YOLO-BS: a traffic sign detection algorithm based on YOLOv8
Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection method...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 7558 - 11 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
04.03.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems. |
|---|---|
| AbstractList | Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems. Abstract Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems. Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems.Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems. Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often suffer from low accuracy and poor real-time performance in dynamic road environments. This paper reviews traditional traffic sign detection methods and introduces an enhanced detection algorithm (YOLO-BS) based on YOLOv8 (You Only Look Once version 8). This algorithm addresses the challenges of complex backgrounds and small-sized detection targets in traffic sign images. A small object detection layer was incorporated into the YOLOv8 framework to enrich feature extraction. Additionally, a bidirectional feature pyramid network (BiFPN) was integrated into the detection framework to enhance the handling of multi-scale objects and improve the performance in detecting small objects. Experiments were conducted on the TT100K dataset to evaluate key metrics such as model size, recall, mean average precision (mAP), and frames per second (FPS), demonstrating that YOLO-BS surpasses current mainstream models with mAP50 of 90.1% and FPS of 78. Future work will refine YOLO-BS to explore broader applications within intelligent transportation systems. |
| ArticleNumber | 7558 |
| Author | Zhang, Hong Liang, Mingyin Wang, Yufeng |
| Author_xml | – sequence: 1 givenname: Hong surname: Zhang fullname: Zhang, Hong email: imu_hongzhang@outlook.com organization: Transportation Institute of Inner Mongolia University, Inner Mongolia Engineering Research Center for Intelligent Transportation Equipment – sequence: 2 givenname: Mingyin surname: Liang fullname: Liang, Mingyin organization: Transportation Institute of Inner Mongolia University – sequence: 3 givenname: Yufeng surname: Wang fullname: Wang, Yufeng organization: Transportation Institute of Inner Mongolia University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40038318$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktP3DAUha0KVCjwB7qoInXTTYqfsd0uUIv6QBppFrSLrizHvgkeZWJqZ5D67-sQaIEF3ti6PufTse99hfbGOAJCrwl-TzBTp5kToVWNqaiVIorX-AU6pJiLmjJK9x6cD9BJzhtclqCaE_0SHXBcEIyoQ_Tx13q1rj9ffqhsNSXbdcFVOfRj5WECN4U4VnboYwrT1bZqbQZfldJsulHHaL-zQ4aTu_0I_fz65cf593q1_nZx_mlVO8HJVAsrFGvACUw5l7xrFNGtbCVRkjEB1FPvdOOxgMZ73HQSM6tlKwTXXFlu2RG6WLg-2o25TmFr0x8TbTC3hZh6Y9MU3ADGAjDhqWw6BRzPXAoddcx20nnZqsI6W1jXu3YL3sFYXj08gj6-GcOV6eONIUQpzOVMeHdHSPH3DvJktiE7GAY7Qtxlw4jkWGvZ6CJ9-0S6ibs0lr-aVazBRAhZVG8eRvqX5b5JRaAWgUsx5wSdcWGyc29KwjAYgs08EmYZCVNGwtyOhMHFSp9Y7-nPmthiykU89pD-x37G9RfOdsVX |
| CitedBy_id | crossref_primary_10_1007_s11760_025_04563_0 crossref_primary_10_1007_s00371_025_04064_8 crossref_primary_10_1080_17483107_2025_2530674 crossref_primary_10_37391_ijeer_130305 crossref_primary_10_48084_etasr_12102 crossref_primary_10_1007_s11760_025_04604_8 crossref_primary_10_1088_1361_6501_ae050a crossref_primary_10_1088_2632_2153_addbc2 crossref_primary_10_3390_digital5030030 |
| Cites_doi | 10.1016/j.neucom.2012.11.057 10.1109/41.649946 10.1109/TITS.2024.3373793 10.1109/TIV.2016.2615523 10.1109/TCYB.2016.2533424 10.1109/ADICS58448.2024.10533619 10.1016/j.eswa.2015.11.018 10.1109/TITS.2010.2054084 10.1109/TITS.2014.2298912 10.1109/ACCESS.2020.2972338 10.1016/j.asoc.2015.12.041 10.3390/s22239345 10.1109/CVPR.2016.232 10.1109/CVPR42600.2020.01079 10.1016/j.compag.2024.108612 10.1007/s00521-022-08077-5 10.1109/TITS.2018.2843815 10.1109/TITS.2019.2913588 10.1109/ACCESS.2021.3109798 10.1007/s12652-021-03584-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-88184-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_aee35d276f8e40dc962ef2c3af7cd7b8 PMC11880478 40038318 10_1038_s41598_025_88184_0 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62362053 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: 2024 Basic Research and Applied Basic Research of Hohhot grantid: 2024-G-J-29 – fundername: Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region grantid: NJYT23060 – fundername: "Inner Mongolia Science and Technology Achievement Transfer and Transformation Demonstration Zone, University Collaborative Innovation Base, and University Entrepreneurship Training Base" Construction Project (Supercomputing Power Project) grantid: 21300-231510 – fundername: National Natural Science Foundation of China grantid: 62362053 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PJZUB PPXIY PQGLB SNYQT NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-5a5836ec5024474f6819b7b7187335e2d2dc96d05e6dd06f703a97b554948a4a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439786200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:28:59 EST 2025 Tue Nov 04 02:04:57 EST 2025 Thu Oct 02 10:54:27 EDT 2025 Tue Oct 07 08:03:57 EDT 2025 Mon Jul 21 05:56:45 EDT 2025 Tue Nov 18 19:56:07 EST 2025 Sat Nov 29 08:08:46 EST 2025 Wed Mar 05 01:40:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning YOLO Traffic sign detection TT100K BiFPN |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-5a5836ec5024474f6819b7b7187335e2d2dc96d05e6dd06f703a97b554948a4a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/aee35d276f8e40dc962ef2c3af7cd7b8 |
| PMID | 40038318 |
| PQID | 3173601557 |
| PQPubID | 2041939 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aee35d276f8e40dc962ef2c3af7cd7b8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11880478 proquest_miscellaneous_3174099769 proquest_journals_3173601557 pubmed_primary_40038318 crossref_citationtrail_10_1038_s41598_025_88184_0 crossref_primary_10_1038_s41598_025_88184_0 springer_journals_10_1038_s41598_025_88184_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-04 |
| PublicationDateYYYYMMDD | 2025-03-04 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | H Gómez-Moreno (88184_CR3) 2010; 11 A Ellahyani (88184_CR8) 2016; 46 JF Wang (88184_CR18) 2023; 35 X Yuan (88184_CR4) 2014; 15 ZS Li (88184_CR19) 2024 SK Berkaya (88184_CR5) 2016; 48 CP Gong (88184_CR20) 2022; 22 A De La Escalera (88184_CR2) 1997; 44 Z Huang (88184_CR7) 2016; 47 88184_CR15 JQ Chen (88184_CR16) 2024; 217 88184_CR17 88184_CR1 C Dewi (88184_CR14) 2023; 14 Y Li (88184_CR9) 2016; 1 L Wang (88184_CR13) 2021; 9 Z-L Sun (88184_CR6) 2014; 128 J Li (88184_CR10) 2018; 20 D Tabernik (88184_CR11) 2019; 21 JM Zhang (88184_CR12) 2020; 8 |
| References_xml | – volume: 128 start-page: 153 year: 2014 ident: 88184_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.057 – volume: 44 start-page: 848 issue: 6 year: 1997 ident: 88184_CR2 publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/41.649946 – year: 2024 ident: 88184_CR19 publication-title: IEEE Trans. Intell. Trans. Syst. doi: 10.1109/TITS.2024.3373793 – volume: 1 start-page: 167 issue: 2 year: 2016 ident: 88184_CR9 publication-title: IEEE Trans. Intell. Vehicles doi: 10.1109/TIV.2016.2615523 – volume: 47 start-page: 920 issue: 4 year: 2016 ident: 88184_CR7 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2533424 – ident: 88184_CR1 doi: 10.1109/ADICS58448.2024.10533619 – volume: 48 start-page: 67 year: 2016 ident: 88184_CR5 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.11.018 – volume: 11 start-page: 917 issue: 4 year: 2010 ident: 88184_CR3 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2010.2054084 – volume: 15 start-page: 1466 issue: 4 year: 2014 ident: 88184_CR4 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2298912 – volume: 8 start-page: 29742 year: 2020 ident: 88184_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972338 – volume: 46 start-page: 805 year: 2016 ident: 88184_CR8 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.041 – volume: 22 start-page: 9345 issue: 23 year: 2022 ident: 88184_CR20 publication-title: Sensors doi: 10.3390/s22239345 – ident: 88184_CR17 doi: 10.1109/CVPR.2016.232 – ident: 88184_CR15 doi: 10.1109/CVPR42600.2020.01079 – volume: 217 start-page: 108612 year: 2024 ident: 88184_CR16 publication-title: Comput. Electron. Agricult. doi: 10.1016/j.compag.2024.108612 – volume: 35 start-page: 7853 issue: 10 year: 2023 ident: 88184_CR18 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-08077-5 – volume: 20 start-page: 975 issue: 3 year: 2018 ident: 88184_CR10 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2843815 – volume: 21 start-page: 1427 issue: 4 year: 2019 ident: 88184_CR11 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2913588 – volume: 9 start-page: 124963 year: 2021 ident: 88184_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3109798 – volume: 14 start-page: 8135 issue: 7 year: 2023 ident: 88184_CR14 publication-title: J. Ambient Intell. Human. Comput. doi: 10.1007/s12652-021-03584-0 |
| SSID | ssj0000529419 |
| Score | 2.511641 |
| Snippet | Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods often... Abstract Traffic signs are pivotal components of traffic management, ensuring the regulation and safety of road traffic. However, existing detection methods... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7558 |
| SubjectTerms | 639/705/117 639/705/258 Algorithms BiFPN Deep learning Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) Traffic control Traffic management Traffic sign detection TT100K YOLO |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwELaggMSFvRAoKEjcwKoTO17ggCii4lDaSoBUTpa3tJVKXnkvrcS_Z8bJS_VYeuHqJRp7PPNNPOMZQl5E71mVGkYdk54KHSP1NfeUCykd4y6YmPPM7qjdXX1wYPbHC7fFGFa51IlZUcdZwDvyTcA5LhHg1dvTHxSrRqF3dSyhcZVcA8umwpCuT_X-dMeCXixRmfGtDON6cwF4hW_K6oZqgCpB2Qoe5bT9f7M1_wyZ_M1vmuFo-_b_LuQOuTUaouW74eTcJVdSd4_cGEpT_rxP3nzb29mjW59fl64EUjDRRImxHmVMfY7e6kp3cgjf7Y--lwiFsYQmnHSuH5Cv2x--vP9Ix0ILNDSi6mnjGs1lCg0AtlCilWAmeOUBthTnTapjHYORkTVJxshkC1rCGeXBEjFCO-H4OlnrZl16RMrgYb7D30jPhGqVqRL8sAQvTGvA2gsFqZbbbcOYhRyLYZzY7A3n2g4sssAim1lkWUFeTnNOhxwcl47eQi5OIzF_dm6YzQ_tKI7WpcSbWCvZ6iQYrq5ObR24a1WIyuuCbCyZZ0ehXtgLzhXk-dQN4og-Ftel2VkeI_AxsjQFeTgcmYkSgW5Y0KEF0SuHaYXU1Z7u-Cin_K4wbZ5QMPXV8txd0PXvvXh8-TKekJs1igKG1IkNstbPz9JTcj2c98eL-bMsS78AurIivA priority: 102 providerName: ProQuest |
| Title | YOLO-BS: a traffic sign detection algorithm based on YOLOv8 |
| URI | https://link.springer.com/article/10.1038/s41598-025-88184-0 https://www.ncbi.nlm.nih.gov/pubmed/40038318 https://www.proquest.com/docview/3173601557 https://www.proquest.com/docview/3174099769 https://pubmed.ncbi.nlm.nih.gov/PMC11880478 https://doaj.org/article/aee35d276f8e40dc962ef2c3af7cd7b8 |
| Volume | 15 |
| WOSCitedRecordID | wos001439786200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJtAWQWJG1h1bMcPOLGoFUjtNuIhbU-RX6ErtdlqN63Ev8d2skuX54XLHPyIRp_HmbFm_BnghTMGF77ESGNuEJPOIUOoQZRxrjHVVrnEM3sgJhM5narqylNfsSaspwfugdvV3tPSEcEb6Rl2VnHiG2KpboR1wqRrvlioK4epntWbKFao4ZYMpnJ3GTxVvE1GSiSDk2IIb3iiRNj_uyjz12LJnzKmyRHt34HbQwSZv-01vwvXfHsPbvZvSn67D2-Ojw6O0PjT61zn4UuRISKPRRq5810qu2pzffp1vph1J2d59GEuD01x0qV8AF_29z6_e4-GFxKQLVnRoVKXknJvy-BpmWAND_7dCBP8jaC09MSRCJjDpefOYd6E7a2VMCGEUExqpulD2GrnrX8MuTVhvo7nP4OZaIQqfDhpWMNUo0KYZjMoVmjVdqAPj69YnNYpjU1l3SNcB4TrhHCNM3i5nnPek2f8dfQ4LsJ6ZCS-Tg3BHOrBHOp_mUMGO6slrIfduKxDjER5DA5FBs_X3WEfxeSIbv38Io1h8RYxVxk86ld8rQmL-dPw88tAbtjChqqbPe3sJHF1F5Hvjokw9dXKbH7o9WcsnvwPLJ7CLRLtPVbMsR3Y6hYX_hncsJfdbLkYwXUxFUnKEWyP9ybVx1HaREEekipKEeR29eGwOv4ODWYdbQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFG4QNfri_TKKOib6pA2dttN2NMaISiCsQCIk-FR7GyDBWdxdMPwpf6M9nZkl64U3Hnyd9kx6-Xq-tuf0HISeeWtJEUqCDREWc-U9tpRZzLgQhjDjKp_izA7k-rra2ak259DP_i0MuFX2OjEpaj90cEe-GHmOCSB4-fbwO4asUWBd7VNotLBYCyc_4pFt_Gb1Q5zf55Quf9x6v4K7rALYlbyY4NKUiongyshOXPJaRE600kYdLRkrA_XUu0p4UgbhPRF1XBKmkjbSbsWV4YbF_15AFzlEFgNXQbo5vdMBqxkvqu5tDmFqcRz5Ed6w0RKrSI0ckxn-S2kC_ra3_dNF8zc7baK_5ev_28DdQNe6jXb-rl0ZN9FcaG6hy23qzZPb6PWXjcEGXvr8Kjd57DoE0sjBlyX3YZK805rcHOzGfkz2vuVA9T6Pn0DoWN1B2-fS8rtovhk24T7KnY3yBo7JlnBZy6oI8UDmLK_qKu5mXYaKfnq166KsQ7KPA52s_UzpFhI6QkInSGiSoRdTmcM2xsiZtZcANdOaEB88fRiOdnWnbrQJgZWeSlGrwAn0joaaOmZq6by0KkMLPVh0p7TG-hQpGXo6LY7qBmxIpgnDo1SHw2NrUWXoXgvRaUs4mJkjR2RIzYB3pqmzJc3-XgppXkBYQC6j6Mse56ft-vdYPDi7G0_QlZWtTwM9WF1fe4iuUliG4D7IF9D8ZHQUHqFL7niyPx49Tus4R1_PG_-_ANgRfL8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VLSBeuI9AgSDBE1ibxE7sgBCilBWrLtuVAKl9Mr7SVirZspsW9a_x6xjn2Go5-tYHXn1EtvPNfJPMeAbgqdU6il0aERVlmjBhLdEJ1YSyLFMRVSa3dZ7ZER-PxfZ2PlmBn91dGB9W2enEWlHbqfH_yPvIczTzBM_7RRsWMdkYvDn8TnwFKe9p7cppNBDZdCc_8PNt_nq4ge_6WZIM3n9-94G0FQaISVlckVSlgmbOpMhUjLMiQ37UXKO-5pSmLrGJNXlmo9Rl1kZZgeKhcq6RgnMmFFMUn3sBVtEkZ0kPVifDj5OdxR8e70Njcd7e1Imo6M-RLf2NtiQlAomSkWiJDeuiAX-zdP8M2PzNa1uT4eDa_3yM1-Fqa4KHbxuZuQErrrwJl5qinCe34NXO1miLrH96GaoQj8Gn2Ah9lEtoXVXHrZWhOtjFfVR730JvBNgQm_ykY3EbvpzLyu9Ar5yW7h6ERuN85T-gdcR4wfPYIS6MZnmRo51rAoi7Vy1Nm3_dlwE5kHUcABWygYdEeMgaHjIK4PlizmGTfeTM0eseQYuRPnN43TCd7cpWEUnlHE1twrNCOBb53SWuSAxVBTeWaxHAWgcc2aqzuTxFTQBPFt2oiLx3SZVuelSPYf4adpYHcLeB62IlzDugkT0CEEtAXlrqck-5v1cnO499wkDGceqLDvOn6_r3Wdw_exuP4TLCXo6G480HcCXxEunjCtka9KrZkXsIF81xtT-fPWqFOoSv5y0AvwDwuYcI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-BS%3A+a+traffic+sign+detection+algorithm+based+on+YOLOv8&rft.jtitle=Scientific+reports&rft.au=Hong+Zhang&rft.au=Mingyin+Liang&rft.au=Yufeng+Wang&rft.date=2025-03-04&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41598-025-88184-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aee35d276f8e40dc962ef2c3af7cd7b8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |