REMoDNaV: robust eye-movement classification for dynamic stimulation

Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior research methods Jg. 53; H. 1; S. 399 - 414
Hauptverfasser: Dar, Asim H., Wagner, Adina S., Hanke, Michael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2021
Springer Nature B.V
Schlagworte:
ISSN:1554-3528, 1554-351X, 1554-3528
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms are lackluster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an event classification algorithm—built on an existing velocity-based approach—that is suitable for both static and dynamic stimulation, and is capable of classifying saccades, post-saccadic oscillations, fixations, and smooth pursuit events. We validated classification performance and robustness on three public datasets: 1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short video sequences, 2) lab-quality gaze recordings for a feature-length movie, and 3) gaze recordings acquired under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for the same full-length movie. We found that the proposed algorithm performs on par or better compared to state-of-the-art alternatives for static stimulation. Moreover, it yields eye-movement events with biologically plausible characteristics on prolonged dynamic recordings. Lastly, algorithm performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying noise level. These results indicate that the proposed algorithm is a robust tool with improved classification accuracy across a range of use cases. The algorithm is cross-platform compatible, implemented using the Python programming language, and readily available as free and open-source software from public sources.
AbstractList Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms are lackluster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an event classification algorithm-built on an existing velocity-based approach-that is suitable for both static and dynamic stimulation, and is capable of classifying saccades, post-saccadic oscillations, fixations, and smooth pursuit events. We validated classification performance and robustness on three public datasets: 1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short video sequences, 2) lab-quality gaze recordings for a feature-length movie, and 3) gaze recordings acquired under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for the same full-length movie. We found that the proposed algorithm performs on par or better compared to state-of-the-art alternatives for static stimulation. Moreover, it yields eye-movement events with biologically plausible characteristics on prolonged dynamic recordings. Lastly, algorithm performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying noise level. These results indicate that the proposed algorithm is a robust tool with improved classification accuracy across a range of use cases. The algorithm is cross-platform compatible, implemented using the Python programming language, and readily available as free and open-source software from public sources.Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms are lackluster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an event classification algorithm-built on an existing velocity-based approach-that is suitable for both static and dynamic stimulation, and is capable of classifying saccades, post-saccadic oscillations, fixations, and smooth pursuit events. We validated classification performance and robustness on three public datasets: 1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short video sequences, 2) lab-quality gaze recordings for a feature-length movie, and 3) gaze recordings acquired under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for the same full-length movie. We found that the proposed algorithm performs on par or better compared to state-of-the-art alternatives for static stimulation. Moreover, it yields eye-movement events with biologically plausible characteristics on prolonged dynamic recordings. Lastly, algorithm performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying noise level. These results indicate that the proposed algorithm is a robust tool with improved classification accuracy across a range of use cases. The algorithm is cross-platform compatible, implemented using the Python programming language, and readily available as free and open-source software from public sources.
Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms are lackluster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an event classification algorithm—built on an existing velocity-based approach—that is suitable for both static and dynamic stimulation, and is capable of classifying saccades, post-saccadic oscillations, fixations, and smooth pursuit events. We validated classification performance and robustness on three public datasets: 1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short video sequences, 2) lab-quality gaze recordings for a feature-length movie, and 3) gaze recordings acquired under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for the same full-length movie. We found that the proposed algorithm performs on par or better compared to state-of-the-art alternatives for static stimulation. Moreover, it yields eye-movement events with biologically plausible characteristics on prolonged dynamic recordings. Lastly, algorithm performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying noise level. These results indicate that the proposed algorithm is a robust tool with improved classification accuracy across a range of use cases. The algorithm is cross-platform compatible, implemented using the Python programming language, and readily available as free and open-source software from public sources.
Author Hanke, Michael
Wagner, Adina S.
Dar, Asim H.
Author_xml – sequence: 1
  givenname: Asim H.
  surname: Dar
  fullname: Dar, Asim H.
  organization: Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology
– sequence: 2
  givenname: Adina S.
  surname: Wagner
  fullname: Wagner, Adina S.
  organization: Psychoinformatics Lab, Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich
– sequence: 3
  givenname: Michael
  orcidid: 0000-0001-6398-6370
  surname: Hanke
  fullname: Hanke, Michael
  email: michael.hanke@gmail.com
  organization: Psychoinformatics Lab, Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32710238$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PHSEUhomx8av-ARdmEjdupvI5gAsT40c1sW3StG4Jw4BiZkBhxnj_vdx71VoXrjiB5z2857ybYDXEYAHYQfAb4UwcZEQoFjXEsIZoXj2tgA3EGK0Jw2L1Xb0ONnO-g5AIjOgaWCeYI4iJ2ACnv89-xNOf-vqwSrGd8ljZma2H-GgHG8bK9Dpn77zRo4-hcjFV3SzowZsqj36Y-sX9V_DF6T7b7ZdzC_w9P_tzclFf_fp-eXJ8VRtG0VizlraoEU3HGdeC8bYh2DYtcU5ITpyWHSXCda7V0lqHCGs57xoriNSGSUfJFjha9r2f2sF2pjhMulf3yQ86zVTUXv3_EvytuomPigsBJZOlwf5LgxQfJptHNfhsbN_rYOOUFaaYY0kJ4gXd-4DexSmFMl6hhIRYSDx3tPve0ZuV1wUXAC8Bk2LOybo3BEE1T1EtU1QlRbVIUT0VkfggMn5cbLpM5fvPpWQpzeWfcGPTP9ufqJ4BIamyqw
CitedBy_id crossref_primary_10_1111_opo_13267
crossref_primary_10_1109_JBHI_2023_3285940
crossref_primary_10_3390_jemr18040028
crossref_primary_10_3389_fpsyg_2023_1129422
crossref_primary_10_3758_s13414_024_02917_3
crossref_primary_10_3758_s13428_021_01782_4
crossref_primary_10_1177_09567976241279198
crossref_primary_10_3758_s13428_024_02482_5
crossref_primary_10_1007_s10015_023_00868_w
crossref_primary_10_3390_s24041260
crossref_primary_10_1017_wtc_2024_27
crossref_primary_10_1109_TBME_2023_3330976
crossref_primary_10_1109_ACCESS_2025_3608621
crossref_primary_10_1167_iovs_65_14_11
crossref_primary_10_3389_fbioe_2024_1285107
crossref_primary_10_3390_jimaging10100255
crossref_primary_10_3758_s13414_024_02961_z
crossref_primary_10_1016_j_infbeh_2025_102029
crossref_primary_10_1016_j_bspc_2024_106862
crossref_primary_10_3758_s13428_024_02529_7
crossref_primary_10_1016_j_displa_2024_102788
crossref_primary_10_3390_bs15040502
crossref_primary_10_1007_s10055_025_01127_y
crossref_primary_10_1080_20008198_2021_1991609
crossref_primary_10_1523_ENEURO_0573_24_2025
crossref_primary_10_3758_s13428_021_01762_8
crossref_primary_10_3758_s13428_021_01763_7
Cites_doi 10.1152/jn.1987.57.5.1446
10.1109/TBME.2013.2258918
10.1016/j.neuron.2014.03.020
10.1016/j.bspc.2014.12.008
10.3758/s13428-016-0822-1
10.3389/fnhum.2010.00166
10.3758/s13428-018-1050-7
10.1167/11.5.9
10.3758/BRM.42.1.188
10.1038/s41598-017-00881-7
10.1016/j.visres.2016.09.002
10.1037/0278-7393.32.6.1304
10.1016/j.neuropsychologia.2014.01.005
10.3389/fnhum.2012.00298
10.1109/TBME.2010.2057429
10.1016/J.NEUROIMAGE.2013.11.017
10.1016/j.visres.2014.12.018
10.1109/TCSVT.2011.2133770
10.1109/MCSE.2007.55
10.1016/j.neuroimage.2012.01.009
10.3758/BF03204486
10.1109/ACCESS.2019.2951506
10.1167/12.6.31
10.1098/rsos.180502
10.1038/sdata.2016.44
10.3758/s13428-012-0234-9
10.1177/001316446002000104
10.3758/s13428-016-0738-9
10.1016/0025-5564(75)90075-9
10.1167/10.10.28
10.1016/S0042-6989(96)00217-9
10.1038/sdata.2016.92
10.3758/s13428-017-0909-3
10.3758/s13428-017-0955-x
10.1162/jocn_e_01276
10.3758/s13428-018-1133-5
10.1145/2168556.2168563
10.5281/zenodo.1470735
10.3758/s13428-018-1144-2
10.25080/Majora-92bf1922-00a
10.25080/Majora-92bf1922-011
10.1007/978-3-642-33709-3_60
10.5281/zenodo.2651042
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
K9.
7X8
5PM
DOI 10.3758/s13428-020-01428-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Docstoc
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1554-3528
EndPage 414
ExternalDocumentID PMC7880959
32710238
10_3758_s13428_020_01428_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PRQQA
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
K9.
7X8
5PM
ID FETCH-LOGICAL-c541t-5b4b1686d757a857b632e6b3ff8973fa9d438fdfba9eef135b77d6e839ac59f43
IEDL.DBID RSV
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552180600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1554-3528
1554-351X
IngestDate Tue Nov 04 01:57:23 EST 2025
Sun Aug 24 03:27:36 EDT 2025
Sat Nov 15 08:11:33 EST 2025
Wed Feb 19 02:28:12 EST 2025
Sat Nov 29 02:18:09 EST 2025
Tue Nov 18 22:33:41 EST 2025
Fri Feb 21 02:49:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Glissade classification
Data preprocessing
Saccade classification algorithm
Adaptive threshold algorithm
Eye tracking
Statistical saccade analysis
Adaptive classification algorithm
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-5b4b1686d757a857b632e6b3ff8973fa9d438fdfba9eef135b77d6e839ac59f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6398-6370
OpenAccessLink https://link.springer.com/10.3758/s13428-020-01428-x
PMID 32710238
PQID 2489028924
PQPubID 976348
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7880959
proquest_miscellaneous_2427294317
proquest_journals_2489028924
pubmed_primary_32710238
crossref_primary_10_3758_s13428_020_01428_x
crossref_citationtrail_10_3758_s13428_020_01428_x
springer_journals_10_3758_s13428_020_01428_x
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationTitleAlternate Behav Res Methods
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Schutz, Braun, Gegenfurtner (CR41) 2011; 11
Toiviainen, Alluri, Brattico, Wallentin, Vuust (CR47) 2014; 88
Friedman, Rigas, Abdulin, Komogortsev (CR10) 2018; 50
Tikka, Väljamäe, de Borst, Pugliese, Ravaja, Kaipainen, Takala (CR46) 2012; 6
Bahill, Clark, Stark (CR3) 1975; 24
CR16
CR38
CR14
CR36
Hannula, Althoff, Warren, Riggs, Cohen, Ryan (CR17) 2010; 4
CR34
Stampe (CR43) 1993; 25
Hessels, Niehorster, Kemner, Hooge (CR19) 2017; 49
Gorgolewski, Auer, Calhoun, Craddock, Das, Duff, Flandin, Ghosh, Glatard, Halchenko (CR13) 2016; 3
Komogortsev, Karpov (CR28) 2013; 45
Amit, Abeles, Bar-Gad, Yuval-Greenberg (CR1) 2017; 7
Gordon, Hendrick, Johnson, Lee (CR12) 2006; 32
Andersson, Larsson, Holmqvist, Stridh, Nyström (CR2) 2017; 49
Cohen (CR7) 1960; 20
Jaccard (CR26) 1901; 37
Komogortsev, Gobert, Jayarathna, Koh, Gowda (CR29) 2010; 57
Hooge, Holmqvist, Nyström (CR23) 2016; 128
Tagliazucchi, Laufs (CR45) 2014; 82
Larsson, Nyström, Andersson, Stridh (CR31) 2015; 18
van Renswoude, Raijmakers, Koornneef, Johnson, Hunnius, Visser (CR39) 2018; 50
Hessels, Niehorster, Nyström, Andersson, Hooge (CR20) 2018; 5
Maguire (CR33) 2012; 62
Choe, Blake, Lee (CR6) 2016; 118
CR27
CR48
Harris, Young, Andrews (CR18) 2014; 56
Nyström, Holmqvist (CR37) 2010; 42
Matusz, Dikker, Huth, Perrodin (CR35) 2019; 31
CR22
CR44
CR21
Hooge, Niehorster, Nyström, Andersson, Hessels (CR24) 2018; 50
Cherici, Kuang, Poletti, Rucci (CR5) 2012; 12
CR42
Dalveren, Cagiltay (CR8) 2019; 7
CR40
Carl, Gellman (CR4) 1987; 57
Dorr, Martinetz, Gegenfurtner, Barth (CR9) 2010; 10
Goltz, Irving, Steinbach, Eizenman (CR11) 1997; 37
Hunter (CR25) 2007; 9
Liu, Heynderickx (CR32) 2011; 21
Hanke, Adelhöfer, Kottke, Iacovella, Sengupta, Kaule, Nigbur, Waite, Baumgartner, Stadler (CR15) 2016; 3
Larsson, Nyström, Stridh (CR30) 2013; 60
J Cohen (1428_CR7) 1960; 20
GGM Dalveren (1428_CR8) 2019; 7
M Hanke (1428_CR15) 2016; 3
L Larsson (1428_CR31) 2015; 18
AT Bahill (1428_CR3) 1975; 24
P Jaccard (1428_CR26) 1901; 37
H Liu (1428_CR32) 2011; 21
DM Stampe (1428_CR43) 1993; 25
M Nyström (1428_CR37) 2010; 42
R Andersson (1428_CR2) 2017; 49
1428_CR34
M Dorr (1428_CR9) 2010; 10
DE Hannula (1428_CR17) 2010; 4
C Cherici (1428_CR5) 2012; 12
OV Komogortsev (1428_CR29) 2010; 57
H Goltz (1428_CR11) 1997; 37
AC Schutz (1428_CR41) 2011; 11
RS Hessels (1428_CR20) 2018; 5
1428_CR16
1428_CR38
KW Choe (1428_CR6) 2016; 118
KJ Gorgolewski (1428_CR13) 2016; 3
L Friedman (1428_CR10) 2018; 50
1428_CR14
1428_CR36
E Tagliazucchi (1428_CR45) 2014; 82
P Toiviainen (1428_CR47) 2014; 88
I Hooge (1428_CR23) 2016; 128
ITC Hooge (1428_CR24) 2018; 50
EA Maguire (1428_CR33) 2012; 62
JD Hunter (1428_CR25) 2007; 9
R Amit (1428_CR1) 2017; 7
DR van Renswoude (1428_CR39) 2018; 50
PC Gordon (1428_CR12) 2006; 32
1428_CR22
L Larsson (1428_CR30) 2013; 60
1428_CR44
1428_CR21
1428_CR42
P Tikka (1428_CR46) 2012; 6
1428_CR40
RS Hessels (1428_CR19) 2017; 49
JR Carl (1428_CR4) 1987; 57
RJ Harris (1428_CR18) 2014; 56
PJ Matusz (1428_CR35) 2019; 31
1428_CR27
OV Komogortsev (1428_CR28) 2013; 45
1428_CR48
References_xml – volume: 57
  start-page: 1446
  issue: 5
  year: 1987
  end-page: 1463, pMID: 3585475
  ident: CR4
  article-title: Human smooth pursuit: stimulus-dependent responses
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1987.57.5.1446
– volume: 60
  start-page: 2484
  issue: 9
  year: 2013
  end-page: 2493
  ident: CR30
  article-title: Detection of saccades and postsaccadic oscillations in the presence of smooth pursuit
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2013.2258918
– ident: CR22
– volume: 82
  start-page: 695
  issue: 3
  year: 2014
  end-page: 708
  ident: CR45
  article-title: Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.03.020
– volume: 18
  start-page: 145
  year: 2015
  end-page: 152
  ident: CR31
  article-title: Detection of fixations and smooth pursuit movements in high-speed eye-tracking data
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2014.12.008
– volume: 49
  start-page: 1802
  issue: 5
  year: 2017
  end-page: 1823
  ident: CR19
  article-title: Noise-robust fixation detection in eye movement data: identification by two-means clustering (i2mc)
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-016-0822-1
– ident: CR14
– volume: 4
  start-page: 166
  year: 2010
  ident: CR17
  article-title: Worth a glance: using eye movements to investigate the cognitive neuroscience of memory
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2010.00166
– ident: CR16
– volume: 50
  start-page: 1374
  issue: 4
  year: 2018
  end-page: 1397
  ident: CR10
  article-title: A novel evaluation of two related and two independent algorithms for eye movement classification during reading
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-018-1050-7
– volume: 11
  start-page: 9
  issue: 5
  year: 2011
  end-page: 9
  ident: CR41
  article-title: Eye movements and perception: a selective review
  publication-title: Journal of Vision
  doi: 10.1167/11.5.9
– volume: 42
  start-page: 188
  issue: 1
  year: 2010
  end-page: 204
  ident: CR37
  article-title: An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data
  publication-title: Behavior Research Methods
  doi: 10.3758/BRM.42.1.188
– volume: 7
  start-page: 886
  issue: 1
  year: 2017
  ident: CR1
  article-title: Temporal dynamics of saccades explained by a self-paced process
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-00881-7
– volume: 128
  start-page: 6
  year: 2016
  end-page: 18
  ident: CR23
  article-title: The pupil is faster than the corneal reflection (CR): are video-based pupil-CR eye trackers suitable for studying detailed dynamics of eye movements?
  publication-title: Vision Research
  doi: 10.1016/j.visres.2016.09.002
– volume: 32
  start-page: 1304
  issue: 6
  year: 2006
  end-page: 1321
  ident: CR12
  article-title: Similarity-based interference during language comprehension: evidence from eye tracking during reading
  publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition
  doi: 10.1037/0278-7393.32.6.1304
– volume: 56
  start-page: 47
  issue: 100
  year: 2014
  end-page: 52
  ident: CR18
  article-title: Dynamic stimuli demonstrate a categorical representation of facial expression in the amygdala
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2014.01.005
– volume: 6
  start-page: 298
  year: 2012
  ident: CR46
  article-title: Enactive cinema paves way for understanding complex real-time social interaction in neuroimaging experiments
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2012.00298
– volume: 57
  start-page: 2635
  issue: 11
  year: 2010
  end-page: 2645
  ident: CR29
  article-title: Standardization of automated analyses of oculomotor fixation and saccadic behaviors
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2010.2057429
– volume: 88
  start-page: 170
  year: 2014
  end-page: 180
  ident: CR47
  article-title: Capturing the musical brain with Lasso: dynamic decoding of musical features from fMRI data
  publication-title: NeuroImage
  doi: 10.1016/J.NEUROIMAGE.2013.11.017
– volume: 118
  start-page: 48
  year: 2016
  end-page: 59
  ident: CR6
  article-title: Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation
  publication-title: Vision Research
  doi: 10.1016/j.visres.2014.12.018
– volume: 37
  start-page: 547
  year: 1901
  end-page: 579
  ident: CR26
  article-title: Étude comparative de la distribution florale dans une portion des alpes et des jura
  publication-title: Bull Soc Vaudoise Sci Nat
– ident: CR40
– ident: CR27
– ident: CR42
– ident: CR21
– volume: 21
  start-page: 971
  issue: 7
  year: 2011
  end-page: 982
  ident: CR32
  article-title: Visual attention in objective image quality assessment: based on eye-tracking data
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2011.2133770
– ident: CR44
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  end-page: 95
  ident: CR25
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Computing in Science & Engineering
  doi: 10.1109/MCSE.2007.55
– ident: CR48
– volume: 62
  start-page: 1170
  issue: 2
  year: 2012
  end-page: 1176
  ident: CR33
  article-title: Studying the freely-behaving brain with fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.009
– volume: 25
  start-page: 137
  issue: 2
  year: 1993
  end-page: 142
  ident: CR43
  article-title: Heuristic filtering and reliable calibration methods for video-based pupil-tracking systems
  publication-title: Behavior Research Methods, Instruments, & Computers
  doi: 10.3758/BF03204486
– volume: 7
  start-page: 161794
  year: 2019
  end-page: 161804
  ident: CR8
  article-title: Evaluation of ten open-source eye-movement classification algorithms in simulated surgical scenarios
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2951506
– ident: CR38
– volume: 12
  start-page: 31
  issue: 6
  year: 2012
  end-page: 31
  ident: CR5
  article-title: Precision of sustained fixation in trained and untrained observers
  publication-title: Journal of Vision
  doi: 10.1167/12.6.31
– volume: 5
  start-page: 180502
  issue: 8
  year: 2018
  ident: CR20
  article-title: Is the eye-movement field confused about fixations and saccades? A survey among 124 researchers
  publication-title: Royal Society Open Science
  doi: 10.1098/rsos.180502
– volume: 3
  start-page: 160044
  year: 2016
  ident: CR13
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Scientific Data
  doi: 10.1038/sdata.2016.44
– volume: 45
  start-page: 203
  issue: 1
  year: 2013
  end-page: 215
  ident: CR28
  article-title: Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-012-0234-9
– ident: CR34
– ident: CR36
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  end-page: 46
  ident: CR7
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/001316446002000104
– volume: 49
  start-page: 616
  issue: 2
  year: 2017
  end-page: 637
  ident: CR2
  article-title: One algorithm to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-016-0738-9
– volume: 24
  start-page: 191
  issue: 3-4
  year: 1975
  end-page: 204
  ident: CR3
  article-title: The main sequence, a tool for studying human eye movements
  publication-title: Mathematical Biosciences
  doi: 10.1016/0025-5564(75)90075-9
– volume: 10
  start-page: 28
  issue: 10
  year: 2010
  end-page: 28
  ident: CR9
  article-title: Variability of eye movements when viewing dynamic natural scenes
  publication-title: Journal of Vision
  doi: 10.1167/10.10.28
– volume: 37
  start-page: 789
  issue: 6
  year: 1997
  end-page: 798
  ident: CR11
  article-title: Vertical eye position control in darkness: orbital position and body orientation interact to modulate drift velocity
  publication-title: Vision Research
  doi: 10.1016/S0042-6989(96)00217-9
– volume: 3
  start-page: 160092
  year: 2016
  ident: CR15
  article-title: A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation
  publication-title: Scientific Data
  doi: 10.1038/sdata.2016.92
– volume: 50
  start-page: 834
  issue: 2
  year: 2018
  end-page: 852
  ident: CR39
  article-title: Gazepath: an eye-tracking analysis tool that accounts for individual differences and data quality
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-017-0909-3
– volume: 50
  start-page: 1864
  issue: 5
  year: 2018
  end-page: 1881
  ident: CR24
  article-title: Is human classification by experienced untrained observers a gold standard in fixation detection?
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-017-0955-x
– volume: 31
  start-page: 327
  issue: 3
  year: 2019
  end-page: 338, pMID: 29916793
  ident: CR35
  article-title: Are we ready for real-world neuroscience?
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_e_01276
– volume: 128
  start-page: 6
  year: 2016
  ident: 1428_CR23
  publication-title: Vision Research
  doi: 10.1016/j.visres.2016.09.002
– volume: 56
  start-page: 47
  issue: 100
  year: 2014
  ident: 1428_CR18
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2014.01.005
– volume: 37
  start-page: 547
  year: 1901
  ident: 1428_CR26
  publication-title: Bull Soc Vaudoise Sci Nat
– volume: 49
  start-page: 1802
  issue: 5
  year: 2017
  ident: 1428_CR19
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-016-0822-1
– volume: 49
  start-page: 616
  issue: 2
  year: 2017
  ident: 1428_CR2
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-016-0738-9
– ident: 1428_CR27
– volume: 7
  start-page: 886
  issue: 1
  year: 2017
  ident: 1428_CR1
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-00881-7
– volume: 3
  start-page: 160092
  year: 2016
  ident: 1428_CR15
  publication-title: Scientific Data
  doi: 10.1038/sdata.2016.92
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 1428_CR25
  publication-title: Computing in Science & Engineering
  doi: 10.1109/MCSE.2007.55
– ident: 1428_CR48
  doi: 10.3758/s13428-018-1133-5
– volume: 45
  start-page: 203
  issue: 1
  year: 2013
  ident: 1428_CR28
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-012-0234-9
– volume: 3
  start-page: 160044
  year: 2016
  ident: 1428_CR13
  publication-title: Scientific Data
  doi: 10.1038/sdata.2016.44
– volume: 50
  start-page: 1864
  issue: 5
  year: 2018
  ident: 1428_CR24
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-017-0955-x
– ident: 1428_CR21
– volume: 10
  start-page: 28
  issue: 10
  year: 2010
  ident: 1428_CR9
  publication-title: Journal of Vision
  doi: 10.1167/10.10.28
– volume: 6
  start-page: 298
  year: 2012
  ident: 1428_CR46
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2012.00298
– volume: 24
  start-page: 191
  issue: 3-4
  year: 1975
  ident: 1428_CR3
  publication-title: Mathematical Biosciences
  doi: 10.1016/0025-5564(75)90075-9
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 1428_CR7
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/001316446002000104
– volume: 50
  start-page: 834
  issue: 2
  year: 2018
  ident: 1428_CR39
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-017-0909-3
– ident: 1428_CR22
  doi: 10.1145/2168556.2168563
– volume: 7
  start-page: 161794
  year: 2019
  ident: 1428_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2951506
– volume: 32
  start-page: 1304
  issue: 6
  year: 2006
  ident: 1428_CR12
  publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition
  doi: 10.1037/0278-7393.32.6.1304
– volume: 50
  start-page: 1374
  issue: 4
  year: 2018
  ident: 1428_CR10
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-018-1050-7
– ident: 1428_CR14
  doi: 10.5281/zenodo.1470735
– volume: 5
  start-page: 180502
  issue: 8
  year: 2018
  ident: 1428_CR20
  publication-title: Royal Society Open Science
  doi: 10.1098/rsos.180502
– volume: 25
  start-page: 137
  issue: 2
  year: 1993
  ident: 1428_CR43
  publication-title: Behavior Research Methods, Instruments, & Computers
  doi: 10.3758/BF03204486
– volume: 60
  start-page: 2484
  issue: 9
  year: 2013
  ident: 1428_CR30
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2013.2258918
– ident: 1428_CR44
  doi: 10.3758/s13428-018-1144-2
– ident: 1428_CR36
  doi: 10.25080/Majora-92bf1922-00a
– volume: 42
  start-page: 188
  issue: 1
  year: 2010
  ident: 1428_CR37
  publication-title: Behavior Research Methods
  doi: 10.3758/BRM.42.1.188
– ident: 1428_CR40
– ident: 1428_CR42
  doi: 10.25080/Majora-92bf1922-011
– volume: 21
  start-page: 971
  issue: 7
  year: 2011
  ident: 1428_CR32
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2011.2133770
– volume: 18
  start-page: 145
  year: 2015
  ident: 1428_CR31
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2014.12.008
– ident: 1428_CR34
  doi: 10.1007/978-3-642-33709-3_60
– volume: 62
  start-page: 1170
  issue: 2
  year: 2012
  ident: 1428_CR33
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.009
– ident: 1428_CR16
  doi: 10.5281/zenodo.2651042
– volume: 4
  start-page: 166
  year: 2010
  ident: 1428_CR17
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2010.00166
– volume: 82
  start-page: 695
  issue: 3
  year: 2014
  ident: 1428_CR45
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.03.020
– volume: 37
  start-page: 789
  issue: 6
  year: 1997
  ident: 1428_CR11
  publication-title: Vision Research
  doi: 10.1016/S0042-6989(96)00217-9
– volume: 57
  start-page: 1446
  issue: 5
  year: 1987
  ident: 1428_CR4
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1987.57.5.1446
– volume: 88
  start-page: 170
  year: 2014
  ident: 1428_CR47
  publication-title: NeuroImage
  doi: 10.1016/J.NEUROIMAGE.2013.11.017
– volume: 12
  start-page: 31
  issue: 6
  year: 2012
  ident: 1428_CR5
  publication-title: Journal of Vision
  doi: 10.1167/12.6.31
– volume: 31
  start-page: 327
  issue: 3
  year: 2019
  ident: 1428_CR35
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_e_01276
– volume: 11
  start-page: 9
  issue: 5
  year: 2011
  ident: 1428_CR41
  publication-title: Journal of Vision
  doi: 10.1167/11.5.9
– volume: 118
  start-page: 48
  year: 2016
  ident: 1428_CR6
  publication-title: Vision Research
  doi: 10.1016/j.visres.2014.12.018
– ident: 1428_CR38
– volume: 57
  start-page: 2635
  issue: 11
  year: 2010
  ident: 1428_CR29
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2010.2057429
SSID ssj0038214
Score 2.5216146
Snippet Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 399
SubjectTerms Algorithms
Behavioral Science and Psychology
Classification
Cognitive Psychology
Eye
Eye fixation
Eye Movements
Humans
Magnetic resonance imaging
Measurement
Motion pictures
Oscillations
Photic Stimulation
Programming languages
Psychology
Pursuit, Smooth
Robustness
Saccades
Saccadic eye movements
Sequences
Smooth pursuit eye movements
Software
Stimulation
Stimuli
Tracking
Visual stimuli
Title REMoDNaV: robust eye-movement classification for dynamic stimulation
URI https://link.springer.com/article/10.3758/s13428-020-01428-x
https://www.ncbi.nlm.nih.gov/pubmed/32710238
https://www.proquest.com/docview/2489028924
https://www.proquest.com/docview/2427294317
https://pubmed.ncbi.nlm.nih.gov/PMC7880959
Volume 53
WOSCitedRecordID wos000552180600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: RSV
  dateStart: 20050201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5By6EXoOUVKFUqcYOIjR-xzQ31IQ6wQi2s9hbZji0q0QRtsoj-e8bOo1qqIsEtksdKMrZnvtGMvwF4VTnlKnSkGfraImNCu0waqjLKEJ5QO7Mq9oxcfBTzuVwu1efhUlg7VruPKcloqUNciaD2bZtTFtiUSSikCk-IHLd5YJsJMfr5YrS_VJKc9ddjbpm36YJu4Mqb5ZF_5Eij6zl98H8f_RDuD1Azfd_vjV244-o92Jks3tUjOD47-dQcz_XiXbpqzLrtUnflsssmcoh3qQ3IOpQSxdVLEd6mVd_APkXDcDk0_noMX09Pvhx9yIa2CpnlLO8ybpjJC1lUggstuTAFJa4w1HuJyvRaVYxKX3mjlXM-p9wIURUOkZS2XHlGn8BW3dTuGaRu5jDE5TODoIEV1kpVVF5pQ5wmns90Avmo6dIOnOOh9cX3EmOPoKCyV1CJCiqjgspfCbye5vzoGTf-Kr0_LmA5nL62JCxkTyWGlgkcTsN4bkIyRNeuWQcZgnFFgE8JPO3Xe3odJQF3UZmA2NgJk0Dg5N4cqS--RW5ugfZQcZXAm3E_XH_W7X_x_N_EX8AOCaU1sXh8H7a61dq9hHv2Z3fRrg7grljKg3gmfgPV4gjN
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfQQGIv4xsKA4rEG1Rcm6RJeENs0xC3E4Jx2luUpImYxNrp2kPsvydOP9AxDQneqsZRUzuxf5YdG-Bl5aSrgiHNgq0tM8q1y4QhMiM0wBNiZ1bGnpHLOV8sxMmJ_DRcCmvHbPcxJBk1NfqVAdS-aXNCsZpygYlU-BSQ43WKbXbQR_-yHPUvEeFdfz3minmbJugSrrycHvlHjDSanoNb_7fo27AzQM30Xb837sA1V9-F7UnjXdyDvc_7R83eQi_fpqvGrNsudRcuO2tiDfEutYisMZUoSi8N8Dat-gb2aVAMZ0Pjr_vw9WD_-P1hNrRVyCyjeZcxQ01eirLijGvBuClJ4UpDvBeSE69lRYnwlTdaOudzwgznVekCktKWSU_JA9iqm9o9gtTNXHBx2cwE0EBLa4UsKy-1KZwuPJvpBPKR08oONcex9cV3FXwPZJDqGaQCg1RkkPqZwKtpznlfceOv1LujANVw-lpVUIyeiuBaJvBiGg7nBoMhunbNGmmK4FcgfErgYS_v6XOkQNxFRAJ8YydMBFiTe3OkPv0Wa3PzoA8lkwm8HvfD72Vd_ReP_438Odw8PD6aq_mHxccnsF1gmk1MJN-FrW61dk_hhv3RnbarZ_Fk_AIJ-wrJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-kivSlfutq1RV806W3-dgkvonXQ7EeperRt5BPLNjdcrdX7H9vkv3Qs1QQ3xYyIZtJZuY3zGQG4KV1wtlgSItga6uCMOUKrrEoMAnwBJuJEaln5OKAzef8-Fgc_vaKP2W7DyHJ7k1DrNJUt3tn1kcRxwHg7q1KTGJlZRSTquJXQJHXSfBkYlLX0efFoIsxRyXpnspcMW_THF3CmJdTJf-IlyYzNLv1_xu4DTs9BM3fdnfmDlxz9V3YHjXhxT2YHu1_aqZztXiTLxu9XrW5u3DFaZNqi7e5iYg7philU80D7M1t19g-DwrjtG8Idh--zva_vHtf9O0WCkNJ2RZUE11WvLKMMsUp0xVGrtLYey4Y9kpYgrm3XivhnC8x1YzZygWEpQwVnuAHsFU3tXsEuZu44PrSiQ5gglTGcFFZL5RGTiFPJyqDcuC6NH0t8tgS47sMPklkkOwYJAODZGKQ_JHBq3HOWVeJ46_Uu8Nhyl4qVxKRGFXlweXM4MU4HOQpBklU7Zp1pEHB34iwKoOH3dmPy2EU8RjmGbCNWzESxFrdmyP1ybdUs5sFPSmoyOD1cDd-_dbVu3j8b-TP4ebhdCYPPsw_PoFtFLNvUn75Lmy1y7V7CjfMeXuyWj5LQvITef0TrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REMoDNaV%3A+robust+eye-movement+classification+for+dynamic+stimulation&rft.jtitle=Behavior+research+methods&rft.au=Dar%2C+Asim+H.&rft.au=Wagner%2C+Adina+S.&rft.au=Hanke%2C+Michael&rft.date=2021-02-01&rft.pub=Springer+US&rft.eissn=1554-3528&rft.volume=53&rft.issue=1&rft.spage=399&rft.epage=414&rft_id=info:doi/10.3758%2Fs13428-020-01428-x&rft.externalDocID=10_3758_s13428_020_01428_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon