Deep clustering using 3D attention convolutional autoencoder for hyperspectral image analysis

Deep clustering has been widely applicated in various fields, including natural image and language processing. However, when it is applied to hyperspectral image (HSI) processing, it encounters challenges due to high dimensionality of HSI and complex spatial-spectral characteristics. This study intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 14; H. 1; S. 4209 - 13
Hauptverfasser: Zheng, Ziyou, Zhang, Shuzhen, Song, Hailong, Yan, Qi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 20.02.2024
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep clustering has been widely applicated in various fields, including natural image and language processing. However, when it is applied to hyperspectral image (HSI) processing, it encounters challenges due to high dimensionality of HSI and complex spatial-spectral characteristics. This study introduces a kind of deep clustering model specifically tailed for HSI analysis. To address the high dimensionality issue, redundant dimension of HSI is firstly eliminated by combining principal component analysis (PCA) with t- distributed stochastic neighbor embedding (t-SNE). The reduced dataset is then input into a three-dimensional attention convolutional autoencoder (3D-ACAE) to extract essential spatial-spectral features. The 3D-ACAE uses spatial-spectral attention mechanism to enhance captured features. Finally, these enhanced features pass through an embedding layer to create a compact data-representation, and the compact data-representation is divided into distinct clusters by clustering layer. Experimental results on three publicly available datasets validate the superiority of the proposed model for HSI analysis.
AbstractList Deep clustering has been widely applicated in various fields, including natural image and language processing. However, when it is applied to hyperspectral image (HSI) processing, it encounters challenges due to high dimensionality of HSI and complex spatial-spectral characteristics. This study introduces a kind of deep clustering model specifically tailed for HSI analysis. To address the high dimensionality issue, redundant dimension of HSI is firstly eliminated by combining principal component analysis (PCA) with t-distributed stochastic neighbor embedding (t-SNE). The reduced dataset is then input into a three-dimensional attention convolutional autoencoder (3D-ACAE) to extract essential spatial-spectral features. The 3D-ACAE uses spatial-spectral attention mechanism to enhance captured features. Finally, these enhanced features pass through an embedding layer to create a compact data-representation, and the compact data-representation is divided into distinct clusters by clustering layer. Experimental results on three publicly available datasets validate the superiority of the proposed model for HSI analysis.
Deep clustering has been widely applicated in various fields, including natural image and language processing. However, when it is applied to hyperspectral image (HSI) processing, it encounters challenges due to high dimensionality of HSI and complex spatial-spectral characteristics. This study introduces a kind of deep clustering model specifically tailed for HSI analysis. To address the high dimensionality issue, redundant dimension of HSI is firstly eliminated by combining principal component analysis (PCA) with t- distributed stochastic neighbor embedding (t-SNE). The reduced dataset is then input into a three-dimensional attention convolutional autoencoder (3D-ACAE) to extract essential spatial-spectral features. The 3D-ACAE uses spatial-spectral attention mechanism to enhance captured features. Finally, these enhanced features pass through an embedding layer to create a compact data-representation, and the compact data-representation is divided into distinct clusters by clustering layer. Experimental results on three publicly available datasets validate the superiority of the proposed model for HSI analysis.
Deep clustering has been widely applicated in various fields, including natural image and language processing. However, when it is applied to hyperspectral image (HSI) processing, it encounters challenges due to high dimensionality of HSI and complex spatial-spectral characteristics. This study introduces a kind of deep clustering model specifically tailed for HSI analysis. To address the high dimensionality issue, redundant dimension of HSI is firstly eliminated by combining principal component analysis (PCA) with t-distributed stochastic neighbor embedding (t-SNE). The reduced dataset is then input into a three-dimensional attention convolutional autoencoder (3D-ACAE) to extract essential spatial-spectral features. The 3D-ACAE uses spatial-spectral attention mechanism to enhance captured features. Finally, these enhanced features pass through an embedding layer to create a compact data-representation, and the compact data-representation is divided into distinct clusters by clustering layer. Experimental results on three publicly available datasets validate the superiority of the proposed model for HSI analysis.Deep clustering has been widely applicated in various fields, including natural image and language processing. However, when it is applied to hyperspectral image (HSI) processing, it encounters challenges due to high dimensionality of HSI and complex spatial-spectral characteristics. This study introduces a kind of deep clustering model specifically tailed for HSI analysis. To address the high dimensionality issue, redundant dimension of HSI is firstly eliminated by combining principal component analysis (PCA) with t-distributed stochastic neighbor embedding (t-SNE). The reduced dataset is then input into a three-dimensional attention convolutional autoencoder (3D-ACAE) to extract essential spatial-spectral features. The 3D-ACAE uses spatial-spectral attention mechanism to enhance captured features. Finally, these enhanced features pass through an embedding layer to create a compact data-representation, and the compact data-representation is divided into distinct clusters by clustering layer. Experimental results on three publicly available datasets validate the superiority of the proposed model for HSI analysis.
Abstract Deep clustering has been widely applicated in various fields, including natural image and language processing. However, when it is applied to hyperspectral image (HSI) processing, it encounters challenges due to high dimensionality of HSI and complex spatial-spectral characteristics. This study introduces a kind of deep clustering model specifically tailed for HSI analysis. To address the high dimensionality issue, redundant dimension of HSI is firstly eliminated by combining principal component analysis (PCA) with t-distributed stochastic neighbor embedding (t-SNE). The reduced dataset is then input into a three-dimensional attention convolutional autoencoder (3D-ACAE) to extract essential spatial-spectral features. The 3D-ACAE uses spatial-spectral attention mechanism to enhance captured features. Finally, these enhanced features pass through an embedding layer to create a compact data-representation, and the compact data-representation is divided into distinct clusters by clustering layer. Experimental results on three publicly available datasets validate the superiority of the proposed model for HSI analysis.
ArticleNumber 4209
Author Yan, Qi
Zhang, Shuzhen
Zheng, Ziyou
Song, Hailong
Author_xml – sequence: 1
  givenname: Ziyou
  surname: Zheng
  fullname: Zheng, Ziyou
  organization: College of Communication and Electronic Engineering, Jishou University
– sequence: 2
  givenname: Shuzhen
  surname: Zhang
  fullname: Zhang, Shuzhen
  email: shuzhen_zhang@jsu.edu.cn
  organization: College of Communication and Electronic Engineering, Jishou University, Key Laboratory of Visual Perception and Artificial Intelligence, Hunan University
– sequence: 3
  givenname: Hailong
  surname: Song
  fullname: Song, Hailong
  organization: College of Communication and Electronic Engineering, Jishou University
– sequence: 4
  givenname: Qi
  surname: Yan
  fullname: Yan, Qi
  organization: College of Communication and Electronic Engineering, Jishou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38378840$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v3CAURFWqJk3zB3qoLPXSi1vMhw2nqkr6ESlSL-2xQix-bFh5jQs40v77PO8mbZJDOACCmXnDY16TozGOQMjbhn5sKFefsmikVjVlopZCiq5mL8gJo0LWjDN29GB_TM5y3lAckmnR6FfkmCveKSXoCflzATBVbphzgRTGdTXnZeYXlS0FxhLiWLk43sRhXvZ2qOxcIowu9pAqH1N1vZsg5QlcSXgbtnYNlUXgLof8hrz0dshwdreekt_fvv46_1Ff_fx-ef7lqnZSNKWW0kveC9lS3mrvfUudd22nre3FivfQNzj7xjNNnZAdd5T3TELX9ppyWLX8lFwedPtoN2ZK6CLtTLTB7A9iWhubSnADmKbz2L9WtlK1ohOgOFaTFguvqAPGUevzQWuaV1voHTYBH_ZI9PHNGK7NOt6YhqpOU6VQ4cOdQop_Z8jFbEN2MAx2hDhnwzTTkisml2Lvn0A3cU7YvT1KdQx9LYLvHlr65-X-GxGgDgCXYs4JvHGh2OXD0GEY0JpZQmMOoTEYGrMPjWFIZU-o9-rPkviBlKclNJD-236GdQvK4dRo
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3519789
crossref_primary_10_1016_j_eswa_2025_128514
crossref_primary_10_1145_3689036
crossref_primary_10_1016_j_engappai_2025_112281
crossref_primary_10_1016_j_rsase_2025_101700
crossref_primary_10_1016_j_jag_2025_104501
crossref_primary_10_1038_s41598_024_73988_3
crossref_primary_10_1016_j_optlaseng_2025_109167
crossref_primary_10_1016_j_aej_2025_05_025
crossref_primary_10_1109_ACCESS_2025_3554837
Cites_doi 10.1109/TGRS.2004.831865
10.1002/widm.1426
10.1109/TGRS.2019.2907932
10.1109/TGRS.2019.2952319
10.3390/rs11080963
10.1007/s11222-007-9033-z
10.1109/LGRS.2019.2907598
10.1109/36.841984
10.1109/TIP.2008.918955
10.1109/JSTARS.2014.2329330
10.1109/LGRS.2019.2960945
10.1109/TGRS.2020.3018135
10.2136/sssaj1999.03615995006300010021x
10.1016/j.asoc.2016.04.041
10.1109/MGRS.2019.2902525
10.1109/TGRS.2019.2908756
10.1111/exsy.13311
10.1016/j.ins.2016.01.101
10.1109/TGRS.2013.2258468
10.1109/ACCESS.2018.2855437
10.1109/ACCESS.2020.2977454
10.1109/TGRS.2021.3114635
10.1109/TIP.2022.3144017
10.1109/TGRS.2017.2765364
10.3390/electronics9081295
10.1109/TGRS.2021.3060966
10.1109/TNNLS.2020.2980398
10.1016/j.ins.2021.07.003
10.1109/LGRS.2020.3013205
10.1109/TGRS.2018.2818945
10.1109/JSTARS.2015.2477364
10.1109/TCSVT.2020.3027616
10.1016/j.isprsjprs.2019.09.008
10.1201/9781315373515-8
10.1109/IGARSS.2007.4423159
10.1007/978-3-030-01264-9_9
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-54547-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

PubMed

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_17f103656586474e8360c5a369b0ce23
PMC10879088
38378840
10_1038_s41598_024_54547_2
Genre Journal Article
GrantInformation_xml – fundername: Graduate Research Project of Jishou University
  grantid: No. jdy22024
– fundername: Research Foundation of Education Department of Hunan Province of China
  grantid: No.22A0371
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-55f53d4560369fff60cfc679aad4b3ded1b3df1f290c4573c03d25e76d903eb63
IEDL.DBID M7P
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173675500063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:38:58 EDT 2025
Tue Nov 04 02:05:47 EST 2025
Thu Sep 04 15:47:46 EDT 2025
Tue Oct 07 07:47:29 EDT 2025
Mon Nov 10 01:26:04 EST 2025
Sat Nov 29 01:57:59 EST 2025
Tue Nov 18 22:12:47 EST 2025
Fri Feb 21 02:39:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-55f53d4560369fff60cfc679aad4b3ded1b3df1f290c4573c03d25e76d903eb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2928723698?pq-origsite=%requestingapplication%
PMID 38378840
PQID 2928723698
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_17f103656586474e8360c5a369b0ce23
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10879088
proquest_miscellaneous_2929538253
proquest_journals_2928723698
pubmed_primary_38378840
crossref_citationtrail_10_1038_s41598_024_54547_2
crossref_primary_10_1038_s41598_024_54547_2
springer_journals_10_1038_s41598_024_54547_2
PublicationCentury 2000
PublicationDate 2024-02-20
PublicationDateYYYYMMDD 2024-02-20
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Nalepa (CR36) 2020; 17
Ahn, Baumgardner, Biehl (CR42) 1999; 63
Guo, Gunn, Damper, Nelson (CR16) 2008; 17
Cai, Zeng, Cai, Liu, Zhang (CR46) 2021; 578
Gao (CR2) 2021; 60
Chen, Lin, Zhao, Wang, Gu (CR24) 2014; 7
CR17
Von Luxburg (CR43) 2007; 17
Li (CR9) 2019; 57
CR35
Chang, Ren (CR11) 2000; 38
CR34
Fu, Li, Fang, Kang, Benediktsson (CR18) 2015; 9
Tulczyjew, Kawulok, Nalepa (CR37) 2021; 18
Mei (CR38) 2019; 11
CR32
CR31
Mangotra, Srivastava, Jaiswal, Rani, Sharma (CR6) 2023; 40
Kong, Cheng, Chen, Wang (CR45) 2019; 16
Min (CR33) 2018; 6
He, Li, Liu, Li (CR8) 2017; 56
Ribalta Lorenzo, Tulczyjew, Marcinkiewicz, Nalepa (CR39) 2020; 8
Shri, Sriraam (CR12) 2016; 46
Matsushima, Brbic (CR30) 2019; 32
Hamida, Benoît, Lambert, Amar (CR22) 2018; 56
Dian, Li, Kang (CR5) 2020; 32
Lei (CR44) 2021; 31
Rodarmel, Shan (CR10) 2002; 62
CR28
Meerdink (CR4) 2021; 60
CR27
Cai (CR41) 2020; 59
Liu, Wang (CR40) 2022; 60
Ruiz, Mateos, Camps-Valls, Molina, Katsaggelos (CR14) 2013; 52
Mei (CR25) 2019; 57
CR21
Jaiswal, Sharma, Yadav (CR7) 2021; 11
Shimoni, Haelterman, Perneel (CR1) 2019; 7
Zhang, Pasolli, Crawford (CR19) 2019; 58
Melgani, Bruzzone (CR15) 2004; 42
Zolfaghari (CR3) 2021; 60
Hong, Yokoya, Chanussot, Xu, Zhu (CR20) 2019; 158
Dong, Liu, Du, Zhang (CR23) 2022; 31
Ahmed, Seraj, Islam (CR26) 2020; 9
Deng, Choi, Jiang, Wang, Wang (CR29) 2016; 348
Mausel (CR13) 1990; 56
S Meerdink (54547_CR4) 2021; 60
AB Hamida (54547_CR22) 2018; 56
Y Chen (54547_CR24) 2014; 7
54547_CR21
54547_CR27
P Ruiz (54547_CR14) 2013; 52
54547_CR28
C-I Chang (54547_CR11) 2000; 38
Y Kong (54547_CR45) 2019; 16
S Mei (54547_CR25) 2019; 57
H Mangotra (54547_CR6) 2023; 40
L He (54547_CR8) 2017; 56
R Dian (54547_CR5) 2020; 32
S Liu (54547_CR40) 2022; 60
X Mei (54547_CR38) 2019; 11
P Ribalta Lorenzo (54547_CR39) 2020; 8
J Nalepa (54547_CR36) 2020; 17
W Fu (54547_CR18) 2015; 9
S Li (54547_CR9) 2019; 57
Y Cai (54547_CR41) 2020; 59
B Guo (54547_CR16) 2008; 17
54547_CR31
S Matsushima (54547_CR30) 2019; 32
54547_CR34
Z Deng (54547_CR29) 2016; 348
54547_CR35
54547_CR32
M Shimoni (54547_CR1) 2019; 7
54547_CR17
G Jaiswal (54547_CR7) 2021; 11
C-W Ahn (54547_CR42) 1999; 63
C Rodarmel (54547_CR10) 2002; 62
M Ahmed (54547_CR26) 2020; 9
K Zolfaghari (54547_CR3) 2021; 60
D Hong (54547_CR20) 2019; 158
J Lei (54547_CR44) 2021; 31
Y Gao (54547_CR2) 2021; 60
Z Zhang (54547_CR19) 2019; 58
P Mausel (54547_CR13) 1990; 56
L Tulczyjew (54547_CR37) 2021; 18
Y Dong (54547_CR23) 2022; 31
TP Shri (54547_CR12) 2016; 46
Y Cai (54547_CR46) 2021; 578
F Melgani (54547_CR15) 2004; 42
E Min (54547_CR33) 2018; 6
U Von Luxburg (54547_CR43) 2007; 17
References_xml – volume: 42
  start-page: 1778
  year: 2004
  end-page: 1790
  ident: CR15
  article-title: Classification of hyperspectral remote sensing images with support vector machines
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.831865
– volume: 11
  year: 2021
  ident: CR7
  article-title: Critical insights into modern hyperspectral image applications through deep learning
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1426
– volume: 57
  start-page: 6690
  year: 2019
  end-page: 6709
  ident: CR9
  article-title: Deep learning for hyperspectral image classification: An overview
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2907932
– volume: 56
  start-page: 55
  year: 1990
  end-page: 60
  ident: CR13
  article-title: Optimum band selection for supervised classification of multispectral data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 58
  start-page: 2557
  year: 2019
  end-page: 2570
  ident: CR19
  article-title: An adaptive multiview active learning approach for spectral-spatial classification of hyperspectral images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2952319
– volume: 11
  start-page: 963
  year: 2019
  ident: CR38
  article-title: Spectral-spatial attention networks for hyperspectral image classification
  publication-title: Remote Sens.
  doi: 10.3390/rs11080963
– volume: 62
  start-page: 115
  year: 2002
  end-page: 122
  ident: CR10
  article-title: Principal component analysis for hyperspectral image classification
  publication-title: Surv. Land Inf. Sci.
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: CR43
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 16
  start-page: 1741
  year: 2019
  end-page: 1745
  ident: CR45
  article-title: Hyperspectral image clustering based on unsupervised broad learning
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2907598
– volume: 32
  start-page: 12416
  year: 2019
  end-page: 12425
  ident: CR30
  article-title: Selective sampling-based scalable sparse subspace clustering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 38
  start-page: 1044
  year: 2000
  end-page: 1063
  ident: CR11
  article-title: An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.841984
– volume: 17
  start-page: 622
  year: 2008
  end-page: 629
  ident: CR16
  article-title: Customizing kernel functions for SVM-based hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.918955
– volume: 7
  start-page: 2094
  year: 2014
  end-page: 2107
  ident: CR24
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– ident: CR35
– volume: 17
  start-page: 1948
  year: 2020
  end-page: 1952
  ident: CR36
  article-title: Unsupervised segmentation of hyperspectral images using 3-d convolutional autoencoders
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2960945
– volume: 59
  start-page: 4191
  year: 2020
  end-page: 4202
  ident: CR41
  article-title: Graph convolutional subspace clustering: A robust subspace clustering framework for hyperspectral image
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3018135
– volume: 63
  start-page: 142
  year: 1999
  end-page: 150
  ident: CR42
  article-title: Delineation of soil variability using geostatistics and fuzzy clustering analyses of hyperspectral data
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.03615995006300010021x
– volume: 46
  start-page: 441
  year: 2016
  end-page: 451
  ident: CR12
  article-title: Spectral entropy feature subset selection using sepcor to detect alcoholic impact on gamma sub band visual event related potentials of multichannel electroencephalograms (eeg)
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.04.041
– volume: 7
  start-page: 101
  year: 2019
  end-page: 117
  ident: CR1
  article-title: Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2019.2902525
– volume: 57
  start-page: 6808
  year: 2019
  end-page: 6820
  ident: CR25
  article-title: Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder for hyperspectral classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2908756
– ident: CR27
– volume: 60
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR2
  article-title: Hyperspectral and multispectral classification for coastal wetland using depthwise feature interaction network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 40
  start-page: e13311
  year: 2023
  ident: CR6
  article-title: Hyperspectral imaging for early diagnosis of diseases: A review
  publication-title: Expert Syst.
  doi: 10.1111/exsy.13311
– ident: CR21
– volume: 348
  start-page: 84
  year: 2016
  end-page: 106
  ident: CR29
  article-title: A survey on soft subspace clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.101
– volume: 52
  start-page: 2186
  year: 2013
  end-page: 2196
  ident: CR14
  article-title: Bayesian active remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2258468
– volume: 60
  start-page: 1
  year: 2022
  end-page: 13
  ident: CR40
  article-title: Graph convolutional optimal transport for hyperspectral image spectral clustering
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 6
  start-page: 39501
  year: 2018
  end-page: 39514
  ident: CR33
  article-title: A survey of clustering with deep learning: From the perspective of network architecture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2855437
– volume: 8
  start-page: 42384
  year: 2020
  end-page: 42403
  ident: CR39
  article-title: Hyperspectral band selection using attention-based convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977454
– volume: 60
  start-page: 1
  year: 2021
  end-page: 20
  ident: CR3
  article-title: Impact of spectral resolution on quantifying cyanobacteria in lakes and reservoirs: A machine-learning assessment
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3114635
– volume: 31
  start-page: 1559
  year: 2022
  end-page: 1572
  ident: CR23
  article-title: Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3144017
– ident: CR17
– volume: 56
  start-page: 1579
  year: 2017
  end-page: 1597
  ident: CR8
  article-title: Recent advances on spectral-spatial hyperspectral image classification: An overview and new guidelines
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2765364
– volume: 9
  start-page: 1295
  year: 2020
  ident: CR26
  article-title: The k-means algorithm: A comprehensive survey and performance evaluation
  publication-title: Electronics
  doi: 10.3390/electronics9081295
– ident: CR31
– volume: 60
  start-page: 1
  year: 2021
  end-page: 14
  ident: CR4
  article-title: Multitarget multiple-instance learning for hyperspectral target detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3060966
– volume: 32
  start-page: 1124
  year: 2020
  end-page: 1135
  ident: CR5
  article-title: Regularizing hyperspectral and multispectral image fusion by CNN denoiser
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2980398
– volume: 578
  start-page: 85
  year: 2021
  end-page: 101
  ident: CR46
  article-title: Graph regularized residual subspace clustering network for hyperspectral image clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.07.003
– ident: CR32
– ident: CR34
– volume: 18
  start-page: 2142
  year: 2021
  end-page: 2146
  ident: CR37
  article-title: Unsupervised feature learning using recurrent neural nets for segmenting hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3013205
– volume: 56
  start-page: 4420
  year: 2018
  end-page: 4434
  ident: CR22
  article-title: 3-d deep learning approach for remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2818945
– volume: 9
  start-page: 556
  year: 2015
  end-page: 567
  ident: CR18
  article-title: Hyperspectral image classification via shape-adaptive joint sparse representation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2015.2477364
– volume: 31
  start-page: 2686
  year: 2021
  end-page: 2697
  ident: CR44
  article-title: Deep spatial-spectral subspace clustering for hyperspectral image
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.3027616
– ident: CR28
– volume: 158
  start-page: 35
  year: 2019
  end-page: 49
  ident: CR20
  article-title: Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction
  publication-title: ISPRS J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2019.09.008
– volume: 158
  start-page: 35
  year: 2019
  ident: 54547_CR20
  publication-title: ISPRS J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2019.09.008
– volume: 56
  start-page: 4420
  year: 2018
  ident: 54547_CR22
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2818945
– volume: 7
  start-page: 2094
  year: 2014
  ident: 54547_CR24
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– volume: 60
  start-page: 1
  year: 2021
  ident: 54547_CR2
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 348
  start-page: 84
  year: 2016
  ident: 54547_CR29
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.101
– volume: 38
  start-page: 1044
  year: 2000
  ident: 54547_CR11
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.841984
– ident: 54547_CR35
– volume: 60
  start-page: 1
  year: 2022
  ident: 54547_CR40
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 101
  year: 2019
  ident: 54547_CR1
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2019.2902525
– volume: 11
  start-page: 963
  year: 2019
  ident: 54547_CR38
  publication-title: Remote Sens.
  doi: 10.3390/rs11080963
– volume: 57
  start-page: 6808
  year: 2019
  ident: 54547_CR25
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2908756
– ident: 54547_CR31
– volume: 6
  start-page: 39501
  year: 2018
  ident: 54547_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2855437
– ident: 54547_CR27
– volume: 16
  start-page: 1741
  year: 2019
  ident: 54547_CR45
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2907598
– ident: 54547_CR21
– volume: 31
  start-page: 2686
  year: 2021
  ident: 54547_CR44
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.3027616
– volume: 17
  start-page: 395
  year: 2007
  ident: 54547_CR43
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 18
  start-page: 2142
  year: 2021
  ident: 54547_CR37
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3013205
– volume: 42
  start-page: 1778
  year: 2004
  ident: 54547_CR15
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.831865
– volume: 11
  year: 2021
  ident: 54547_CR7
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1426
– volume: 17
  start-page: 1948
  year: 2020
  ident: 54547_CR36
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2960945
– volume: 62
  start-page: 115
  year: 2002
  ident: 54547_CR10
  publication-title: Surv. Land Inf. Sci.
– volume: 58
  start-page: 2557
  year: 2019
  ident: 54547_CR19
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2952319
– volume: 31
  start-page: 1559
  year: 2022
  ident: 54547_CR23
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3144017
– volume: 17
  start-page: 622
  year: 2008
  ident: 54547_CR16
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.918955
– volume: 57
  start-page: 6690
  year: 2019
  ident: 54547_CR9
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2907932
– ident: 54547_CR28
  doi: 10.1201/9781315373515-8
– volume: 60
  start-page: 1
  year: 2021
  ident: 54547_CR4
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3060966
– volume: 578
  start-page: 85
  year: 2021
  ident: 54547_CR46
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.07.003
– volume: 40
  start-page: e13311
  year: 2023
  ident: 54547_CR6
  publication-title: Expert Syst.
  doi: 10.1111/exsy.13311
– ident: 54547_CR32
– ident: 54547_CR17
  doi: 10.1109/IGARSS.2007.4423159
– volume: 46
  start-page: 441
  year: 2016
  ident: 54547_CR12
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.04.041
– volume: 32
  start-page: 1124
  year: 2020
  ident: 54547_CR5
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2980398
– volume: 8
  start-page: 42384
  year: 2020
  ident: 54547_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977454
– ident: 54547_CR34
  doi: 10.1007/978-3-030-01264-9_9
– volume: 63
  start-page: 142
  year: 1999
  ident: 54547_CR42
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.03615995006300010021x
– volume: 56
  start-page: 55
  year: 1990
  ident: 54547_CR13
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 52
  start-page: 2186
  year: 2013
  ident: 54547_CR14
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2258468
– volume: 60
  start-page: 1
  year: 2021
  ident: 54547_CR3
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3114635
– volume: 32
  start-page: 12416
  year: 2019
  ident: 54547_CR30
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 556
  year: 2015
  ident: 54547_CR18
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2015.2477364
– volume: 9
  start-page: 1295
  year: 2020
  ident: 54547_CR26
  publication-title: Electronics
  doi: 10.3390/electronics9081295
– volume: 56
  start-page: 1579
  year: 2017
  ident: 54547_CR8
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2765364
– volume: 59
  start-page: 4191
  year: 2020
  ident: 54547_CR41
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3018135
SSID ssj0000529419
Score 2.4886122
Snippet Deep clustering has been widely applicated in various fields, including natural image and language processing. However, when it is applied to hyperspectral...
Abstract Deep clustering has been widely applicated in various fields, including natural image and language processing. However, when it is applied to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4209
SubjectTerms 639/705/117
639/705/258
Algorithms
Classification
Clustering
Data reduction
Deep learning
Embedding
Humanities and Social Sciences
Image processing
multidisciplinary
Neural networks
Principal components analysis
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JixUxEC5kUPAi7raOEsGbNpO1Ozmq4-BBBg8qc5GQzuI8mOk3vEXw31tJ-j3nuV68NE2nOhS1pCqk6gvAM6cHIzuRWua0aiUG7NYo3Lgaw2nwzmtRQH0-veuPj_XJiXl_6aqvXBNW4YGr4A5Ynxiusph36E72MuamA6-c6MxAfeQF5xOznkubqYrqzY1kZuqSoUIfLDFS5W4yLluVQaxavhOJCmD_77LMX4slfzoxLYHo6CbcmDJI8rJyfguuxPE2XKt3Sn67A58PY7wg_mydERBwApIr278QcUgykmapbSS51HwyOZzJrVfzDGcZ4oJgCktOcWtaOzCRETI7xxWHuAm75C58PHrz4fXbdrpDofVKslWrVFIiYJaEMjQpJRRe8l1vnAtyECEGhs_EEjfUS9ULT0XgKvZdMFTEoRP3YG-cj_EBEOp58J2XgxmixJeB-YwVM6QgtOOdaIBt5Gn9BDCe77k4s-WgW2hbdWBRB7bowPIGnm__uajwGn-lfpXVtKXM0NjlAxqMnQzG_stgGtjfKNlO_rq03ODOkSONbuDpdhg9LR-fuDHO14XGYHjgCqe4X21iy4kouPySNqB3rGWH1d2RcXZa0LwZ1X0uNmvgxcawfvD1Z1k8_B-yeATXefaI3KJP92FvtVjHx3DVf13NlosnxaW-A-o8Iak
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep clustering using 3D attention convolutional autoencoder for hyperspectral image analysis
URI https://link.springer.com/article/10.1038/s41598-024-54547-2
https://www.ncbi.nlm.nih.gov/pubmed/38378840
https://www.proquest.com/docview/2928723698
https://www.proquest.com/docview/2929538253
https://pubmed.ncbi.nlm.nih.gov/PMC10879088
https://doaj.org/article/17f103656586474e8360c5a369b0ce23
Volume 14
WOSCitedRecordID wos001173675500063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxIX3qWBsjISN4jq-JHYJ0RpK5DoKkKAlgOKEttpV2o3yz6Q-PfMON6tlkcvXKwodqJxZuyZeGa-IeRFrRsjc9GmWa1VKkFhp0bBj6sxnDlbWy0CqM-XD8VwqEcjU8YDt3kMq1ztiWGjdp3FM_IDbsC25yI3-vX0e4pVo9C7GktobJEdREkQIXSvXJ-xoBdLZibmyjChD-agrzCnjMtUIZRVyjf0UYDt_5ut-WfI5G9-06COTu7-70TukTvREKVvesm5T274yQNyqy9N-fMh-Xbk_ZTaiyUCKQAFFAPkz6g4ogjIGUIkKUasR8mFN9XLRYeomM7PKFjC9Bz-cPtETpgJHV_CxkXrCIHyiHw-Of709l0aSzGkVslskSrVKuHA2AKFZ9q2zZltbV6YunayEc67DNo2a7lhVqpCWCYcV77InWHCN7nYJduTbuL3CGWWO5tb2ZjGS7hoMouQM03rhK55LhKSrRhS2YhTjuUyLqrgLxe66plYAROrwMSKJ-Tl-plpj9Jx7ehD5PN6JCJshxvd7KyKC7bKihYeB2tX6VwW0mOyi1U1TL9h1nMgc3_F3iou-3l1xduEPF93w4JFL0w98d0yjDGgZbiCVzzuhWpNiQjw_pIlRG-I2wapmz2T8XkABc-YLjBmLSGvVpJ5Rde_v8WT66fxlNzmuFgwh5_tk-3FbOmfkZv2x2I8nw3IVjEqQqsHZOfweFh-HIRDDWhPeTkIqxF6yven5ddfyXo4rg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAcGFfRkoYCQ4QVTHS2IfEAKGqlWHUQ8F9YJMYjvtSGUyzALqn-I38p6TTDUsvfXAJRoljmV7vrc4fu97hDwrdGlkJqokLbRKJBjsxCjYuBrDmXeF0yKS-nwa5MOhPjgwe2vkZ5cLg2GVnU6MitrXDr-Rb3IDvj0XmdGvJ98SrBqFp6tdCY0GFrvh5Ads2Wavdvrw_z7nfOv9_rvtpK0qkDgl03miVKWEB78BdLepqipjrnJZborCy1L44FO4VmnFDXNS5cIx4bkKeeYNE6HMBPR7gVwEN4LrGCq4t_ymg6dmMjVtbg4TenMG9hFz2LhMFFJnJXzF_sUyAX_zbf8M0fztnDaav63r_9vC3SDXWkebvmkk4yZZC-Nb5HJTevPkNvncD2FC3fECiSJgxhQTAA6p6FMkHI0hoBQj8lvJhJ6KxbxG1k8fphQ8fXoEO_gmURVWjo6-gmKmRUvxcod8PJe53SXr43oc7hPKHPcuc7I0ZZDwo0wdUuqUlRe64JnokbQDgHUtDzuWAzm2MR5AaNuAxgJobASN5T3yYvnOpGEhObP1W8TVsiUyiMcb9fTQtgrJpnkFr4M3r3QmcxkwmcepAqZfMhc4DHOjg5Nt1drMnmKpR54uH4NCwlOmYhzqRWxjwIpyBV3ca0C8HImI5Qsk6xG9Au-Voa4-GY-OIul5ynSOMXk98rKThNNx_XstHpw9jSfkyvb-h4Ed7Ax3H5KrHAUV-QrYBlmfTxfhEbnkvs9Hs-njKOmUfDlvCfkFuPKPeg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgX7ozCACPBE0R1fEnsB4SAUjFtqvoAaC_IS2xnq7S1pRfQ_hq_jnOcpFO57G0PvERV4li2-52L43O-Q8jzQpdGZqJK0kKrRILBToyCjasxnHlXOC0iqc-XvXww0Pv7ZrhBfra5MBhW2erEqKj9xOE38i434NtzkRndrZqwiGGv_2b6LcEKUnjS2pbTqCGyG05_wPZt_nqnB__1C877Hz69_5g0FQYSp2S6SJSqlPDgQ4AeN1VVZcxVLstNUXhZCh98CtcqrbhhTqpcOCY8VyHPvGEilJmAfi-RyzmSlsewweHq-w6eoMnUNHk6TOjuHGwl5rNxmSik0Ur4mi2MJQP-5uf-Ga7525ltNIX9m__zIt4iNxoHnL6tJeY22QjjO-RqXZLz9C752gthSt3xEgkkYPYUEwMOqehRJCKNoaEUI_UbiYWeiuVigmygPswo7ADoEezs6wRWWEU6OgGFTYuG-uUe-Xwhc7tPNseTcXhAKHPcu8zJ0pRBwo8ydUi1U1Ze6IJnokPSFgzWNfzsWCbk2MY4AaFtDSALALIRQJZ3yMvVO9OaneTc1u8QY6uWyCweb0xmh7ZRVDbNK3gdvHylM5nLgEk-ThUw_ZK5wGGY2y20bKPu5vYMVx3ybPUYFBWePhXjMFnGNgasK1fQxVYN6NVIRCxrIFmH6DWorw11_cl4dBTJ0FOmc4zV65BXrVScjevfa_Hw_Gk8JddAMOzezmD3EbnOUWaRxoBtk83FbBkekyvu-2I0nz2JQk_JwUULyC_idZg3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+clustering+using+3D+attention+convolutional+autoencoder+for+hyperspectral+image+analysis&rft.jtitle=Scientific+reports&rft.au=Zheng%2C+Ziyou&rft.au=Zhang%2C+Shuzhen&rft.au=Song%2C+Hailong&rft.au=Yan%2C+Qi&rft.date=2024-02-20&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=4209&rft_id=info:doi/10.1038%2Fs41598-024-54547-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon