident: CR14 – volume: 4 start-page: 166 year: 2010 ident: CR17 article-title: Worth a glance: using eye movements to investigate the cognitive neuroscience of memory publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2010.00166 – ident: CR16 – volume: 50 start-page: 1374 issue: 4 year: 2018 end-page: 1397 ident: CR10 article-title: A novel evaluation of two related and two independent algorithms for eye movement classification during reading publication-title: Behavior Research Methods doi: 10.3758/s13428-018-1050-7 – volume: 11 start-page: 9 issue: 5 year: 2011 end-page: 9 ident: CR41 article-title: Eye movements and perception: a selective review publication-title: Journal of Vision doi: 10.1167/11.5.9 – volume: 42 start-page: 188 issue: 1 year: 2010 end-page: 204 ident: CR37 article-title: An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data publication-title: Behavior Research Methods doi: 10.3758/BRM.42.1.188 – volume: 7 start-page: 886 issue: 1 year: 2017 ident: CR1 article-title: Temporal dynamics of saccades explained by a self-paced process publication-title: Scientific Reports doi: 10.1038/s41598-017-00881-7 – volume: 128 start-page: 6 year: 2016 end-page: 18 ident: CR23 article-title: The pupil is faster than the corneal reflection (CR): are video-based pupil-CR eye trackers suitable for studying detailed dynamics of eye movements? publication-title: Vision Research doi: 10.1016/j.visres.2016.09.002 – volume: 32 start-page: 1304 issue: 6 year: 2006 end-page: 1321 ident: CR12 article-title: Similarity-based interference during language comprehension: evidence from eye tracking during reading publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition doi: 10.1037/0278-7393.32.6.1304 – volume: 56 start-page: 47 issue: 100 year: 2014 end-page: 52 ident: CR18 article-title: Dynamic stimuli demonstrate a categorical representation of facial expression in the amygdala publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2014.01.005 – volume: 6 start-page: 298 year: 2012 ident: CR46 article-title: Enactive cinema paves way for understanding complex real-time social interaction in neuroimaging experiments publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2012.00298 – volume: 57 start-page: 2635 issue: 11 year: 2010 end-page: 2645 ident: CR29 article-title: Standardization of automated analyses of oculomotor fixation and saccadic behaviors publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2010.2057429 – volume: 88 start-page: 170 year: 2014 end-page: 180 ident: CR47 article-title: Capturing the musical brain with Lasso: dynamic decoding of musical features from fMRI data publication-title: NeuroImage doi: 10.1016/J.NEUROIMAGE.2013.11.017 – volume: 118 start-page: 48 year: 2016 end-page: 59 ident: CR6 article-title: Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation publication-title: Vision Research doi: 10.1016/j.visres.2014.12.018 – volume: 37 start-page: 547 year: 1901 end-page: 579 ident: CR26 article-title: Étude comparative de la distribution florale dans une portion des alpes et des jura publication-title: Bull Soc Vaudoise Sci Nat – ident: CR40 – ident: CR27 – ident: CR42 – ident: CR21 – volume: 21 start-page: 971 issue: 7 year: 2011 end-page: 982 ident: CR32 article-title: Visual attention in objective image quality assessment: based on eye-tracking data publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2011.2133770 – ident: CR44 – volume: 9 start-page: 90 issue: 3 year: 2007 end-page: 95 ident: CR25 article-title: Matplotlib: a 2D graphics environment publication-title: Computing in Science & Engineering doi: 10.1109/MCSE.2007.55 – ident: CR48 – volume: 62 start-page: 1170 issue: 2 year: 2012 end-page: 1176 ident: CR33 article-title: Studying the freely-behaving brain with fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.009 – volume: 25 start-page: 137 issue: 2 year: 1993 end-page: 142 ident: CR43 article-title: Heuristic filtering and reliable calibration methods for video-based pupil-tracking systems publication-title: Behavior Research Methods, Instruments, & Computers doi: 10.3758/BF03204486 – volume: 7 start-page: 161794 year: 2019 end-page: 161804 ident: CR8 article-title: Evaluation of ten open-source eye-movement classification algorithms in simulated surgical scenarios publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2951506 – ident: CR38 – volume: 12 start-page: 31 issue: 6 year: 2012 end-page: 31 ident: CR5 article-title: Precision of sustained fixation in trained and untrained observers publication-title: Journal of Vision doi: 10.1167/12.6.31 – volume: 5 start-page: 180502 issue: 8 year: 2018 ident: CR20 article-title: Is the eye-movement field confused about fixations and saccades? A survey among 124 researchers publication-title: Royal Society Open Science doi: 10.1098/rsos.180502 – volume: 3 start-page: 160044 year: 2016 ident: CR13 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Scientific Data doi: 10.1038/sdata.2016.44 – volume: 45 start-page: 203 issue: 1 year: 2013 end-page: 215 ident: CR28 article-title: Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades publication-title: Behavior Research Methods doi: 10.3758/s13428-012-0234-9 – ident: CR34 – ident: CR36 – volume: 20 start-page: 37 issue: 1 year: 1960 end-page: 46 ident: CR7 article-title: A coefficient of agreement for nominal scales publication-title: Educational and Psychological Measurement doi: 10.1177/001316446002000104 – volume: 49 start-page: 616 issue: 2 year: 2017 end-page: 637 ident: CR2 article-title: One algorithm to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms publication-title: Behavior Research Methods doi: 10.3758/s13428-016-0738-9 – volume: 24 start-page: 191 issue: 3-4 year: 1975 end-page: 204 ident: CR3 article-title: The main sequence, a tool for studying human eye movements publication-title: Mathematical Biosciences doi: 10.1016/0025-5564(75)90075-9 – volume: 10 start-page: 28 issue: 10 year: 2010 end-page: 28 ident: CR9 article-title: Variability of eye movements when viewing dynamic natural scenes publication-title: Journal of Vision doi: 10.1167/10.10.28 – volume: 37 start-page: 789 issue: 6 year: 1997 end-page: 798 ident: CR11 article-title: Vertical eye position control in darkness: orbital position and body orientation interact to modulate drift velocity publication-title: Vision Research doi: 10.1016/S0042-6989(96)00217-9 – volume: 3 start-page: 160092 year: 2016 ident: CR15 article-title: A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation publication-title: Scientific Data doi: 10.1038/sdata.2016.92 – volume: 50 start-page: 834 issue: 2 year: 2018 end-page: 852 ident: CR39 article-title: Gazepath: an eye-tracking analysis tool that accounts for individual differences and data quality publication-title: Behavior Research Methods doi: 10.3758/s13428-017-0909-3 – volume: 50 start-page: 1864 issue: 5 year: 2018 end-page: 1881 ident: CR24 article-title: Is human classification by experienced untrained observers a gold standard in fixation detection? publication-title: Behavior Research Methods doi: 10.3758/s13428-017-0955-x – volume: 31 start-page: 327 issue: 3 year: 2019 end-page: 338, pMID: 29916793 ident: CR35 article-title: Are we ready for real-world neuroscience? publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn_e_01276 – volume: 128 start-page: 6 year: 2016 ident: 1428_CR23 publication-title: Vision Research doi: 10.1016/j.visres.2016.09.002 – volume: 56 start-page: 47 issue: 100 year: 2014 ident: 1428_CR18 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2014.01.005 – volume: 37 start-page: 547 year: 1901 ident: 1428_CR26 publication-title: Bull Soc Vaudoise Sci Nat – volume: 49 start-page: 1802 issue: 5 year: 2017 ident: 1428_CR19 publication-title: Behavior Research Methods doi: 10.3758/s13428-016-0822-1 – volume: 49 start-page: 616 issue: 2 year: 2017 ident: 1428_CR2 publication-title: Behavior Research Methods doi: 10.3758/s13428-016-0738-9 – ident: 1428_CR27 – volume: 7 start-page: 886 issue: 1 year: 2017 ident: 1428_CR1 publication-title: Scientific Reports doi: 10.1038/s41598-017-00881-7 – volume: 3 start-page: 160092 year: 2016 ident: 1428_CR15 publication-title: Scientific Data doi: 10.1038/sdata.2016.92 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 1428_CR25 publication-title: Computing in Science & Engineering doi: 10.1109/MCSE.2007.55 – ident: 1428_CR48 doi: 10.3758/s13428-018-1133-5 – volume: 45 start-page: 203 issue: 1 year: 2013 ident: 1428_CR28 publication-title: Behavior Research Methods doi: 10.3758/s13428-012-0234-9 – volume: 3 start-page: 160044 year: 2016 ident: 1428_CR13 publication-title: Scientific Data doi: 10.1038/sdata.2016.44 – volume: 50 start-page: 1864 issue: 5 year: 2018 ident: 1428_CR24 publication-title: Behavior Research Methods doi: 10.3758/s13428-017-0955-x – ident: 1428_CR21 – volume: 10 start-page: 28 issue: 10 year: 2010 ident: 1428_CR9 publication-title: Journal of Vision doi: 10.1167/10.10.28 – volume: 6 start-page: 298 year: 2012 ident: 1428_CR46 publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2012.00298 – volume: 24 start-page: 191 issue: 3-4 year: 1975 ident: 1428_CR3 publication-title: Mathematical Biosciences doi: 10.1016/0025-5564(75)90075-9 – volume: 20 start-page: 37 issue: 1 year: 1960 ident: 1428_CR7 publication-title: Educational and Psychological Measurement doi: 10.1177/001316446002000104 – volume: 50 start-page: 834 issue: 2 year: 2018 ident: 1428_CR39 publication-title: Behavior Research Methods doi: 10.3758/s13428-017-0909-3 – ident: 1428_CR22 doi: 10.1145/2168556.2168563 – volume: 7 start-page: 161794 year: 2019 ident: 1428_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2951506 – volume: 32 start-page: 1304 issue: 6 year: 2006 ident: 1428_CR12 publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition doi: 10.1037/0278-7393.32.6.1304 – volume: 50 start-page: 1374 issue: 4 year: 2018 ident: 1428_CR10 publication-title: Behavior Research Methods doi: 10.3758/s13428-018-1050-7 – ident: 1428_CR14 doi: 10.5281/zenodo.1470735 – volume: 5 start-page: 180502 issue: 8 year: 2018 ident: 1428_CR20 publication-title: Royal Society Open Science doi: 10.1098/rsos.180502 – volume: 25 start-page: 137 issue: 2 year: 1993 ident: 1428_CR43 publication-title: Behavior Research Methods, Instruments, & Computers doi: 10.3758/BF03204486 – volume: 60 start-page: 2484 issue: 9 year: 2013 ident: 1428_CR30 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2013.2258918 – ident: 1428_CR44 doi: 10.3758/s13428-018-1144-2 – ident: 1428_CR36 doi: 10.25080/Majora-92bf1922-00a – volume: 42 start-page: 188 issue: 1 year: 2010 ident: 1428_CR37 publication-title: Behavior Research Methods doi: 10.3758/BRM.42.1.188 – ident: 1428_CR40 – ident: 1428_CR42 doi: 10.25080/Majora-92bf1922-011 – volume: 21 start-page: 971 issue: 7 year: 2011 ident: 1428_CR32 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2011.2133770 – volume: 18 start-page: 145 year: 2015 ident: 1428_CR31 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2014.12.008 – ident: 1428_CR34 doi: 10.1007/978-3-642-33709-3_60 – volume: 62 start-page: 1170 issue: 2 year: 2012 ident: 1428_CR33 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.009 – ident: 1428_CR16 doi: 10.5281/zenodo.2651042 – volume: 4 start-page: 166 year: 2010 ident: 1428_CR17 publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2010.00166 – volume: 82 start-page: 695 issue: 3 year: 2014 ident: 1428_CR45 publication-title: Neuron doi: 10.1016/j.neuron.2014.03.020 – volume: 37 start-page: 789 issue: 6 year: 1997 ident: 1428_CR11 publication-title: Vision Research doi: 10.1016/S0042-6989(96)00217-9 – volume: 57 start-page: 1446 issue: 5 year: 1987 ident: 1428_CR4 publication-title: Journal of Neurophysiology doi: 10.1152/jn.1987.57.5.1446 – volume: 88 start-page: 170 year: 2014 ident: 1428_CR47 publication-title: NeuroImage doi: 10.1016/J.NEUROIMAGE.2013.11.017 – volume: 12 start-page: 31 issue: 6 year: 2012 ident: 1428_CR5 publication-title: Journal of Vision doi: 10.1167/12.6.31 – volume: 31 start-page: 327 issue: 3 year: 2019 ident: 1428_CR35 publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn_e_01276 – volume: 11 start-page: 9 issue: 5 year: 2011 ident: 1428_CR41 publication-title: Journal of Vision doi: 10.1167/11.5.9 – volume: 118 start-page: 48 year: 2016 ident: 1428_CR6 publication-title: Vision Research doi: 10.1016/j.visres.2014.12.018 – ident: 1428_CR38 – volume: 57 start-page: 2635 issue: 11 year: 2010 ident: 1428_CR29 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2010.2057429 |
| SSID | ssj0038214 |
| Score | 2.5216146 |
| Snippet | Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 399 |
| SubjectTerms | Algorithms Behavioral Science and Psychology Classification Cognitive Psychology Eye Eye fixation Eye Movements Humans Magnetic resonance imaging Measurement Motion pictures Oscillations Photic Stimulation Programming languages Psychology Pursuit, Smooth Robustness Saccades Saccadic eye movements Sequences Smooth pursuit eye movements Software Stimulation Stimuli Tracking Visual stimuli |
| Title | REMoDNaV: robust eye-movement classification for dynamic stimulation |
| URI | https://link.springer.com/article/10.3758/s13428-020-01428-x https://www.ncbi.nlm.nih.gov/pubmed/32710238 https://www.proquest.com/docview/2489028924 https://www.proquest.com/docview/2427294317 https://pubmed.ncbi.nlm.nih.gov/PMC7880959 |
| Volume | 53 |
| WOSCitedRecordID | wos000552180600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1554-3528 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038214 issn: 1554-3528 databaseCode: RSV dateStart: 20050201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5By6EXoOUVKFUqcYOIjR-xzQ31IQ6wQi2s9hbZji0q0QRtsoj-e8bOo1qqIsEtksdKMrZnvtGMvwF4VTnlKnSkGfraImNCu0waqjLKEJ5QO7Mq9oxcfBTzuVwu1efhUlg7VruPKcloqUNciaD2bZtTFtiUSSikCk-IHLd5YJsJMfr5YrS_VJKc9ddjbpm36YJu4Mqb5ZF_5Eij6zl98H8f_RDuD1Azfd_vjV244-o92Jks3tUjOD47-dQcz_XiXbpqzLrtUnflsssmcoh3qQ3IOpQSxdVLEd6mVd_APkXDcDk0_noMX09Pvhx9yIa2CpnlLO8ybpjJC1lUggstuTAFJa4w1HuJyvRaVYxKX3mjlXM-p9wIURUOkZS2XHlGn8BW3dTuGaRu5jDE5TODoIEV1kpVVF5pQ5wmns90Avmo6dIOnOOh9cX3EmOPoKCyV1CJCiqjgspfCbye5vzoGTf-Kr0_LmA5nL62JCxkTyWGlgkcTsN4bkIyRNeuWQcZgnFFgE8JPO3Xe3odJQF3UZmA2NgJk0Dg5N4cqS--RW5ugfZQcZXAm3E_XH_W7X_x_N_EX8AOCaU1sXh8H7a61dq9hHv2Z3fRrg7grljKg3gmfgPV4gjN |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfQQGIv4xsKA4rEG1Rcm6RJeENs0xC3E4Jx2luUpImYxNrp2kPsvydOP9AxDQneqsZRUzuxf5YdG-Bl5aSrgiHNgq0tM8q1y4QhMiM0wBNiZ1bGnpHLOV8sxMmJ_DRcCmvHbPcxJBk1NfqVAdS-aXNCsZpygYlU-BSQ43WKbXbQR_-yHPUvEeFdfz3minmbJugSrrycHvlHjDSanoNb_7fo27AzQM30Xb837sA1V9-F7UnjXdyDvc_7R83eQi_fpqvGrNsudRcuO2tiDfEutYisMZUoSi8N8Dat-gb2aVAMZ0Pjr_vw9WD_-P1hNrRVyCyjeZcxQ01eirLijGvBuClJ4UpDvBeSE69lRYnwlTdaOudzwgznVekCktKWSU_JA9iqm9o9gtTNXHBx2cwE0EBLa4UsKy-1KZwuPJvpBPKR08oONcex9cV3FXwPZJDqGaQCg1RkkPqZwKtpznlfceOv1LujANVw-lpVUIyeiuBaJvBiGg7nBoMhunbNGmmK4FcgfErgYS_v6XOkQNxFRAJ8YydMBFiTe3OkPv0Wa3PzoA8lkwm8HvfD72Vd_ReP_438Odw8PD6aq_mHxccnsF1gmk1MJN-FrW61dk_hhv3RnbarZ_Fk_AIJ-wrJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-kivSlfutq1RV806W3-dgkvonXQ7EeperRt5BPLNjdcrdX7H9vkv3Qs1QQ3xYyIZtJZuY3zGQG4KV1wtlgSItga6uCMOUKrrEoMAnwBJuJEaln5OKAzef8-Fgc_vaKP2W7DyHJ7k1DrNJUt3tn1kcRxwHg7q1KTGJlZRSTquJXQJHXSfBkYlLX0efFoIsxRyXpnspcMW_THF3CmJdTJf-IlyYzNLv1_xu4DTs9BM3fdnfmDlxz9V3YHjXhxT2YHu1_aqZztXiTLxu9XrW5u3DFaZNqi7e5iYg7philU80D7M1t19g-DwrjtG8Idh--zva_vHtf9O0WCkNJ2RZUE11WvLKMMsUp0xVGrtLYey4Y9kpYgrm3XivhnC8x1YzZygWEpQwVnuAHsFU3tXsEuZu44PrSiQ5gglTGcFFZL5RGTiFPJyqDcuC6NH0t8tgS47sMPklkkOwYJAODZGKQ_JHBq3HOWVeJ46_Uu8Nhyl4qVxKRGFXlweXM4MU4HOQpBklU7Zp1pEHB34iwKoOH3dmPy2EU8RjmGbCNWzESxFrdmyP1ybdUs5sFPSmoyOD1cDd-_dbVu3j8b-TP4ebhdCYPPsw_PoFtFLNvUn75Lmy1y7V7CjfMeXuyWj5LQvITef0TrQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REMoDNaV%3A+robust+eye-movement+classification+for+dynamic+stimulation&rft.jtitle=Behavior+research+methods&rft.au=Dar%2C+Asim+H.&rft.au=Wagner%2C+Adina+S.&rft.au=Hanke%2C+Michael&rft.date=2021-02-01&rft.pub=Springer+US&rft.eissn=1554-3528&rft.volume=53&rft.issue=1&rft.spage=399&rft.epage=414&rft_id=info:doi/10.3758%2Fs13428-020-01428-x&rft.externalDocID=10_3758_s13428_020_01428_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon |