YOLO-BS: a traffic sign detection algorithm based on YOLOv8

Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection method...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 7558 - 11
Main Authors: Zhang, Hong, Liang, Mingyin, Wang, Yufeng
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 04.03.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems.
AbstractList Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems.
Abstract Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems.
Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems.Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems.
Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems.
ArticleNumber 7558
Author Zhang, Hong
Liang, Mingyin
Wang, Yufeng
Author_xml – sequence: 1
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  email: imu_hongzhang@outlook.com
  organization: Transportation Institute of Inner Mongolia University, Inner Mongolia Engineering Research Center for Intelligent Transportation Equipment
– sequence: 2
  givenname: Mingyin
  surname: Liang
  fullname: Liang, Mingyin
  organization: Transportation Institute of Inner Mongolia University
– sequence: 3
  givenname: Yufeng
  surname: Wang
  fullname: Wang, Yufeng
  organization: Transportation Institute of Inner Mongolia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40038318$$D View this record in MEDLINE/PubMed
BookMark eNp9kktP3DAUha0KVCjwB7qoInXTTYqfsd0uUIv6QBppFrSLrizHvgkeZWJqZ5D67-sQaIEF3ti6PufTse99hfbGOAJCrwl-TzBTp5kToVWNqaiVIorX-AU6pJiLmjJK9x6cD9BJzhtclqCaE_0SHXBcEIyoQ_Tx13q1rj9ffqhsNSXbdcFVOfRj5WECN4U4VnboYwrT1bZqbQZfldJsulHHaL-zQ4aTu_0I_fz65cf593q1_nZx_mlVO8HJVAsrFGvACUw5l7xrFNGtbCVRkjEB1FPvdOOxgMZ73HQSM6tlKwTXXFlu2RG6WLg-2o25TmFr0x8TbTC3hZh6Y9MU3ADGAjDhqWw6BRzPXAoddcx20nnZqsI6W1jXu3YL3sFYXj08gj6-GcOV6eONIUQpzOVMeHdHSPH3DvJktiE7GAY7Qtxlw4jkWGvZ6CJ9-0S6ibs0lr-aVazBRAhZVG8eRvqX5b5JRaAWgUsx5wSdcWGyc29KwjAYgs08EmYZCVNGwtyOhMHFSp9Y7-nPmthiykU89pD-x37G9RfOdsVX
CitedBy_id crossref_primary_10_1007_s11760_025_04563_0
crossref_primary_10_1007_s00371_025_04064_8
crossref_primary_10_1080_17483107_2025_2530674
crossref_primary_10_37391_ijeer_130305
crossref_primary_10_48084_etasr_12102
crossref_primary_10_1007_s11760_025_04604_8
crossref_primary_10_1088_1361_6501_ae050a
crossref_primary_10_1088_2632_2153_addbc2
crossref_primary_10_3390_digital5030030
Cites_doi 10.1016/j.neucom.2012.11.057
10.1109/41.649946
10.1109/TITS.2024.3373793
10.1109/TIV.2016.2615523
10.1109/TCYB.2016.2533424
10.1109/ADICS58448.2024.10533619
10.1016/j.eswa.2015.11.018
10.1109/TITS.2010.2054084
10.1109/TITS.2014.2298912
10.1109/ACCESS.2020.2972338
10.1016/j.asoc.2015.12.041
10.3390/s22239345
10.1109/CVPR.2016.232
10.1109/CVPR42600.2020.01079
10.1016/j.compag.2024.108612
10.1007/s00521-022-08077-5
10.1109/TITS.2018.2843815
10.1109/TITS.2019.2913588
10.1109/ACCESS.2021.3109798
10.1007/s12652-021-03584-0
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-88184-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_aee35d276f8e40dc962ef2c3af7cd7b8
PMC11880478
40038318
10_1038_s41598_025_88184_0
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62362053
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: 2024 Basic Research and Applied Basic Research of Hohhot
  grantid: 2024-G-J-29
– fundername: Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region
  grantid: NJYT23060
– fundername: "Inner Mongolia Science and Technology Achievement Transfer and Transformation Demonstration Zone, University Collaborative Innovation Base, and University Entrepreneurship Training Base" Construction Project (Supercomputing Power Project)
  grantid: 21300-231510
– fundername: National Natural Science Foundation of China
  grantid: 62362053
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
SNYQT
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-5a5836ec5024474f6819b7b7187335e2d2dc96d05e6dd06f703a97b554948a4a3
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439786200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:28:59 EST 2025
Tue Nov 04 02:04:57 EST 2025
Thu Oct 02 10:54:27 EDT 2025
Tue Oct 07 08:03:57 EDT 2025
Mon Jul 21 05:56:45 EDT 2025
Tue Nov 18 19:56:07 EST 2025
Sat Nov 29 08:08:46 EST 2025
Wed Mar 05 01:40:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
YOLO
Traffic sign detection
TT100K
BiFPN
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-5a5836ec5024474f6819b7b7187335e2d2dc96d05e6dd06f703a97b554948a4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/aee35d276f8e40dc962ef2c3af7cd7b8
PMID 40038318
PQID 3173601557
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_aee35d276f8e40dc962ef2c3af7cd7b8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11880478
proquest_miscellaneous_3174099769
proquest_journals_3173601557
pubmed_primary_40038318
crossref_citationtrail_10_1038_s41598_025_88184_0
crossref_primary_10_1038_s41598_025_88184_0
springer_journals_10_1038_s41598_025_88184_0
PublicationCentury 2000
PublicationDate 2025-03-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References H Gómez-Moreno (88184_CR3) 2010; 11
A Ellahyani (88184_CR8) 2016; 46
JF Wang (88184_CR18) 2023; 35
X Yuan (88184_CR4) 2014; 15
ZS Li (88184_CR19) 2024
SK Berkaya (88184_CR5) 2016; 48
CP Gong (88184_CR20) 2022; 22
A De La Escalera (88184_CR2) 1997; 44
Z Huang (88184_CR7) 2016; 47
88184_CR15
JQ Chen (88184_CR16) 2024; 217
88184_CR17
88184_CR1
C Dewi (88184_CR14) 2023; 14
Y Li (88184_CR9) 2016; 1
L Wang (88184_CR13) 2021; 9
Z-L Sun (88184_CR6) 2014; 128
J Li (88184_CR10) 2018; 20
D Tabernik (88184_CR11) 2019; 21
JM Zhang (88184_CR12) 2020; 8
References_xml – volume: 128
  start-page: 153
  year: 2014
  ident: 88184_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.057
– volume: 44
  start-page: 848
  issue: 6
  year: 1997
  ident: 88184_CR2
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/41.649946
– year: 2024
  ident: 88184_CR19
  publication-title: IEEE Trans. Intell. Trans. Syst.
  doi: 10.1109/TITS.2024.3373793
– volume: 1
  start-page: 167
  issue: 2
  year: 2016
  ident: 88184_CR9
  publication-title: IEEE Trans. Intell. Vehicles
  doi: 10.1109/TIV.2016.2615523
– volume: 47
  start-page: 920
  issue: 4
  year: 2016
  ident: 88184_CR7
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2533424
– ident: 88184_CR1
  doi: 10.1109/ADICS58448.2024.10533619
– volume: 48
  start-page: 67
  year: 2016
  ident: 88184_CR5
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.11.018
– volume: 11
  start-page: 917
  issue: 4
  year: 2010
  ident: 88184_CR3
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2010.2054084
– volume: 15
  start-page: 1466
  issue: 4
  year: 2014
  ident: 88184_CR4
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2298912
– volume: 8
  start-page: 29742
  year: 2020
  ident: 88184_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972338
– volume: 46
  start-page: 805
  year: 2016
  ident: 88184_CR8
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.041
– volume: 22
  start-page: 9345
  issue: 23
  year: 2022
  ident: 88184_CR20
  publication-title: Sensors
  doi: 10.3390/s22239345
– ident: 88184_CR17
  doi: 10.1109/CVPR.2016.232
– ident: 88184_CR15
  doi: 10.1109/CVPR42600.2020.01079
– volume: 217
  start-page: 108612
  year: 2024
  ident: 88184_CR16
  publication-title: Comput. Electron. Agricult.
  doi: 10.1016/j.compag.2024.108612
– volume: 35
  start-page: 7853
  issue: 10
  year: 2023
  ident: 88184_CR18
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-08077-5
– volume: 20
  start-page: 975
  issue: 3
  year: 2018
  ident: 88184_CR10
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2843815
– volume: 21
  start-page: 1427
  issue: 4
  year: 2019
  ident: 88184_CR11
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2913588
– volume: 9
  start-page: 124963
  year: 2021
  ident: 88184_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3109798
– volume: 14
  start-page: 8135
  issue: 7
  year: 2023
  ident: 88184_CR14
  publication-title: J. Ambient Intell. Human. Comput.
  doi: 10.1007/s12652-021-03584-0
SSID ssj0000529419
Score 2.511641
Snippet Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often...
Abstract Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7558
SubjectTerms 639/705/117
639/705/258
Algorithms
BiFPN
Deep learning
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Traffic control
Traffic management
Traffic sign detection
TT100K
YOLO
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwELaggMSFvRAoKEjcwKoTO17ggCii4lDaSoBUTpa3tJVKXnkvrcS_Z8bJS_VYeuHqJRp7PPNNPOMZQl5E71mVGkYdk54KHSP1NfeUCykd4y6YmPPM7qjdXX1wYPbHC7fFGFa51IlZUcdZwDvyTcA5LhHg1dvTHxSrRqF3dSyhcZVcA8umwpCuT_X-dMeCXixRmfGtDON6cwF4hW_K6oZqgCpB2Qoe5bT9f7M1_wyZ_M1vmuFo-_b_LuQOuTUaouW74eTcJVdSd4_cGEpT_rxP3nzb29mjW59fl64EUjDRRImxHmVMfY7e6kp3cgjf7Y--lwiFsYQmnHSuH5Cv2x--vP9Ix0ILNDSi6mnjGs1lCg0AtlCilWAmeOUBthTnTapjHYORkTVJxshkC1rCGeXBEjFCO-H4OlnrZl16RMrgYb7D30jPhGqVqRL8sAQvTGvA2gsFqZbbbcOYhRyLYZzY7A3n2g4sssAim1lkWUFeTnNOhxwcl47eQi5OIzF_dm6YzQ_tKI7WpcSbWCvZ6iQYrq5ObR24a1WIyuuCbCyZZ0ehXtgLzhXk-dQN4og-Ftel2VkeI_AxsjQFeTgcmYkSgW5Y0KEF0SuHaYXU1Z7u-Cin_K4wbZ5QMPXV8txd0PXvvXh8-TKekJs1igKG1IkNstbPz9JTcj2c98eL-bMsS78AurIivA
  priority: 102
  providerName: ProQuest
Title YOLO-BS: a traffic sign detection algorithm based on YOLOv8
URI https://link.springer.com/article/10.1038/s41598-025-88184-0
https://www.ncbi.nlm.nih.gov/pubmed/40038318
https://www.proquest.com/docview/3173601557
https://www.proquest.com/docview/3174099769
https://pubmed.ncbi.nlm.nih.gov/PMC11880478
https://doaj.org/article/aee35d276f8e40dc962ef2c3af7cd7b8
Volume 15
WOSCitedRecordID wos001439786200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJtAWQWJG1h1bMcPOLGoFUjtNuIhbU-RX6ErtdlqN63Ev8d2skuX54XLHPyIRp_HmbFm_BnghTMGF77ESGNuEJPOIUOoQZRxrjHVVrnEM3sgJhM5narqylNfsSaspwfugdvV3tPSEcEb6Rl2VnHiG2KpboR1wqRrvlioK4epntWbKFao4ZYMpnJ3GTxVvE1GSiSDk2IIb3iiRNj_uyjz12LJnzKmyRHt34HbQwSZv-01vwvXfHsPbvZvSn67D2-Ojw6O0PjT61zn4UuRISKPRRq5810qu2pzffp1vph1J2d59GEuD01x0qV8AF_29z6_e4-GFxKQLVnRoVKXknJvy-BpmWAND_7dCBP8jaC09MSRCJjDpefOYd6E7a2VMCGEUExqpulD2GrnrX8MuTVhvo7nP4OZaIQqfDhpWMNUo0KYZjMoVmjVdqAPj69YnNYpjU1l3SNcB4TrhHCNM3i5nnPek2f8dfQ4LsJ6ZCS-Tg3BHOrBHOp_mUMGO6slrIfduKxDjER5DA5FBs_X3WEfxeSIbv38Io1h8RYxVxk86ld8rQmL-dPw88tAbtjChqqbPe3sJHF1F5Hvjokw9dXKbH7o9WcsnvwPLJ7CLRLtPVbMsR3Y6hYX_hncsJfdbLkYwXUxFUnKEWyP9ybVx1HaREEekipKEeR29eGwOv4ODWYdbQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFG4QNfri_TKKOib6pA2dttN2NMaISiCsQCIk-FR7GyDBWdxdMPwpf6M9nZkl64U3Hnyd9kx6-Xq-tuf0HISeeWtJEUqCDREWc-U9tpRZzLgQhjDjKp_izA7k-rra2ak259DP_i0MuFX2OjEpaj90cEe-GHmOCSB4-fbwO4asUWBd7VNotLBYCyc_4pFt_Gb1Q5zf55Quf9x6v4K7rALYlbyY4NKUiongyshOXPJaRE600kYdLRkrA_XUu0p4UgbhPRF1XBKmkjbSbsWV4YbF_15AFzlEFgNXQbo5vdMBqxkvqu5tDmFqcRz5Ed6w0RKrSI0ckxn-S2kC_ra3_dNF8zc7baK_5ev_28DdQNe6jXb-rl0ZN9FcaG6hy23qzZPb6PWXjcEGXvr8Kjd57DoE0sjBlyX3YZK805rcHOzGfkz2vuVA9T6Pn0DoWN1B2-fS8rtovhk24T7KnY3yBo7JlnBZy6oI8UDmLK_qKu5mXYaKfnq166KsQ7KPA52s_UzpFhI6QkInSGiSoRdTmcM2xsiZtZcANdOaEB88fRiOdnWnbrQJgZWeSlGrwAn0joaaOmZq6by0KkMLPVh0p7TG-hQpGXo6LY7qBmxIpgnDo1SHw2NrUWXoXgvRaUs4mJkjR2RIzYB3pqmzJc3-XgppXkBYQC6j6Mse56ft-vdYPDi7G0_QlZWtTwM9WF1fe4iuUliG4D7IF9D8ZHQUHqFL7niyPx49Tus4R1_PG_-_ANgRfL8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VLSBeuI9AgSDBE1ibxE7sgBCilBWrLtuVAKl9Mr7SVirZspsW9a_x6xjn2Go5-tYHXn1EtvPNfJPMeAbgqdU6il0aERVlmjBhLdEJ1YSyLFMRVSa3dZ7ZER-PxfZ2PlmBn91dGB9W2enEWlHbqfH_yPvIczTzBM_7RRsWMdkYvDn8TnwFKe9p7cppNBDZdCc_8PNt_nq4ge_6WZIM3n9-94G0FQaISVlckVSlgmbOpMhUjLMiQ37UXKO-5pSmLrGJNXlmo9Rl1kZZgeKhcq6RgnMmFFMUn3sBVtEkZ0kPVifDj5OdxR8e70Njcd7e1Imo6M-RLf2NtiQlAomSkWiJDeuiAX-zdP8M2PzNa1uT4eDa_3yM1-Fqa4KHbxuZuQErrrwJl5qinCe34NXO1miLrH96GaoQj8Gn2Ah9lEtoXVXHrZWhOtjFfVR730JvBNgQm_ykY3EbvpzLyu9Ar5yW7h6ERuN85T-gdcR4wfPYIS6MZnmRo51rAoi7Vy1Nm3_dlwE5kHUcABWygYdEeMgaHjIK4PlizmGTfeTM0eseQYuRPnN43TCd7cpWEUnlHE1twrNCOBb53SWuSAxVBTeWaxHAWgcc2aqzuTxFTQBPFt2oiLx3SZVuelSPYf4adpYHcLeB62IlzDugkT0CEEtAXlrqck-5v1cnO499wkDGceqLDvOn6_r3Wdw_exuP4TLCXo6G480HcCXxEunjCtka9KrZkXsIF81xtT-fPWqFOoSv5y0AvwDwuYcI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-BS%3A+a+traffic+sign+detection+algorithm+based+on+YOLOv8&rft.jtitle=Scientific+reports&rft.au=Hong+Zhang&rft.au=Mingyin+Liang&rft.au=Yufeng+Wang&rft.date=2025-03-04&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41598-025-88184-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aee35d276f8e40dc962ef2c3af7cd7b8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon