Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells
Aqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal batt...
Uloženo v:
| Vydáno v: | Nature communications Ročník 14; číslo 1; s. 1828 - 13 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.04.2023
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Aqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal battery pouch cells by engineering the electrolyte solution. After identifying the proton reduction as the primary source of H
2
evolution during Zn metal electrodeposition, we design an electrolyte solution containing reverse micelle structures where sulfolane molecules constrain water in nanodomains to hinder proton reduction. Furthermore, we develop and validate an electrochemical testing protocol to comprehensively evaluate the cell’s coulombic efficiency and zinc metal electrode cycle life. Finally, using the reverse micelle electrolyte, we assemble and test a practical ampere-hour Zn||Zn
0.25
V
2
O
5
•nH
2
O multi-layer pouch cell capable of delivering an initial energy density of 70 Wh L
−1
(based on the volume of the cell components), capacity retention of about 80% after 390 cycles at 56 mA g
−1
cathode
and ~25 °C and prolonged cycling for 5 months at 56 mA g
−1
cathode
and ~25 °C.
The negative electrode reversibility limits the lifespan of Zn metal batteries. Here, authors report an aqueous electrolyte with a reverse micelle structure that improves the reversibility of the Zn metal anode enabling the production of an ampere-hour-level pouch cell with five months lifetime. |
|---|---|
| AbstractList | The negative electrode reversibility limits the lifespan of Zn metal batteries. Here, authors report an aqueous electrolyte with a reverse micelle structure that improves the reversibility of the Zn metal anode enabling the production of an ampere-hour-level pouch cell with five months lifetime. Aqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal battery pouch cells by engineering the electrolyte solution. After identifying the proton reduction as the primary source of H evolution during Zn metal electrodeposition, we design an electrolyte solution containing reverse micelle structures where sulfolane molecules constrain water in nanodomains to hinder proton reduction. Furthermore, we develop and validate an electrochemical testing protocol to comprehensively evaluate the cell's coulombic efficiency and zinc metal electrode cycle life. Finally, using the reverse micelle electrolyte, we assemble and test a practical ampere-hour Zn||Zn V O •nH O multi-layer pouch cell capable of delivering an initial energy density of 70 Wh L (based on the volume of the cell components), capacity retention of about 80% after 390 cycles at 56 mA g and ~25 °C and prolonged cycling for 5 months at 56 mA g and ~25 °C. Aqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal battery pouch cells by engineering the electrolyte solution. After identifying the proton reduction as the primary source of H 2 evolution during Zn metal electrodeposition, we design an electrolyte solution containing reverse micelle structures where sulfolane molecules constrain water in nanodomains to hinder proton reduction. Furthermore, we develop and validate an electrochemical testing protocol to comprehensively evaluate the cell’s coulombic efficiency and zinc metal electrode cycle life. Finally, using the reverse micelle electrolyte, we assemble and test a practical ampere-hour Zn||Zn 0.25 V 2 O 5 •nH 2 O multi-layer pouch cell capable of delivering an initial energy density of 70 Wh L −1 (based on the volume of the cell components), capacity retention of about 80% after 390 cycles at 56 mA g −1 cathode and ~25 °C and prolonged cycling for 5 months at 56 mA g −1 cathode and ~25 °C. The negative electrode reversibility limits the lifespan of Zn metal batteries. Here, authors report an aqueous electrolyte with a reverse micelle structure that improves the reversibility of the Zn metal anode enabling the production of an ampere-hour-level pouch cell with five months lifetime. Aqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal battery pouch cells by engineering the electrolyte solution. After identifying the proton reduction as the primary source of H2 evolution during Zn metal electrodeposition, we design an electrolyte solution containing reverse micelle structures where sulfolane molecules constrain water in nanodomains to hinder proton reduction. Furthermore, we develop and validate an electrochemical testing protocol to comprehensively evaluate the cell’s coulombic efficiency and zinc metal electrode cycle life. Finally, using the reverse micelle electrolyte, we assemble and test a practical ampere-hour Zn||Zn0.25V2O5•nH2O multi-layer pouch cell capable of delivering an initial energy density of 70 Wh L−1 (based on the volume of the cell components), capacity retention of about 80% after 390 cycles at 56 mA g−1cathode and ~25 °C and prolonged cycling for 5 months at 56 mA g−1cathode and ~25 °C. The negative electrode reversibility limits the lifespan of Zn metal batteries. Here, authors report an aqueous electrolyte with a reverse micelle structure that improves the reversibility of the Zn metal anode enabling the production of an ampere-hour-level pouch cell with five months lifetime. Aqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal battery pouch cells by engineering the electrolyte solution. After identifying the proton reduction as the primary source of H2 evolution during Zn metal electrodeposition, we design an electrolyte solution containing reverse micelle structures where sulfolane molecules constrain water in nanodomains to hinder proton reduction. Furthermore, we develop and validate an electrochemical testing protocol to comprehensively evaluate the cell's coulombic efficiency and zinc metal electrode cycle life. Finally, using the reverse micelle electrolyte, we assemble and test a practical ampere-hour Zn||Zn0.25V2O5•nH2O multi-layer pouch cell capable of delivering an initial energy density of 70 Wh L-1 (based on the volume of the cell components), capacity retention of about 80% after 390 cycles at 56 mA g-1cathode and ~25 °C and prolonged cycling for 5 months at 56 mA g-1cathode and ~25 °C.Aqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal battery pouch cells by engineering the electrolyte solution. After identifying the proton reduction as the primary source of H2 evolution during Zn metal electrodeposition, we design an electrolyte solution containing reverse micelle structures where sulfolane molecules constrain water in nanodomains to hinder proton reduction. Furthermore, we develop and validate an electrochemical testing protocol to comprehensively evaluate the cell's coulombic efficiency and zinc metal electrode cycle life. Finally, using the reverse micelle electrolyte, we assemble and test a practical ampere-hour Zn||Zn0.25V2O5•nH2O multi-layer pouch cell capable of delivering an initial energy density of 70 Wh L-1 (based on the volume of the cell components), capacity retention of about 80% after 390 cycles at 56 mA g-1cathode and ~25 °C and prolonged cycling for 5 months at 56 mA g-1cathode and ~25 °C. Aqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal battery pouch cells by engineering the electrolyte solution. After identifying the proton reduction as the primary source of H 2 evolution during Zn metal electrodeposition, we design an electrolyte solution containing reverse micelle structures where sulfolane molecules constrain water in nanodomains to hinder proton reduction. Furthermore, we develop and validate an electrochemical testing protocol to comprehensively evaluate the cell’s coulombic efficiency and zinc metal electrode cycle life. Finally, using the reverse micelle electrolyte, we assemble and test a practical ampere-hour Zn||Zn 0.25 V 2 O 5 •nH 2 O multi-layer pouch cell capable of delivering an initial energy density of 70 Wh L −1 (based on the volume of the cell components), capacity retention of about 80% after 390 cycles at 56 mA g −1 cathode and ~25 °C and prolonged cycling for 5 months at 56 mA g −1 cathode and ~25 °C. |
| ArticleNumber | 1828 |
| Author | Wang, Tairan Wang, Yanbo Fan, Jun Zhi, Chunyi Wang, Yu Zhu, Jiaxiong Bu, Shuyu Zhang, Rong Hong, Hu Zhang, Wenjun |
| Author_xml | – sequence: 1 givenname: Yu surname: Wang fullname: Wang, Yu organization: Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Department of Materials Science and Engineering, City University of Hong Kong – sequence: 2 givenname: Tairan surname: Wang fullname: Wang, Tairan organization: Department of Materials Science and Engineering, City University of Hong Kong – sequence: 3 givenname: Shuyu surname: Bu fullname: Bu, Shuyu organization: Department of Materials Science and Engineering, City University of Hong Kong – sequence: 4 givenname: Jiaxiong surname: Zhu fullname: Zhu, Jiaxiong organization: Department of Materials Science and Engineering, City University of Hong Kong – sequence: 5 givenname: Yanbo surname: Wang fullname: Wang, Yanbo organization: Department of Materials Science and Engineering, City University of Hong Kong – sequence: 6 givenname: Rong surname: Zhang fullname: Zhang, Rong organization: Department of Materials Science and Engineering, City University of Hong Kong – sequence: 7 givenname: Hu surname: Hong fullname: Hong, Hu organization: Department of Materials Science and Engineering, City University of Hong Kong – sequence: 8 givenname: Wenjun orcidid: 0000-0002-4497-0688 surname: Zhang fullname: Zhang, Wenjun organization: Department of Materials Science and Engineering, City University of Hong Kong – sequence: 9 givenname: Jun orcidid: 0000-0001-8227-9671 surname: Fan fullname: Fan, Jun email: junfan@cityu.edu.hk organization: Department of Materials Science and Engineering, City University of Hong Kong – sequence: 10 givenname: Chunyi orcidid: 0000-0001-6766-5953 surname: Zhi fullname: Zhi, Chunyi email: cy.zhi@cityu.edu.hk organization: Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong Institute for Clean Energy, City University of Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37005392$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uktv1DAYjFARLaV_gAOyxIVLwK_EzgmhikelShyAs-U4X3a9cuzFdipt-fM4TQttD_XFlj0zGs83L6sjHzxU1WuC3xPM5IfECW9FjSmrmWgor8Wz6oRiTmoiKDu6dz6uzlLa4bJYRyTnL6pjJjBuWEdPqj8_ZjcGpz3UJvisrbd-g_TvGcKcEDgwOQZ3yIBScHO2wSc0hoj2MQyzWbAwjtZY8BnpaQ8R6m2YY-3gChy6tt6gCbJ2qNc5QzygfZjNFhlwLr2qno_aJTi73U-rX18-_zz_Vl9-_3px_umyNg0nuW700PN-7AkAbTDlZBR0kIbwjjWyE73BwKgAMQwcOg2mN4wxTEBSTbXAjJ1WF6vuEPRO7aOddDyooK26uQhxo3TM1jhQpCFES9OYtudcDLTHUoq2KxsFTbumaH1ctfZzP8Fgyr-jdg9EH754u1WbcKUIxq3oWl4U3t0qxFBiTllNNi15lBmUzBUVHW9lSyUt0LePoLuSrS9ZLSgmuSBtW1Bv7lv65-VuyAUgV4CJIaUIozI262WWxaF1xZpaKqXWSqlSKXVTKSUKlT6i3qk_SWIrKRWw30D8b_sJ1l9Lu-BI |
| CitedBy_id | crossref_primary_10_1002_ange_202501960 crossref_primary_10_1016_j_ensm_2025_104268 crossref_primary_10_1016_j_ensm_2025_104388 crossref_primary_10_1002_smll_202507546 crossref_primary_10_1002_adma_202512364 crossref_primary_10_1039_D3EE04320G crossref_primary_10_1002_anie_202516233 crossref_primary_10_1021_jacs_4c02558 crossref_primary_10_1002_adma_202405949 crossref_primary_10_1039_D5MH00358J crossref_primary_10_1002_ange_202410422 crossref_primary_10_1039_D3EE04208A crossref_primary_10_1002_adfm_202304878 crossref_primary_10_1016_j_progpolymsci_2024_101817 crossref_primary_10_1002_ange_202404825 crossref_primary_10_1021_jacs_4c02150 crossref_primary_10_1016_j_jcis_2025_138507 crossref_primary_10_1038_s41467_024_53831_z crossref_primary_10_1002_adma_202508090 crossref_primary_10_1016_j_cej_2023_147313 crossref_primary_10_1002_adma_202513463 crossref_primary_10_1016_j_ensm_2025_104150 crossref_primary_10_1016_j_cej_2024_150102 crossref_primary_10_1039_D3EE02114A crossref_primary_10_1038_s41467_025_58153_2 crossref_primary_10_1039_D4EE04115A crossref_primary_10_1002_smtd_202300660 crossref_primary_10_1038_s41467_024_50219_x crossref_primary_10_1002_batt_202400811 crossref_primary_10_1002_ange_202314456 crossref_primary_10_1002_adma_202414388 crossref_primary_10_1016_j_cclet_2025_111754 crossref_primary_10_1002_anie_202308454 crossref_primary_10_1002_aenm_202504692 crossref_primary_10_1038_s41570_025_00714_6 crossref_primary_10_1002_adfm_202311271 crossref_primary_10_1038_s41560_024_01638_z crossref_primary_10_1002_adma_202406451 crossref_primary_10_1002_adfm_202406568 crossref_primary_10_1002_adma_202411004 crossref_primary_10_1002_pol_20250419 crossref_primary_10_1002_batt_202400483 crossref_primary_10_1016_j_ensm_2025_104480 crossref_primary_10_1016_j_jechem_2025_04_066 crossref_primary_10_1002_anie_202314456 crossref_primary_10_1007_s43832_024_00146_1 crossref_primary_10_1016_j_jpowsour_2024_234244 crossref_primary_10_1016_j_cej_2025_166509 crossref_primary_10_1016_j_est_2025_117237 crossref_primary_10_1002_ange_202314883 crossref_primary_10_1002_adma_202411802 crossref_primary_10_1002_anie_202405593 crossref_primary_10_1039_D4EE00318G crossref_primary_10_1016_j_cej_2025_161858 crossref_primary_10_1002_cnma_202400123 crossref_primary_10_1002_adma_202405889 crossref_primary_10_1021_acsami_5c04698 crossref_primary_10_1039_D3EE03422D crossref_primary_10_26599_NR_2025_94907445 crossref_primary_10_1002_ange_202414562 crossref_primary_10_1039_D4EE01015A crossref_primary_10_1002_adfm_202513857 crossref_primary_10_1002_adma_202304878 crossref_primary_10_1002_aenm_202401470 crossref_primary_10_1002_slct_202405961 crossref_primary_10_1002_adfm_202505058 crossref_primary_10_1002_adfm_202417695 crossref_primary_10_1002_adfm_202513335 crossref_primary_10_1002_adma_202314144 crossref_primary_10_1002_ange_202405593 crossref_primary_10_1007_s11581_024_05486_5 crossref_primary_10_1039_D5TA01314C crossref_primary_10_1002_adfm_202412791 crossref_primary_10_1016_j_cclet_2024_109559 crossref_primary_10_1002_aenm_202501443 crossref_primary_10_1016_j_est_2024_114123 crossref_primary_10_1002_anie_202418242 crossref_primary_10_1002_anie_202414562 crossref_primary_10_1038_s41467_024_44893_0 crossref_primary_10_1007_s10008_024_05901_x crossref_primary_10_1039_D5TA03562G crossref_primary_10_1002_advs_202401575 crossref_primary_10_1002_adma_202404011 crossref_primary_10_1002_smll_202501242 crossref_primary_10_1007_s12598_024_03048_2 crossref_primary_10_1002_adfm_202420258 crossref_primary_10_1002_adfm_202513685 crossref_primary_10_1002_smll_202404743 crossref_primary_10_1002_ange_202311032 crossref_primary_10_1038_s41467_024_52611_z crossref_primary_10_1016_j_molliq_2025_126940 crossref_primary_10_1002_anie_202413959 crossref_primary_10_1002_ange_202316841 crossref_primary_10_1039_D5SC02677F crossref_primary_10_1016_j_mattod_2024_08_003 crossref_primary_10_1002_aenm_202401139 crossref_primary_10_1039_D5EE02723C crossref_primary_10_1021_acsami_5c03547 crossref_primary_10_1002_ange_202418242 crossref_primary_10_1021_acs_inorgchem_5c01354 crossref_primary_10_1002_anie_202501960 crossref_primary_10_1002_ange_202516233 crossref_primary_10_1021_jacs_5c05027 crossref_primary_10_1002_smll_202404752 crossref_primary_10_1002_anie_202314883 crossref_primary_10_1002_aenm_202400318 crossref_primary_10_1038_s41467_025_57579_y crossref_primary_10_1002_adma_202418700 crossref_primary_10_1093_nsr_nwad220 crossref_primary_10_1002_adma_202403214 crossref_primary_10_1016_j_cjsc_2025_100542 crossref_primary_10_1002_adfm_202404560 crossref_primary_10_1002_anie_202404825 crossref_primary_10_1002_adma_202405913 crossref_primary_10_1002_adma_202306154 crossref_primary_10_1002_anie_202423808 crossref_primary_10_1021_jacs_3c06523 crossref_primary_10_1002_adfm_202421442 crossref_primary_10_1002_anie_202410422 crossref_primary_10_1016_j_jechem_2025_01_058 crossref_primary_10_1002_adma_202406257 crossref_primary_10_1002_ange_202401974 crossref_primary_10_1039_D4EE04566A crossref_primary_10_1002_ange_202514181 crossref_primary_10_1002_ange_202413959 crossref_primary_10_1002_adma_202401924 crossref_primary_10_1039_D5EE00158G crossref_primary_10_1007_s12274_024_6591_8 crossref_primary_10_1021_acsenergylett_5c00491 crossref_primary_10_1039_D4EE01978D crossref_primary_10_1002_ange_202423808 crossref_primary_10_1007_s40820_023_01304_1 crossref_primary_10_1038_s41467_025_56607_1 crossref_primary_10_1002_anie_202514181 crossref_primary_10_1002_ange_202308454 crossref_primary_10_1016_j_nanoen_2024_109374 crossref_primary_10_1002_smll_202402638 crossref_primary_10_1002_adma_202410244 crossref_primary_10_1002_smll_202311407 crossref_primary_10_1002_anie_202409986 crossref_primary_10_1002_anie_202311032 crossref_primary_10_1093_nsr_nwae181 crossref_primary_10_1002_anie_202316841 crossref_primary_10_1002_cssc_202400050 crossref_primary_10_1002_smll_202509195 crossref_primary_10_1002_ange_202409986 crossref_primary_10_1002_anie_202401974 crossref_primary_10_1016_j_joule_2023_12_023 crossref_primary_10_1002_adfm_202313358 crossref_primary_10_26599_NR_2025_94907479 crossref_primary_10_1002_adma_202415373 crossref_primary_10_1007_s12598_024_02689_7 |
| Cites_doi | 10.1016/j.joule.2019.06.012 10.1002/anie.202016531 10.1038/s41467-019-13436-3 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U 10.1021/acs.jpcc.9b11337 10.1038/s41467-022-28381-x 10.1021/j100308a038 10.1038/s41563-018-0063-z 10.1021/jacs.0c10258 10.1039/D1EE01851E 10.1002/ange.202108766 10.1021/acsenergylett.8b00565 10.1002/batt.202100394 10.1038/s41929-020-0482-5 10.1039/D0EE01538E 10.1002/eem2.12077 10.1038/s41586-019-1481-z 10.1038/s41467-022-29987-x 10.1002/adfm.201902653 10.1039/D2EE00134A 10.1002/aenm.202003092 10.1149/1945-7111/ab975b 10.1149/2.0121906jes 10.1016/0263-7855(96)00018-5 10.1016/j.joule.2020.05.018 10.1038/s41467-017-00467-x 10.1021/jacs.0c09794 10.1002/adfm.202106811 10.1021/acs.jpcb.8b09439 10.1016/j.matt.2021.10.021 10.1366/11-06323 10.1021/acsami.2c03460 10.1063/1.3382344 10.1038/s41893-021-00800-9 10.1016/j.jpowsour.2020.228742 10.1038/nenergy.2016.119 10.1038/s41560-021-00977-5 10.1002/aenm.201702097 10.1038/s41586-021-04168-w 10.1149/2.0191711jes 10.1006/jcph.1995.1039 10.1126/sciadv.abe0219 10.1021/jacs.1c12764 10.1016/j.jcis.2010.03.014 10.1021/acscentsci.0c00340 10.1016/j.nanoen.2020.105478 10.1021/jp0476545 10.1073/pnas.0907875106 10.1126/sciadv.abj3423 10.1002/batt.202000124 10.1038/nchem.2085 10.1103/PhysRevB.54.11169 10.1038/s41560-020-0648-z 10.1021/ct400146w 10.1002/jcc.21759 10.1016/j.joule.2018.09.003 10.1021/la300796u 10.1038/s41565-021-00905-4 10.1126/science.aak9991 10.1063/1.478544 10.1002/anie.200802630 10.1016/0927-0256(96)00008-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-023-37524-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_1511a8c5c6b447d2b088769b082ea295 PMC10067964 37005392 10_1038_s41467_023_37524_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Collaborative Research Fund – fundername: ; |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-5adb4bfb1ee250241f72d8c14935897bc0e327e7dd4e9aecbc33301e82a2a7033 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 189 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000962482700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:51:14 EDT 2025 Tue Nov 04 02:07:06 EST 2025 Fri Sep 05 14:21:10 EDT 2025 Tue Oct 07 07:36:19 EDT 2025 Wed Feb 19 02:24:53 EST 2025 Tue Nov 18 20:37:50 EST 2025 Sat Nov 29 02:11:42 EST 2025 Fri Feb 21 02:39:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-5adb4bfb1ee250241f72d8c14935897bc0e327e7dd4e9aecbc33301e82a2a7033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4497-0688 0000-0001-6766-5953 0000-0001-8227-9671 |
| OpenAccessLink | https://doaj.org/article/1511a8c5c6b447d2b088769b082ea295 |
| PMID | 37005392 |
| PQID | 2793847166 |
| PQPubID | 546298 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1511a8c5c6b447d2b088769b082ea295 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10067964 proquest_miscellaneous_2794686282 proquest_journals_2793847166 pubmed_primary_37005392 crossref_citationtrail_10_1038_s41467_023_37524_7 crossref_primary_10_1038_s41467_023_37524_7 springer_journals_10_1038_s41467_023_37524_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Li, Roberts, Chakravorty, Merz (CR55) 2013; 9 Zeng (CR15) 2021; 14 Pastel (CR25) 2022; 15 Han (CR10) 2022; 5 Canongia Lopes, Pádua (CR56) 2004; 108 Kundu, Adams, Duffort, Vajargah, Nazar (CR4) 2016; 1 Cao (CR5) 2021; 16 Borin, Skaf (CR35) 1999; 110 Wang (CR30) 2022; 5 Grimme, Antony, Ehrlich, Krieg (CR63) 2010; 132 Wang (CR9) 2018; 17 Sechler, DelSole, Deák (CR34) 2010; 346 Zhang (CR47) 2018; 3 Plimpton (CR53) 1995; 117 Liu (CR39) 2022; 14 Qin (CR31) 2021; 80 Adams (CR27) 2021; 133 Liu (CR24) 2021; 600 Parker Joseph (CR6) 2017; 356 Yang (CR12) 2020; 4 Kresse, Furthmüller (CR62) 1996; 54 Placke (CR48) 2018; 2 Gálvez-Vázquez, Grozovski, Kovács, Broekmann, Vesztergom (CR19) 2020; 124 Qiu (CR13) 2019; 10 Xu (CR51) 2022; 7 Grozovski, Vesztergom, Láng, Broekmann (CR17) 2017; 164 Musat (CR37) 2008; 47 Zheng, Archer Lynden (CR11) 2021; 7 Steiner (CR33) 2002; 41 Dokko (CR57) 2018; 122 Zhang (CR16) 2019; 29 Ma (CR44) 2020; 3 Ming (CR14) 2022; 144 Gunnarsdóttir, Amanchukwu, Menkin, Grey (CR41) 2020; 142 Sofronov, Bakker (CR26) 2020; 6 Kiefer, Frank, Schuchmann (CR36) 2011; 65 Shang, Kundu (CR8) 2022; 5 Wu, Jia, Wang, Zhang, Xu (CR22) 2021; 11 Fang (CR23) 2019; 572 CR58 Adams, Zheng, Ren, Xu, Zhang (CR21) 2018; 8 Humphrey, Dalke, Schulten (CR60) 1996; 14 Chang (CR38) 2020; 13 Kim (CR50) 2022; 13 Law, Britton (CR32) 2012; 28 Liu (CR40) 2022; 32 Meddings (CR52) 2020; 480 Berendsen, Grigera, Straatsma (CR54) 1987; 91 Larcher, Tarascon (CR1) 2015; 7 Zhang (CR49) 2017; 8 Kresse, Furthmüller (CR61) 1996; 6 Zampardi, La Mantia (CR7) 2022; 13 Fenn Emily, Wong Daryl, Fayer (CR28) 2009; 106 Hao (CR43) 2021; 60 Dubouis (CR29) 2020; 3 Xiao (CR20) 2020; 5 Li (CR46) 2021; 4 Cao (CR3) 2020; 142 Ziegler (CR2) 2019; 3 Kovács, Grozovski, Moreno-García, Broekmann, Vesztergom (CR18) 2020; 167 Grimme, Ehrlich, Goerigk (CR59) 2011; 32 Bayer (CR45) 2019; 166 Xiang (CR42) 2021; 7 L Zhang (37524_CR16) 2019; 29 D Kundu (37524_CR4) 2016; 1 J Zheng (37524_CR11) 2021; 7 EM Adams (37524_CR27) 2021; 133 H Wu (37524_CR22) 2021; 11 Y Xiang (37524_CR42) 2021; 7 Y Li (37524_CR46) 2021; 4 N Zhang (37524_CR47) 2018; 3 H Qiu (37524_CR13) 2019; 10 JN Canongia Lopes (37524_CR56) 2004; 108 D Liu (37524_CR39) 2022; 14 M Bayer (37524_CR45) 2019; 166 P Li (37524_CR55) 2013; 9 G Kresse (37524_CR61) 1996; 6 F Ming (37524_CR14) 2022; 144 Y Wang (37524_CR30) 2022; 5 Y Kim (37524_CR50) 2022; 13 L Cao (37524_CR3) 2020; 142 W Yang (37524_CR12) 2020; 4 T Placke (37524_CR48) 2018; 2 X Zeng (37524_CR15) 2021; 14 F Liu (37524_CR24) 2021; 600 T Steiner (37524_CR33) 2002; 41 N Chang (37524_CR38) 2020; 13 L Cao (37524_CR5) 2021; 16 J Xiao (37524_CR20) 2020; 5 S Plimpton (37524_CR53) 1995; 117 Y Shang (37524_CR8) 2022; 5 J Liu (37524_CR40) 2022; 32 R Qin (37524_CR31) 2021; 80 IA Borin (37524_CR35) 1999; 110 37524_CR58 F Parker Joseph (37524_CR6) 2017; 356 G Zampardi (37524_CR7) 2022; 13 E Fenn Emily (37524_CR28) 2009; 106 S Grimme (37524_CR63) 2010; 132 F Wang (37524_CR9) 2018; 17 J Xu (37524_CR51) 2022; 7 R Musat (37524_CR37) 2008; 47 N Zhang (37524_CR49) 2017; 8 GR Pastel (37524_CR25) 2022; 15 K Dokko (37524_CR57) 2018; 122 V Grozovski (37524_CR17) 2017; 164 TD Sechler (37524_CR34) 2010; 346 OO Sofronov (37524_CR26) 2020; 6 D Han (37524_CR10) 2022; 5 C Fang (37524_CR23) 2019; 572 J Kiefer (37524_CR36) 2011; 65 HJC Berendsen (37524_CR54) 1987; 91 G Kresse (37524_CR62) 1996; 54 D Larcher (37524_CR1) 2015; 7 S Grimme (37524_CR59) 2011; 32 MS Ziegler (37524_CR2) 2019; 3 L Ma (37524_CR44) 2020; 3 BD Adams (37524_CR21) 2018; 8 N Dubouis (37524_CR29) 2020; 3 MdJ Gálvez-Vázquez (37524_CR19) 2020; 124 W Humphrey (37524_CR60) 1996; 14 N Kovács (37524_CR18) 2020; 167 J Hao (37524_CR43) 2021; 60 N Meddings (37524_CR52) 2020; 480 SJ Law (37524_CR32) 2012; 28 AB Gunnarsdóttir (37524_CR41) 2020; 142 |
| References_xml | – volume: 3 start-page: 2134 year: 2019 end-page: 2153 ident: CR2 article-title: Storage requirements and costs of shaping renewable energy toward grid decarbonization publication-title: Joule doi: 10.1016/j.joule.2019.06.012 – volume: 60 start-page: 7366 year: 2021 end-page: 7375 ident: CR43 article-title: Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. publication-title: Int. Ed. doi: 10.1002/anie.202016531 – volume: 10 year: 2019 ident: CR13 article-title: Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation publication-title: Nat. Commun. doi: 10.1038/s41467-019-13436-3 – volume: 41 start-page: 48 year: 2002 end-page: 76 ident: CR33 article-title: The Hydrogen Bond in the Solid State. publication-title: Int. Ed. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U – volume: 124 start-page: 3988 year: 2020 end-page: 4000 ident: CR19 article-title: Full model for the two-step polarization curves of hydrogen evolution, measured on RDEs in dilute acid solutions publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b11337 – volume: 13 year: 2022 ident: CR7 article-title: Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries publication-title: Nat. Commun. doi: 10.1038/s41467-022-28381-x – volume: 91 start-page: 6269 year: 1987 end-page: 6271 ident: CR54 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. doi: 10.1021/j100308a038 – volume: 17 start-page: 543 year: 2018 end-page: 549 ident: CR9 article-title: Highly reversible zinc metal anode for aqueous batteries publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 142 start-page: 20814 year: 2020 end-page: 20827 ident: CR41 article-title: Noninvasive In situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10258 – volume: 14 start-page: 5947 year: 2021 end-page: 5957 ident: CR15 article-title: Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm and 30 mA h cm publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01851E – volume: 133 start-page: 25623 year: 2021 end-page: 25631 ident: CR27 article-title: Proton traffic jam: effect of nanoconfinement and acid concentration on proton hopping mechanism publication-title: Angew. Chem. doi: 10.1002/ange.202108766 – ident: CR58 – volume: 3 start-page: 1366 year: 2018 end-page: 1372 ident: CR47 article-title: Rechargeable aqueous Zn–V O battery with high energy density and long cycle life publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00565 – volume: 5 start-page: e202100394 year: 2022 ident: CR8 article-title: Understanding and performance of the zinc anode cycling in aqueous zinc-ion batteries and a roadmap for the future publication-title: Batteries Supercaps doi: 10.1002/batt.202100394 – volume: 3 start-page: 656 year: 2020 end-page: 663 ident: CR29 article-title: Tuning water reduction through controlled nanoconfinement within an organic liquid matrix publication-title: Nat. Catal. doi: 10.1038/s41929-020-0482-5 – volume: 13 start-page: 3527 year: 2020 end-page: 3535 ident: CR38 article-title: An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01538E – volume: 3 start-page: 516 year: 2020 end-page: 521 ident: CR44 article-title: Critical factors dictating reversibility of the zinc metal anode publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12077 – volume: 572 start-page: 511 year: 2019 end-page: 515 ident: CR23 article-title: Quantifying inactive lithium in lithium metal batteries publication-title: Nature doi: 10.1038/s41586-019-1481-z – volume: 13 year: 2022 ident: CR50 article-title: Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries publication-title: Nat. Commun. doi: 10.1038/s41467-022-29987-x – volume: 29 start-page: 1902653 year: 2019 ident: CR16 article-title: ZnCl “water-in-salt” electrolyte transforms the performance of vanadium oxide as a zn battery cathode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902653 – volume: 15 start-page: 2460 year: 2022 end-page: 2469 ident: CR25 article-title: A sobering examination of the feasibility of aqueous aluminum batteries publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00134A – volume: 11 start-page: 2003092 year: 2021 ident: CR22 article-title: Recent progress in understanding solid electrolyte interphase on lithium metal anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003092 – volume: 167 start-page: 102510 year: 2020 ident: CR18 article-title: A model for the Faradaic efficiency of base metal electrodeposition from mildly acidic baths to rotating disk electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab975b – volume: 166 start-page: A909 year: 2019 end-page: A914 ident: CR45 article-title: Influence of water content on the surface morphology of zinc deposited from EMImOTf/water mixtures publication-title: J. Electrochem. Soc. doi: 10.1149/2.0121906jes – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: CR60 article-title: VMD: Visual molecular dynamics publication-title: J. Mol. Graphics doi: 10.1016/0263-7855(96)00018-5 – volume: 4 start-page: 1557 year: 2020 end-page: 1574 ident: CR12 article-title: Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries publication-title: Joule doi: 10.1016/j.joule.2020.05.018 – volume: 8 year: 2017 ident: CR49 article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities publication-title: Nat. Commun. doi: 10.1038/s41467-017-00467-x – volume: 142 start-page: 21404 year: 2020 end-page: 21409 ident: CR3 article-title: Solvation structure design for aqueous Zn metal batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09794 – volume: 32 start-page: 2106811 year: 2022 ident: CR40 article-title: Water/sulfolane hybrid electrolyte achieves ultralow-temperature operation for high-voltage aqueous lithium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106811 – volume: 122 start-page: 10736 year: 2018 end-page: 10745 ident: CR57 article-title: Direct evidence for Li ion hopping conduction in highly soncentrated sulfolane-based Liquid electrolytes publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b09439 – volume: 5 start-page: 162 year: 2022 end-page: 179 ident: CR30 article-title: Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes publication-title: Matter doi: 10.1016/j.matt.2021.10.021 – volume: 65 start-page: 1024 year: 2011 end-page: 1028 ident: CR36 article-title: Attenuated total reflection infrared (ATR-IR) spectroscopy of a water-in-oil emulsion publication-title: Appl. Spectrosc. doi: 10.1366/11-06323 – volume: 14 start-page: 17585 year: 2022 end-page: 17593 ident: CR39 article-title: Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c03460 – volume: 132 start-page: 154104 year: 2010 ident: CR63 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 5 start-page: 205 year: 2022 end-page: 213 ident: CR10 article-title: A non-flammable hydrous organic electrolyte for sustainable zinc batteries publication-title: Nat. Sustain. doi: 10.1038/s41893-021-00800-9 – volume: 480 start-page: 228742 year: 2020 ident: CR52 article-title: Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228742 – volume: 1 start-page: 16119 year: 2016 ident: CR4 article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 7 start-page: 186 year: 2022 end-page: 193 ident: CR51 article-title: Aqueous electrolyte design for super-stable 2.5 V LiMn O || Li Ti O pouch cells publication-title: Nat. Energy doi: 10.1038/s41560-021-00977-5 – volume: 8 start-page: 1702097 year: 2018 ident: CR21 article-title: Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702097 – volume: 600 start-page: 659 year: 2021 end-page: 663 ident: CR24 article-title: Dynamic spatial progression of isolated lithium during battery operations publication-title: Nature doi: 10.1038/s41586-021-04168-w – volume: 164 start-page: E3171 year: 2017 end-page: E3178 ident: CR17 article-title: Electrochemical hydrogen evolution: H or H O reduction? A rotating disk electrode study publication-title: J. Electrochem. Soc. doi: 10.1149/2.0191711jes – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: CR53 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 7 start-page: eabe0219 year: 2021 ident: CR11 article-title: Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems publication-title: Sci. Adv. doi: 10.1126/sciadv.abe0219 – volume: 144 start-page: 7160 year: 2022 end-page: 7170 ident: CR14 article-title: Co-solvent electrolyte engineering for stable anode-free zinc metal batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c12764 – volume: 346 start-page: 391 year: 2010 end-page: 397 ident: CR34 article-title: Measuring properties of interfacial and bulk water regions in a reverse micelle with IR spectroscopy: A volumetric analysis of the inhomogeneously broadened OH band publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.03.014 – volume: 6 start-page: 1150 year: 2020 end-page: 1158 ident: CR26 article-title: Slow proton transfer in nanoconfined water publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00340 – volume: 80 start-page: 105478 year: 2021 ident: CR31 article-title: Tuning Zn coordination environment to suppress dendrite formation for high-performance Zn-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105478 – volume: 108 start-page: 16893 year: 2004 end-page: 16898 ident: CR56 article-title: Molecular force field for ionic liquids composed of triflate or bistriflylimide anions publication-title: J. Phys. Chem. B doi: 10.1021/jp0476545 – volume: 106 start-page: 15243 year: 2009 end-page: 15248 ident: CR28 article-title: Water dynamics at neutral and ionic interfaces publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0907875106 – volume: 7 start-page: eabj3423 year: 2021 ident: CR42 article-title: Quantitatively analyzing the failure processes of rechargeable Li metal batteries publication-title: Sci. Adv. doi: 10.1126/sciadv.abj3423 – volume: 4 start-page: 60 year: 2021 end-page: 71 ident: CR46 article-title: Understanding the gap between academic research and industrial requirements in rechargeable zinc-ion batteries publication-title: Batteries Supercaps doi: 10.1002/batt.202000124 – volume: 7 start-page: 19 year: 2015 end-page: 29 ident: CR1 article-title: Towards greener and more sustainable batteries for electrical energy storage publication-title: Nat. Chem. doi: 10.1038/nchem.2085 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR62 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 5 start-page: 561 year: 2020 end-page: 568 ident: CR20 article-title: Understanding and applying coulombic efficiency in lithium metal batteries publication-title: Nat. Energy doi: 10.1038/s41560-020-0648-z – volume: 9 start-page: 2733 year: 2013 end-page: 2748 ident: CR55 article-title: Rational design of particle mesh ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400146w – volume: 32 start-page: 1456 year: 2011 end-page: 1465 ident: CR59 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 2 start-page: 2528 year: 2018 end-page: 2550 ident: CR48 article-title: Perspective on performance, cost, and technical challenges for practical dual-ion batteries publication-title: Joule doi: 10.1016/j.joule.2018.09.003 – volume: 28 start-page: 11699 year: 2012 end-page: 11706 ident: CR32 article-title: Sizing of reverse micelles in microemulsions using NMR measurements of diffusion publication-title: Langmuir doi: 10.1021/la300796u – volume: 16 start-page: 902 year: 2021 end-page: 910 ident: CR5 article-title: Fluorinated interphase enables reversible aqueous zinc battery chemistries publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00905-4 – volume: 356 start-page: 415 year: 2017 end-page: 418 ident: CR6 article-title: Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion publication-title: Science doi: 10.1126/science.aak9991 – volume: 110 start-page: 6412 year: 1999 end-page: 6420 ident: CR35 article-title: Molecular association between water and dimethyl sulfoxide in solution: A molecular dynamics simulation study publication-title: J. Chem. Phys. doi: 10.1063/1.478544 – volume: 47 start-page: 8033 year: 2008 end-page: 8035 ident: CR37 article-title: Finite size effects on hydrogen bonds in confined water. publication-title: Int. Ed. doi: 10.1002/anie.200802630 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR61 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 117 start-page: 1 year: 1995 ident: 37524_CR53 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 132 start-page: 154104 year: 2010 ident: 37524_CR63 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 1 start-page: 16119 year: 2016 ident: 37524_CR4 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 2 start-page: 2528 year: 2018 ident: 37524_CR48 publication-title: Joule doi: 10.1016/j.joule.2018.09.003 – volume: 5 start-page: 205 year: 2022 ident: 37524_CR10 publication-title: Nat. Sustain. doi: 10.1038/s41893-021-00800-9 – volume: 166 start-page: A909 year: 2019 ident: 37524_CR45 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0121906jes – volume: 91 start-page: 6269 year: 1987 ident: 37524_CR54 publication-title: J. Phys. Chem. doi: 10.1021/j100308a038 – volume: 108 start-page: 16893 year: 2004 ident: 37524_CR56 publication-title: J. Phys. Chem. B doi: 10.1021/jp0476545 – volume: 3 start-page: 1366 year: 2018 ident: 37524_CR47 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00565 – ident: 37524_CR58 – volume: 3 start-page: 2134 year: 2019 ident: 37524_CR2 publication-title: Joule doi: 10.1016/j.joule.2019.06.012 – volume: 7 start-page: eabj3423 year: 2021 ident: 37524_CR42 publication-title: Sci. Adv. doi: 10.1126/sciadv.abj3423 – volume: 8 year: 2017 ident: 37524_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00467-x – volume: 6 start-page: 1150 year: 2020 ident: 37524_CR26 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00340 – volume: 5 start-page: e202100394 year: 2022 ident: 37524_CR8 publication-title: Batteries Supercaps doi: 10.1002/batt.202100394 – volume: 164 start-page: E3171 year: 2017 ident: 37524_CR17 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0191711jes – volume: 4 start-page: 60 year: 2021 ident: 37524_CR46 publication-title: Batteries Supercaps doi: 10.1002/batt.202000124 – volume: 144 start-page: 7160 year: 2022 ident: 37524_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c12764 – volume: 11 start-page: 2003092 year: 2021 ident: 37524_CR22 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003092 – volume: 124 start-page: 3988 year: 2020 ident: 37524_CR19 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b11337 – volume: 80 start-page: 105478 year: 2021 ident: 37524_CR31 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105478 – volume: 14 start-page: 17585 year: 2022 ident: 37524_CR39 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c03460 – volume: 15 start-page: 2460 year: 2022 ident: 37524_CR25 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00134A – volume: 346 start-page: 391 year: 2010 ident: 37524_CR34 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.03.014 – volume: 142 start-page: 21404 year: 2020 ident: 37524_CR3 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09794 – volume: 356 start-page: 415 year: 2017 ident: 37524_CR6 publication-title: Science doi: 10.1126/science.aak9991 – volume: 14 start-page: 33 year: 1996 ident: 37524_CR60 publication-title: J. Mol. Graphics doi: 10.1016/0263-7855(96)00018-5 – volume: 47 start-page: 8033 year: 2008 ident: 37524_CR37 publication-title: Int. Ed. doi: 10.1002/anie.200802630 – volume: 16 start-page: 902 year: 2021 ident: 37524_CR5 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00905-4 – volume: 5 start-page: 561 year: 2020 ident: 37524_CR20 publication-title: Nat. Energy doi: 10.1038/s41560-020-0648-z – volume: 6 start-page: 15 year: 1996 ident: 37524_CR61 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 29 start-page: 1902653 year: 2019 ident: 37524_CR16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902653 – volume: 3 start-page: 656 year: 2020 ident: 37524_CR29 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0482-5 – volume: 9 start-page: 2733 year: 2013 ident: 37524_CR55 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400146w – volume: 65 start-page: 1024 year: 2011 ident: 37524_CR36 publication-title: Appl. Spectrosc. doi: 10.1366/11-06323 – volume: 13 start-page: 3527 year: 2020 ident: 37524_CR38 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01538E – volume: 600 start-page: 659 year: 2021 ident: 37524_CR24 publication-title: Nature doi: 10.1038/s41586-021-04168-w – volume: 13 year: 2022 ident: 37524_CR50 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29987-x – volume: 54 start-page: 11169 year: 1996 ident: 37524_CR62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 41 start-page: 48 year: 2002 ident: 37524_CR33 publication-title: Int. Ed. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U – volume: 133 start-page: 25623 year: 2021 ident: 37524_CR27 publication-title: Angew. Chem. doi: 10.1002/ange.202108766 – volume: 7 start-page: eabe0219 year: 2021 ident: 37524_CR11 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe0219 – volume: 106 start-page: 15243 year: 2009 ident: 37524_CR28 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0907875106 – volume: 60 start-page: 7366 year: 2021 ident: 37524_CR43 publication-title: Int. Ed. doi: 10.1002/anie.202016531 – volume: 14 start-page: 5947 year: 2021 ident: 37524_CR15 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01851E – volume: 8 start-page: 1702097 year: 2018 ident: 37524_CR21 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702097 – volume: 110 start-page: 6412 year: 1999 ident: 37524_CR35 publication-title: J. Chem. Phys. doi: 10.1063/1.478544 – volume: 480 start-page: 228742 year: 2020 ident: 37524_CR52 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228742 – volume: 167 start-page: 102510 year: 2020 ident: 37524_CR18 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab975b – volume: 13 year: 2022 ident: 37524_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28381-x – volume: 122 start-page: 10736 year: 2018 ident: 37524_CR57 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b09439 – volume: 28 start-page: 11699 year: 2012 ident: 37524_CR32 publication-title: Langmuir doi: 10.1021/la300796u – volume: 4 start-page: 1557 year: 2020 ident: 37524_CR12 publication-title: Joule doi: 10.1016/j.joule.2020.05.018 – volume: 32 start-page: 1456 year: 2011 ident: 37524_CR59 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 5 start-page: 162 year: 2022 ident: 37524_CR30 publication-title: Matter doi: 10.1016/j.matt.2021.10.021 – volume: 3 start-page: 516 year: 2020 ident: 37524_CR44 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12077 – volume: 572 start-page: 511 year: 2019 ident: 37524_CR23 publication-title: Nature doi: 10.1038/s41586-019-1481-z – volume: 32 start-page: 2106811 year: 2022 ident: 37524_CR40 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106811 – volume: 142 start-page: 20814 year: 2020 ident: 37524_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10258 – volume: 17 start-page: 543 year: 2018 ident: 37524_CR9 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 10 year: 2019 ident: 37524_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13436-3 – volume: 7 start-page: 186 year: 2022 ident: 37524_CR51 publication-title: Nat. Energy doi: 10.1038/s41560-021-00977-5 – volume: 7 start-page: 19 year: 2015 ident: 37524_CR1 publication-title: Nat. Chem. doi: 10.1038/nchem.2085 |
| SSID | ssj0000391844 |
| Score | 2.7033412 |
| Snippet | Aqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative... The negative electrode reversibility limits the lifespan of Zn metal batteries. Here, authors report an aqueous electrolyte with a reverse micelle structure... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1828 |
| SubjectTerms | 639/301/299 639/301/299/161 639/4077/4079 639/638/161/891 639/638/675 Aqueous electrolytes Electrochemistry Electrodes Electrolytes Electrolytic cells Energy storage Humanities and Social Sciences Hydrogen evolution Life span Metals Micelles multidisciplinary Multilayers Protons Reverse micelles Science Science (multidisciplinary) Sulfolane Zinc |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgAYkL70dgQUbiBtbWj8TOCQFixWm1EiCtuFiO7dJKJSlNi1T488w4blblsRdOkWJHsTMPjz2T7yPkueKe-9pUrG6UYkpMHSYJA4NYwZVSTaKrXSKb0Ccn5uysPs0Hbn0uq9z5xOSoQ-fxjPxIgCKhJ62qV8tvDFmjMLuaKTQukyuIkoDUDafl5_GMBdHPjVL5X5mJNEe9Sp4BFiqwrFIopvfWowTb_7dY88-Syd_ypmk5Or75vxO5RW7kQJS-HjTnNrkU2zvk2kBNub1Lfn7YLKYdVsIyrGYfeCSogxd1m55m8pzFdh3pqLwU4l-6TAiy2DcmcAqYCHUQmq8im8Er2QKLlOiPeevp1wiBP20SwOeWLruNn1HMI_T3yKfjdx_fvmeZqIH5UvE1K11oVDNteIwQUUFMMNUiGA-bL1maWjd-EqXQUYegYu2ib7yU4FiiEU44cDnyPjlouzY-JJQHjpyBTQXbHiUbDqqigzLIgx5E0K4gfCcu6zOKOZJpLGzKpktjBxFbELFNIra6IC_GZ5YDhseFvd-gFow9EX873ehWX2w2ZwtxEnfGl74CFddBNOisqxouIjpRlwU53AnfZqfQ23PJF-TZ2AzmjN8W5Anywz4Kf9oxoiAPBpUbRyI1uswaWsyeMu4Ndb-lnc8SZDifpANDVZCXO709H9e_v8Wji6fxmFwXaEqpkOmQHKxXm_iEXPXf1_N-9TTZ4i-ndzzd priority: 102 providerName: ProQuest |
| Title | Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells |
| URI | https://link.springer.com/article/10.1038/s41467-023-37524-7 https://www.ncbi.nlm.nih.gov/pubmed/37005392 https://www.proquest.com/docview/2793847166 https://www.proquest.com/docview/2794686282 https://pubmed.ncbi.nlm.nih.gov/PMC10067964 https://doaj.org/article/1511a8c5c6b447d2b088769b082ea295 |
| Volume | 14 |
| WOSCitedRecordID | wos000962482700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFLZgAIkLYicwVEbiBtbUS2L7yKAZwYEqYpEKF8tb1UolrbogFf48z04apqwXLqlUu83T21_88j2EngrqqdeqItoJQQSb2HRIGAjkCrbkYhittnnYhByN1His6wujvlJPWAsP3DLuBCIStcqXvoI_k4G5ZBaVhg8WLdMZvXQo9YViKvtgrqF0Ed1bMkOuTtYi-wQIUWBTJRNEHkSiDNj_uyzz12bJn05McyA6v4ludBkkftFSfgtdis1tdK2dKbm7g769284ni9TCSlIbejsAAlu4HdT4uJt6M99tIu61DkPiipcZ-jXtjRlVAujAFnLqVSRTuCWZp-4i_HXWePw5QsaOXUbm3OHlYuunOB0ArO-iD-dn71--It2EBeJLQTektMEJN3E0RkiFIJhPJAvKQ9XES6Wl88PImYwyBBG1jd55zsEjRMUss-Ar-D101Cya-ABhGmga9ucqqFcEdxRkLINQaYB5YEHaAtE9t43v4MfTFIy5ycfgXJlWQgYkZLKEjCzQs_43yxZ846-7T5MQ-50JODt_AepkOnUy_1KnAh3vVcB01rw2DJxYiuJVVaAn_TLYYeItyBPkl_aI9LaNYgW632pMTwmXyddpWFEHunRA6uFKM5tmrG86zE_6RIGe79XuB11_5sXD_8GLR-g6S_aS-5SO0dFmtY2P0VX_ZTNbrwboshzLfFUDdOX0bFS_HWQjHKT-2RqudfkJVurXb-qP3wF3ZDSi |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE426cZzYOSBEoVWrllUFReotOI6XXWlJls0uaOE_8RuZcR7V8uitB04rxU7Wj29mPPZ4PoCnIjCBSVTsJ5kQvuBDTYeEuY9rBR2Fom91oh3ZhBwM1MlJcrQGP9u7MBRW2epEp6jz0tAe-RZHIJEmjeOX0y8-sUbR6WpLoVHD4sAuv6HLVr3Yf4Pz-4zz3Z3j13t-wyrgm0gEcz_SeSayYRZYi-YfDdhQ8lwZ9BTCSCUyM30bcmllngubaGsyE6LPH1jFNdcoHyF-9wKsixBVTA_Wt3cGR--6XR3Kt66EaG7n9EO1VQmni9A0oixHXPhyxQI6ooC_rW7_DNL87aTWGcDda__b0F2Hq81Sm72qZeMGrNniJlyqyTeXt-DH-8VkWFKsr0_x-jVTBtPYsXJRsYYeaLKcW9aJJ8MVPpu6HLlU17r0GzhwTKPzMbP-CP_Sn1AYFvs-Lgz7bNG1YZlLYbpk03JhRoxOSqrb8OFcen4HekVZ2HvAgjwgVsQsRsdOhFmAwiBzoYjpPee51B4ELTxS0-RpJ7qQSeriBUKV1pBKEVKpg1QqPXjevTOts5ScWXubUNfVpAzj7kE5-5Q2CivFlWCglYlMjEIsc56ROYoT_OFW8yTyYKMFW9qovSo9RZoHT7piVFg0tjifOH9UR9C1JMU9uFtDvGtJKMkoJFiiVsC_0tTVkmI8cknRg77bEhUebLZyctquf4_F_bO78Rgu7x2_PUwP9wcHD-AKJzF2YVsb0JvPFvYhXDRf5-Nq9qjRBAw-nrcE_QJpp5uU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLaGYREX9iUwgJHgBFZrx4mdA0LAUDEaVI0ESL0Zx3FppdKUpgUV_hm_jvecZVSWuc2BU6XGab287y328_sIeSS54y7TKctyKZkUY4uHhAUDX8Emsex7m9lANqGGQz0aZUc75Gd7FwbTKludGBR1UTrcI-8JECTUpGnaGzdpEUf7g-eLLwwZpPCktaXTqEXk0G--QfhWPTvYh7V-LMTg9ftXb1jDMMBcIvmKJbbIZT7OuffgCoAxGytRaAdRQ5zoTOWu72OhvCoK6TPrXe5iiP-518IKC1iJ4XfPkLNYUhAxpkaq29_ByutayuaeTj_WvUoGrQRGElCdCMnUli0MlAF_83P_TNf87cw2mMLB5f95Eq-QS40DTl_UiLlKdvz8GjlfU3JurpMf79azcYkZwAyz-Gv-DGphkOW6og1p0Gyz8rQDLQW_ny5C5Vxs60NRDphEaiEkWXo2gb9kM0zOot-nc0c_ewh4aB4Km27ooly7CcXzk-oG-XAqI79Jdufl3N8mlBccuRLzFMI9GeccIKIKqZH_vRCFshHhragY11RvRxKRmQlZBLE2tXgZEC8TxMuoiDzp3lnUtUtObP0SJbBriXXHwxfl8pNp1JgB_5Bb7RKXArRVIXI0UmkGH8JbkSUR2WsFzzTKsDLHUheRh91jUGM4t7CesH7YRuJlJS0icqsW964nsUJTkcETvQWEra5uP5lPJ6FUOu-HjVIZkactZo779e-5uHPyMB6QCwAb8_ZgeHiXXBSI6JDLtUd2V8u1v0fOua-rabW8H1QCJR9PGz6_ALClouo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfolane-containing+aqueous+electrolyte+solutions+for+producing+efficient+ampere-hour-level+zinc+metal+battery+pouch+cells&rft.jtitle=Nature+communications&rft.au=Wang%2C+Yu&rft.au=Wang%2C+Tairan&rft.au=Bu%2C+Shuyu&rft.au=Zhu%2C+Jiaxiong&rft.date=2023-04-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-37524-7&rft.externalDocID=10_1038_s41467_023_37524_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |