Multilevel thresholding with divergence measure and improved particle swarm optimization algorithm for crack image segmentation

Crack formation is a common phenomenon in engineering structures, which can cause serious damage to the safety and health of these structures. An important method of ensuring the safety and health of engineered structures is the prompt detection of cracks. Image threshold segmentation based on machi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 14; číslo 1; s. 7642 - 19
Hlavní autori: Nie, Fangyan, Liu, Mengzhu, Zhang, Pingfeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.04.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Crack formation is a common phenomenon in engineering structures, which can cause serious damage to the safety and health of these structures. An important method of ensuring the safety and health of engineered structures is the prompt detection of cracks. Image threshold segmentation based on machine vision is a crucial technology for crack detection. Threshold segmentation can separate the crack area from the background, providing convenience for more accurate measurement and evaluation of the crack condition and location. The segmentation of cracks in complex scenes is a challenging task, and this goal can be achieved by means of multilevel thresholding. The arithmetic-geometric divergence combines the advantages of the arithmetic mean and the geometric mean in probability measures, enabling a more precise capture of the local features of an image in image processing. In this paper, a multilevel thresholding method for crack image segmentation based on the minimum arithmetic-geometric divergence is proposed. To address the issue of time complexity in multilevel thresholding, an enhanced particle swarm optimization algorithm with local stochastic perturbation is proposed. In crack detection, the thresholding criterion function based on the minimum arithmetic-geometric divergence can adaptively determine the thresholds according to the distribution characteristics of pixel values in the image. The proposed enhanced particle swarm optimization algorithm can increase the diversity of candidate solutions and enhance the global convergence performance of the algorithm. The proposed method for crack image segmentation is compared with seven state-of-the-art multilevel thresholding methods based on several metrics, including RMSE, PSNR, SSIM, FSIM, and computation time. The experimental results show that the proposed method outperforms several competing methods in terms of these metrics.
AbstractList Crack formation is a common phenomenon in engineering structures, which can cause serious damage to the safety and health of these structures. An important method of ensuring the safety and health of engineered structures is the prompt detection of cracks. Image threshold segmentation based on machine vision is a crucial technology for crack detection. Threshold segmentation can separate the crack area from the background, providing convenience for more accurate measurement and evaluation of the crack condition and location. The segmentation of cracks in complex scenes is a challenging task, and this goal can be achieved by means of multilevel thresholding. The arithmetic-geometric divergence combines the advantages of the arithmetic mean and the geometric mean in probability measures, enabling a more precise capture of the local features of an image in image processing. In this paper, a multilevel thresholding method for crack image segmentation based on the minimum arithmetic-geometric divergence is proposed. To address the issue of time complexity in multilevel thresholding, an enhanced particle swarm optimization algorithm with local stochastic perturbation is proposed. In crack detection, the thresholding criterion function based on the minimum arithmetic-geometric divergence can adaptively determine the thresholds according to the distribution characteristics of pixel values in the image. The proposed enhanced particle swarm optimization algorithm can increase the diversity of candidate solutions and enhance the global convergence performance of the algorithm. The proposed method for crack image segmentation is compared with seven state-of-the-art multilevel thresholding methods based on several metrics, including RMSE, PSNR, SSIM, FSIM, and computation time. The experimental results show that the proposed method outperforms several competing methods in terms of these metrics.
Abstract Crack formation is a common phenomenon in engineering structures, which can cause serious damage to the safety and health of these structures. An important method of ensuring the safety and health of engineered structures is the prompt detection of cracks. Image threshold segmentation based on machine vision is a crucial technology for crack detection. Threshold segmentation can separate the crack area from the background, providing convenience for more accurate measurement and evaluation of the crack condition and location. The segmentation of cracks in complex scenes is a challenging task, and this goal can be achieved by means of multilevel thresholding. The arithmetic-geometric divergence combines the advantages of the arithmetic mean and the geometric mean in probability measures, enabling a more precise capture of the local features of an image in image processing. In this paper, a multilevel thresholding method for crack image segmentation based on the minimum arithmetic-geometric divergence is proposed. To address the issue of time complexity in multilevel thresholding, an enhanced particle swarm optimization algorithm with local stochastic perturbation is proposed. In crack detection, the thresholding criterion function based on the minimum arithmetic-geometric divergence can adaptively determine the thresholds according to the distribution characteristics of pixel values in the image. The proposed enhanced particle swarm optimization algorithm can increase the diversity of candidate solutions and enhance the global convergence performance of the algorithm. The proposed method for crack image segmentation is compared with seven state-of-the-art multilevel thresholding methods based on several metrics, including RMSE, PSNR, SSIM, FSIM, and computation time. The experimental results show that the proposed method outperforms several competing methods in terms of these metrics.
Crack formation is a common phenomenon in engineering structures, which can cause serious damage to the safety and health of these structures. An important method of ensuring the safety and health of engineered structures is the prompt detection of cracks. Image threshold segmentation based on machine vision is a crucial technology for crack detection. Threshold segmentation can separate the crack area from the background, providing convenience for more accurate measurement and evaluation of the crack condition and location. The segmentation of cracks in complex scenes is a challenging task, and this goal can be achieved by means of multilevel thresholding. The arithmetic-geometric divergence combines the advantages of the arithmetic mean and the geometric mean in probability measures, enabling a more precise capture of the local features of an image in image processing. In this paper, a multilevel thresholding method for crack image segmentation based on the minimum arithmetic-geometric divergence is proposed. To address the issue of time complexity in multilevel thresholding, an enhanced particle swarm optimization algorithm with local stochastic perturbation is proposed. In crack detection, the thresholding criterion function based on the minimum arithmetic-geometric divergence can adaptively determine the thresholds according to the distribution characteristics of pixel values in the image. The proposed enhanced particle swarm optimization algorithm can increase the diversity of candidate solutions and enhance the global convergence performance of the algorithm. The proposed method for crack image segmentation is compared with seven state-of-the-art multilevel thresholding methods based on several metrics, including RMSE, PSNR, SSIM, FSIM, and computation time. The experimental results show that the proposed method outperforms several competing methods in terms of these metrics.Crack formation is a common phenomenon in engineering structures, which can cause serious damage to the safety and health of these structures. An important method of ensuring the safety and health of engineered structures is the prompt detection of cracks. Image threshold segmentation based on machine vision is a crucial technology for crack detection. Threshold segmentation can separate the crack area from the background, providing convenience for more accurate measurement and evaluation of the crack condition and location. The segmentation of cracks in complex scenes is a challenging task, and this goal can be achieved by means of multilevel thresholding. The arithmetic-geometric divergence combines the advantages of the arithmetic mean and the geometric mean in probability measures, enabling a more precise capture of the local features of an image in image processing. In this paper, a multilevel thresholding method for crack image segmentation based on the minimum arithmetic-geometric divergence is proposed. To address the issue of time complexity in multilevel thresholding, an enhanced particle swarm optimization algorithm with local stochastic perturbation is proposed. In crack detection, the thresholding criterion function based on the minimum arithmetic-geometric divergence can adaptively determine the thresholds according to the distribution characteristics of pixel values in the image. The proposed enhanced particle swarm optimization algorithm can increase the diversity of candidate solutions and enhance the global convergence performance of the algorithm. The proposed method for crack image segmentation is compared with seven state-of-the-art multilevel thresholding methods based on several metrics, including RMSE, PSNR, SSIM, FSIM, and computation time. The experimental results show that the proposed method outperforms several competing methods in terms of these metrics.
ArticleNumber 7642
Author Liu, Mengzhu
Nie, Fangyan
Zhang, Pingfeng
Author_xml – sequence: 1
  givenname: Fangyan
  surname: Nie
  fullname: Nie, Fangyan
  email: niefyan@vip.163.com
  organization: Computer and Information Engineering College, Guizhou University of Commerce
– sequence: 2
  givenname: Mengzhu
  surname: Liu
  fullname: Liu, Mengzhu
  organization: Computer and Information Engineering College, Guizhou University of Commerce
– sequence: 3
  givenname: Pingfeng
  surname: Zhang
  fullname: Zhang, Pingfeng
  organization: College of Marxism, Guizhou University of Commerce
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38561478$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURMvQP8ACWWLDJuBnEq8QqnhUKmIDa8tj32Q8OPZgJ1OVDX8dd9JC20UjS4nicz6da5_n1VGIAarqJcFvCWbdu8yJkF2NKa9Fx0VT0yfVCcVc1JRRenTn-7g6zXmLyyOo5EQ-q45ZJxrC2-6k-vN19pPzsAePpk2CvIneujCgSzdtkHV7SAMEA2gEnecESAeL3LhLcQ8W7XSanPGA8qVOI4q7yY3ut55cDEj7IaYCGVEfEzJJm5_FqIcihmGEMB1kL6qnvfYZTm_eq-rHp4_fz77UF98-n599uKiN4GQqIwoAJmVrwYCVREAL3DbYdGWtuRagZaMxbzCzpO-Z6IHIvsetpgxoY9iqOl-4Nuqt2qWSJF2pqJ06_IhpUDezKAHYsnYNPQXO15JIsH05Rk0o4UyYtrDeL6zdvB7BmjJL0v4e9P5OcBs1xL0iWHZcNk0hvLkhpPhrhjyp0WUD3usAcc6KYUYIo7iMs6peP5Bu45xCOauiol2pQkeuga_uRvqX5faii6BbBCbFnBP0yrjlBkpC50s0dV0rtdRKlVqpQ60ULVb6wHpLf9TEFlMu4jBA-h_7EddfGoPi2w
CitedBy_id crossref_primary_10_1016_j_autcon_2025_106423
crossref_primary_10_3390_e27050544
crossref_primary_10_1016_j_ijdrr_2025_105358
crossref_primary_10_20965_jaciii_2025_p1077
crossref_primary_10_1038_s41598_024_81075_w
crossref_primary_10_1093_jcde_qwae081
crossref_primary_10_3390_rs16193603
crossref_primary_10_3390_biomimetics10040218
crossref_primary_10_1063_5_0244948
crossref_primary_10_1016_j_compbiomed_2024_109272
crossref_primary_10_1016_j_heliyon_2024_e40698
Cites_doi 10.1007/s10489-022-04064-4
10.1016/j.knosys.2023.110587
10.1016/j.engappai.2023.107624
10.1016/j.bspc.2022.104373
10.1109/4235.985692
10.1016/j.neucom.2019.01.036
10.1016/j.compag.2022.107488
10.1007/s00500-023-09283-6
10.1016/j.eswa.2021.115286
10.1016/j.compbiomed.2022.105542
10.1016/j.patrec.2014.11.009
10.1016/j.amc.2006.06.057
10.1016/j.eswa.2021.114636
10.1016/j.autcon.2023.104939
10.1016/j.autcon.2023.104929
10.1016/j.asoc.2021.107905
10.1016/j.conbuildmat.2021.126162
10.1016/j.compbiomed.2023.106950
10.1109/TIP.2011.2109730
10.1016/j.engappai.2022.104960
10.1109/ACCESS.2019.2891632
10.1007/s12530-022-09443-3
10.1016/j.asoc.2023.110130
10.1016/j.asoc.2020.106588
10.1016/j.eswa.2023.122316
10.1016/0031-3203(93)90115-D
10.1016/j.ins.2020.05.033
10.1016/j.eswa.2021.115003
10.1016/j.eswa.2021.116145
10.1007/s11760-021-02123-w
10.48550/arXiv.math/0505204
10.1016/j.autcon.2023.105014
10.1038/s41598-023-36066-8
10.1109/TIP.2003.819861
10.1109/ICNN.1995.488968
10.1016/j.matpr.2022.11.356
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-58456-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_5e0d37bef2e44b919edf322a121435c7
PMC10984966
38561478
10_1038_s41598_024_58456_2
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-585ee3997deced915e7e4d60c80c8b4a5ea96a04603d1ff35fe19ff07a23e26c3
IEDL.DBID BENPR
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001195796200059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:29:49 EST 2025
Tue Nov 04 02:05:51 EST 2025
Fri Sep 05 06:22:48 EDT 2025
Tue Oct 07 07:46:44 EDT 2025
Wed Feb 19 02:00:56 EST 2025
Sat Nov 29 01:58:42 EST 2025
Tue Nov 18 22:30:28 EST 2025
Fri Feb 21 02:38:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Crack detection
Multilevel image thresholding
Minimum arithmetic-geometric divergenc
Local stochastic perturbation
Particle swarm optimization
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-585ee3997deced915e7e4d60c80c8b4a5ea96a04603d1ff35fe19ff07a23e26c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3028038816?pq-origsite=%requestingapplication%
PMID 38561478
PQID 3028038816
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_5e0d37bef2e44b919edf322a121435c7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10984966
proquest_miscellaneous_3031132060
proquest_journals_3028038816
pubmed_primary_38561478
crossref_citationtrail_10_1038_s41598_024_58456_2
crossref_primary_10_1038_s41598_024_58456_2
springer_journals_10_1038_s41598_024_58456_2
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Abdel-Basset, Mohamed, AbdelAziz, Abouhawwash (CR19) 2022; 190
Ma, Yue (CR21) 2022; 113
Weng, Huang, Li, Yang, Yu (CR1) 2023; 153
Chakraborty, Mali (CR10) 2023
Sarkar, Das, Chaudhuri (CR28) 2015; 54
Wu, Zhou, Ji, Yin, Shen (CR23) 2020; 533
Taneja (CR26) 2005; 5
Ahilan (CR33) 2019; 7
Qiao, Liu, Xue, Tang, Salehnia (CR31) 2024; 241
Yang (CR12) 2023; 80
Kumar, Kumar, Vishwakarma, Singh (CR14) 2022; 203
Mousavirad, Schaefer, Zhou, Moghadam (CR20) 2023; 272
Ding, Yang, Yu, Shu (CR3) 2023; 152
Chen, Seo, Jun, Zhao (CR7) 2022; 16
Clerc, Kennedy (CR30) 2002; 6
Song (CR2) 2024; 129
Yin (CR15) 2007; 184
Houssein, Mohamed, Ibrahim, Wazery (CR32) 2023; 13
Li, Lee (CR27) 1993; 26
Liu, Yao, Lu, Xie, Li (CR34) 2019; 338
Wang, Bovik, Sheikh, Simoncelli (CR35) 2004; 13
Zhang, Zhang, Mou, Zhang (CR36) 2011; 20
Lei, Fan (CR25) 2020; 96
CR5
He (CR4) 2023; 154
CR29
Shi (CR11) 2023; 160
Anitha, Immanuel Alex Pandian, Akila Agnes (CR18) 2021; 178
Wang, Bei, Song, Zhang, Zhang (CR24) 2023; 137
Sowjanya, Injeti (CR16) 2021; 182
Abualigah, Almotairi, Elaziz (CR8) 2022; 53
Sathya, Kalyani, Sakthivel (CR17) 2021; 172
Kheradmandi, Mehranfar (CR6) 2022; 321
Eisham (CR9) 2023; 14
Zhang, Xie, Sun, Zhang (CR22) 2022; 146
Xing, He (CR13) 2021; 113
M Shi (58456_CR11) 2023; 160
G Ma (58456_CR21) 2022; 113
C Li (58456_CR27) 1993; 26
A Kumar (58456_CR14) 2022; 203
M Abdel-Basset (58456_CR19) 2022; 190
K Sowjanya (58456_CR16) 2021; 182
58456_CR29
P-Y Yin (58456_CR15) 2007; 184
B Lei (58456_CR25) 2020; 96
W Ding (58456_CR3) 2023; 152
B Wu (58456_CR23) 2020; 533
X Yang (58456_CR12) 2023; 80
Q Song (58456_CR2) 2024; 129
N Kheradmandi (58456_CR6) 2022; 321
P Sathya (58456_CR17) 2021; 172
ZK Eisham (58456_CR9) 2023; 14
X He (58456_CR4) 2023; 154
Z Xing (58456_CR13) 2021; 113
IJ Taneja (58456_CR26) 2005; 5
Y Zhang (58456_CR22) 2022; 146
X Weng (58456_CR1) 2023; 153
L Abualigah (58456_CR8) 2022; 53
S Chakraborty (58456_CR10) 2023
C Chen (58456_CR7) 2022; 16
Z Wang (58456_CR35) 2004; 13
J Anitha (58456_CR18) 2021; 178
L Zhang (58456_CR36) 2011; 20
M Clerc (58456_CR30) 2002; 6
L Qiao (58456_CR31) 2024; 241
A Ahilan (58456_CR33) 2019; 7
SJ Mousavirad (58456_CR20) 2023; 272
Y Liu (58456_CR34) 2019; 338
EH Houssein (58456_CR32) 2023; 13
J Wang (58456_CR24) 2023; 137
58456_CR5
S Sarkar (58456_CR28) 2015; 54
References_xml – volume: 53
  start-page: 11654
  year: 2022
  end-page: 11704
  ident: CR8
  article-title: Multilevel thresholding image segmentation using meta-heuristic optimization algorithms: Comparative analysis, open challenges and new trends
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04064-4
– volume: 272
  year: 2023
  ident: CR20
  article-title: How effective are current population-based metaheuristic algorithms for variance-based multi-level image thresholding?
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110587
– volume: 129
  year: 2024
  ident: CR2
  article-title: A three-stage pavement image crack detection framework with positive sample augmentation
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107624
– volume: 80
  year: 2023
  ident: CR12
  article-title: Multi-level threshold segmentation framework for breast cancer images using enhanced differential evolution
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104373
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: CR30
  article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.985692
– volume: 338
  start-page: 139
  year: 2019
  end-page: 153
  ident: CR34
  article-title: Deepcrack: A deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.036
– volume: 203
  year: 2022
  ident: CR14
  article-title: Multilevel thresholding for crop image segmentation based on recursive minimum cross entropy using a swarm-based technique
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107488
– year: 2023
  ident: CR10
  article-title: A multilevel biomedical image thresholding approach using the chaotic modified cuckoo search
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-09283-6
– volume: 182
  year: 2021
  ident: CR16
  article-title: Investigation of butterfly optimization and gases Brownian motion optimization algorithms for optimal multilevel image thresholding
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115286
– volume: 146
  year: 2022
  ident: CR22
  article-title: An efficient multi-level encryption scheme for stereoscopic medical images based on coupled chaotic system and otsu threshold segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105542
– volume: 54
  start-page: 27
  year: 2015
  end-page: 35
  ident: CR28
  article-title: A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.11.009
– ident: CR29
– volume: 184
  start-page: 503
  year: 2007
  end-page: 513
  ident: CR15
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.06.057
– volume: 172
  year: 2021
  ident: CR17
  article-title: Color image segmentation using Kapur, Otsu and minimum cross entropy functions based on exchange market algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114636
– volume: 153
  year: 2023
  ident: CR1
  article-title: Unsupervised domain adaptation for crack detection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104939
– volume: 152
  year: 2023
  ident: CR3
  article-title: Crack detection and quantification for concrete structures using UAV and transformer
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104929
– volume: 113
  year: 2021
  ident: CR13
  article-title: Many-objective multilevel thresholding image segmentation for infrared images of power equipment with boost marine predators algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107905
– volume: 321
  year: 2022
  ident: CR6
  article-title: A critical review and comparative study on image segmentation-based techniques for pavement crack detection
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.126162
– volume: 160
  year: 2023
  ident: CR11
  article-title: A grade-based search adaptive random slime mould optimizer for lupus nephritis image segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106950
– volume: 20
  start-page: 2378
  year: 2011
  end-page: 2386
  ident: CR36
  article-title: FSIM: A feature similarity index for image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2109730
– volume: 113
  year: 2022
  ident: CR21
  article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104960
– volume: 7
  start-page: 89570
  year: 2019
  end-page: 89580
  ident: CR33
  article-title: Segmentation by fractional order Darwinian particle swarm optimization based multilevel thresholding and improved lossless prediction based compression algorithm for medical images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891632
– volume: 14
  start-page: 605
  year: 2023
  end-page: 648
  ident: CR9
  article-title: Chimp optimization algorithm in multilevel image thresholding and image clustering
  publication-title: Evolv. Syst.
  doi: 10.1007/s12530-022-09443-3
– volume: 137
  year: 2023
  ident: CR24
  article-title: A whale optimization algorithm with combined mutation and removing similarity for global optimization and multilevel thresholding image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110130
– volume: 96
  year: 2020
  ident: CR25
  article-title: Multilevel minimum cross entropy thresholding: A comparative study
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106588
– volume: 241
  year: 2024
  ident: CR31
  article-title: A multi-level thresholding image segmentation method using hybrid arithmetic optimization and Harris Hawks optimizer algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122316
– volume: 26
  start-page: 617
  year: 1993
  end-page: 625
  ident: CR27
  article-title: Minimum cross entropy thresholding
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(93)90115-D
– volume: 533
  start-page: 72
  year: 2020
  end-page: 107
  ident: CR23
  article-title: An ameliorated teaching-learning-based optimization algorithm based study of image segmentation for multilevel thresholding using kapur’s entropy and otsu’s between class variance
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.05.033
– ident: CR5
– volume: 178
  year: 2021
  ident: CR18
  article-title: An efficient multilevel color image thresholding based on modified whale optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115003
– volume: 190
  year: 2022
  ident: CR19
  article-title: Hwoa: A hybrid whale optimization algorithm with a novel local minima avoidance method for multi-level thresholding color image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116145
– volume: 16
  start-page: 1673
  year: 2022
  end-page: 1681
  ident: CR7
  article-title: A potential crack region method to detect crack using image processing of multiple thresholding
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-021-02123-w
– volume: 5
  start-page: 145
  year: 2005
  end-page: 168
  ident: CR26
  article-title: Relative divergence measures and information inequalities
  publication-title: Inequal. Theory Appl.
  doi: 10.48550/arXiv.math/0505204
– volume: 154
  year: 2023
  ident: CR4
  article-title: UAV-based road crack object-detection algorithm
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105014
– volume: 13
  start-page: 9094
  year: 2023
  ident: CR32
  article-title: An efficient multilevel image thresholding method based on improved heap-based optimizer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36066-8
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: CR35
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 533
  start-page: 72
  year: 2020
  ident: 58456_CR23
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.05.033
– volume: 203
  year: 2022
  ident: 58456_CR14
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107488
– ident: 58456_CR29
  doi: 10.1109/ICNN.1995.488968
– volume: 20
  start-page: 2378
  year: 2011
  ident: 58456_CR36
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2109730
– volume: 153
  year: 2023
  ident: 58456_CR1
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104939
– volume: 272
  year: 2023
  ident: 58456_CR20
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110587
– volume: 16
  start-page: 1673
  year: 2022
  ident: 58456_CR7
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-021-02123-w
– volume: 190
  year: 2022
  ident: 58456_CR19
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116145
– volume: 5
  start-page: 145
  year: 2005
  ident: 58456_CR26
  publication-title: Inequal. Theory Appl.
  doi: 10.48550/arXiv.math/0505204
– year: 2023
  ident: 58456_CR10
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-09283-6
– volume: 96
  year: 2020
  ident: 58456_CR25
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106588
– volume: 154
  year: 2023
  ident: 58456_CR4
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105014
– volume: 113
  year: 2021
  ident: 58456_CR13
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107905
– ident: 58456_CR5
  doi: 10.1016/j.matpr.2022.11.356
– volume: 14
  start-page: 605
  year: 2023
  ident: 58456_CR9
  publication-title: Evolv. Syst.
  doi: 10.1007/s12530-022-09443-3
– volume: 178
  year: 2021
  ident: 58456_CR18
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115003
– volume: 241
  year: 2024
  ident: 58456_CR31
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122316
– volume: 53
  start-page: 11654
  year: 2022
  ident: 58456_CR8
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04064-4
– volume: 13
  start-page: 600
  year: 2004
  ident: 58456_CR35
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 6
  start-page: 58
  year: 2002
  ident: 58456_CR30
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.985692
– volume: 137
  year: 2023
  ident: 58456_CR24
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110130
– volume: 146
  year: 2022
  ident: 58456_CR22
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105542
– volume: 80
  year: 2023
  ident: 58456_CR12
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104373
– volume: 321
  year: 2022
  ident: 58456_CR6
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.126162
– volume: 13
  start-page: 9094
  year: 2023
  ident: 58456_CR32
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36066-8
– volume: 160
  year: 2023
  ident: 58456_CR11
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106950
– volume: 113
  year: 2022
  ident: 58456_CR21
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104960
– volume: 26
  start-page: 617
  year: 1993
  ident: 58456_CR27
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(93)90115-D
– volume: 54
  start-page: 27
  year: 2015
  ident: 58456_CR28
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.11.009
– volume: 182
  year: 2021
  ident: 58456_CR16
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115286
– volume: 172
  year: 2021
  ident: 58456_CR17
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114636
– volume: 184
  start-page: 503
  year: 2007
  ident: 58456_CR15
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.06.057
– volume: 152
  year: 2023
  ident: 58456_CR3
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104929
– volume: 129
  year: 2024
  ident: 58456_CR2
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107624
– volume: 338
  start-page: 139
  year: 2019
  ident: 58456_CR34
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.036
– volume: 7
  start-page: 89570
  year: 2019
  ident: 58456_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891632
SSID ssj0000529419
Score 2.4790168
Snippet Crack formation is a common phenomenon in engineering structures, which can cause serious damage to the safety and health of these structures. An important...
Abstract Crack formation is a common phenomenon in engineering structures, which can cause serious damage to the safety and health of these structures. An...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7642
SubjectTerms 639/166/987
639/705/117
639/705/258
Algorithms
Crack detection
Divergence
Humanities and Social Sciences
Image processing
Local stochastic perturbation
Minimum arithmetic-geometric divergenc
multidisciplinary
Multilevel image thresholding
Optimization algorithms
Particle swarm optimization
Science
Science (multidisciplinary)
Visual thresholds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlHjR2L7CIiKA6o4gNSb5fhRVmyyVbIt4tS_3vFjly7PC1JOfkTWzNgz9sx8g9ALYKrpFVO16DmruQim7mnf1KHngjJlmTKJ0x_E0ZE8PlYfr5T6ijFhGR44E-6g9Y1joveBes57RZR3AYTQEBo1vU155GD1XLlMZVRvqjhRJUumYfJgBk0Vs8kor0Hntl1NdzRRAuz_nZX5a7DkTx7TpIgOb6NbxYLEr_PK76BrfryLbuSakt_voYuUUruMsUB4DYyai38JxxdX7GIYRsLfxEN-HcRmdHiRnha8w6eFIHj-ZqYBr-BAGUqmJjbLk9UEPxkwGLrYTsZ-hYlwHuHZnwwlh2m8jz4fvvv09n1dqizUtuVkDdRovQczRThvvVOk9cJz1zVWwtdz03oD_Iz-U-ZICKwNnqgQGmEo87Sz7AHaG1ejf4SwlUxaMLAEbxnnRvZgrnAwEWjoHLTLCpENxbUtEOSxEsZSJ1c4kzpzSQOXdOKSphV6uZ1zmgE4_jr6TWTkdmQEz04NIFK6UFD_S6QqtL8RA1129KxZ9EEzKUlXoefbbtiL0cFiRr86i2MYiSnpXVOhh1lqtithMmKuCqCB3JGnnaXu9oyLLwnvmzRKcriWVujVRvR-rOvPtHj8P2jxBN2kcc-kWKV9tLeezvxTdN2erxfz9CxtuksbzDED
  priority: 102
  providerName: Directory of Open Access Journals
Title Multilevel thresholding with divergence measure and improved particle swarm optimization algorithm for crack image segmentation
URI https://link.springer.com/article/10.1038/s41598-024-58456-2
https://www.ncbi.nlm.nih.gov/pubmed/38561478
https://www.proquest.com/docview/3028038816
https://www.proquest.com/docview/3031132060
https://pubmed.ncbi.nlm.nih.gov/PMC10984966
https://doaj.org/article/5e0d37bef2e44b919edf322a121435c7
Volume 14
WOSCitedRecordID wos001195796200059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbhMx0KIJSL3wLiyUyEjcYNX1Y9f2CVHUCiQaRQikcFp5bW8akWzSbArixK8z9jqpwqMXpNUc_JBsz3g8O0-EXgBSdaWYSkXFWcpFrdOKVllaV1xQpgxTOmD6gxgO5XisRlHh1ka3yg1PDIzaLozXkR8xbwNkUpLi9fIi9VWjvHU1ltDYQ32fqYz3UP_4ZDj6uNWyeDsWJypGy8D8oxZeLB9VRnkKb29epHTnRQqJ-_8mbf7pNPmb5TQ8SKd3_ncrd9HtKIriNx3t3EM3XHMf3eqKU_54gH6G2NyZdyrCa8B4Gw1V2KtusfX-HCGRJ553akasG4unQUfhLF5GksTtd72a4wVwpnkM-cR6NoHlrM_nGCRmbFbafIWJwNhw6ybzGAzVPESfT08-vX2XxnINqck5WcNx5s6BvCOsM84qkjvhuC0yI-GruM6dBsLwhlhmSV2zvHZE1XUmNGWOFoYdoF6zaNxjhI1k0oCkJnjOONeyArmHg6xB68JCu0wQ2aCsNDGXuS-pMSuDTZ3JskNzCWguA5pLmqCX2znLLpPHtaOPPSVsR_os3KFhsZqU8QTL3GWWicrV1HFeKaKcrYFBakK9FGpEgg43BFBG1tCWV9hP0PNtN1xqb6nRjVtc-jGM-Nj2IkvQo47stith0idvFXAGcocgd5a629NMz0PicJIpyeH_NkGvNrR7ta5_n8WT67fxFO1Tf52CO9Mh6q1Xl-4Zumm-raftaoD2xFgEKAfxdg6C4gPgGR15KAD2R-_PRl9-AcfsRrU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAcGFfQkUMBKcIGq8ZGwfEGKrWnUYcSjS3IxjO9MRM5lhMqXqiX_Eb-TZSaYalt56QMopcZJn-3vPz34bQs9gUk2hmEpFwVnKRWnSghZZWhZcUKYsUybOdF8MBnI4VJ820M8uFia4VXYyMQpqN7PhjHybBRsgk5L0Xs-_paFqVLCudiU0Gljs-5Nj2LLVr_bew_w-p3Tnw8G73bStKpDanJNlCvqx97AsC-etd4rkXnjuepmVcBXc5N4A_cFeyBwpS5aXnqiyzIShzNOeZfDdC-giyHERXMjEUKzOdILVjBPVxuYAtds1rI8hho1y-C_oKildW_9imYC_6bZ_umj-ZqeNy9_O9f9t4G6ga62ijd80nHETbfjqFrrclN48uY1-xMjjSXCZwkvAc92a4XA4mMYueKvENKV42hyiYlM5PI4nMN7hectwuD42iymegdydtgGt2ExG0P3l4RTDfgDbhbFf4UUQ27j2o2kb6lXdQZ_Ppfd30WY1q_x9hK1k0oIeKnjOODeyAK2OgyZFy56D-zJBpIOItm2m9lAwZKKjxwCTuoGVBljpCCtNE_Ri9c68yVNyZuu3AXmrliHHeLwxW4x0O4I695ljovAl9ZwXiijvShD_htCgY1uRoK0OcLoVfLU-RVuCnq4eg8gKdihT-dlRaMNIiNzvZQm618B8RQmTITWtgDGQawywRur6k2p8GNOik0xJDrv3BL3seOWUrn-PxYOzu_EEXdk9-NjX_b3B_kN0lQZWjo5bW2hzuTjyj9Al-305rhePoyzA6Mt589Avg9ideg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKWcSFfQkUMBKcIJp4ydg5IASUiqplNAeQejOO7UxHzGSGyZSqJ_4Xv45nx5lqWHrrASmnxEm8fO_5-a0IPYNF1WXBilSUnKVcVDotaZmlVckFZYVhhQ4rvS8GA3lwUAw30M8uFsa7VXY8MTBqOzNeR95j3gbIpCT9XhXdIobbO6_n31JfQcpbWrtyGi1E9tzJMRzfmle727DWzyndef_p3Yc0VhhITc7JMgVZ2TnYooV1xtmC5E44bvuZkXCVXOdOw1i87ZBZUlUsrxwpqioTmjJH-4bBdy-gi4Lnuaeuj3S40u94CxonRYzTgZ73GtgrfTwb5fBfkFtSurYXhpIBf5Nz_3TX_M1mG7bCnev_8yTeQNeiAI7ftBRzE224-ha63JbkPLmNfoSI5Il3pcJLwHkTzXPYK6yx9V4sIX0pnrbKVaxri8dBM-MsnkdCxM2xXkzxDPjxNAa6Yj0ZwfCXh1MM5wRsFtp8hReBnePGjaYxBKy-gz6fy-jvos16Vrv7CBvJpAH5FODEONeyBGmPg4RFq76F-zJBpIOLMjGDuy8kMlHBk4BJ1UJMAcRUgJiiCXqxemfe5i85s_Vbj8JVS597PNyYLUYqzqDKXWaZKF1FHedlQQpnK9gWNKFe9jYiQVsd-FRkiI06RV6Cnq4eAyvz9ildu9mRb8OIj-jvZwm610J-1RMmfcpaAXMg14hhravrT-rxYUiXTrJCcjjVJ-hlRzen_fr3XDw4exhP0BUgHbW_O9h7iK5ST9XBn2sLbS4XR-4RumS-L8fN4nFgCxh9OW8S-gUFQqZH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+thresholding+with+divergence+measure+and+improved+particle+swarm+optimization+algorithm+for+crack+image+segmentation&rft.jtitle=Scientific+reports&rft.au=Nie%2C+Fangyan&rft.au=Liu%2C+Mengzhu&rft.au=Zhang%2C+Pingfeng&rft.date=2024-04-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-58456-2&rft.externalDocID=10_1038_s41598_024_58456_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon