An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems

Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic seque...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 14; číslo 1; s. 20435 - 44
Hlavní autori: Qi, Zhang, Yingjie, Dong, Shan, Ye, Xu, Li, Dongcheng, He, Guoqi, Xiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 03.09.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified.
AbstractList Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified.Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified.
Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified.
Abstract Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified.
ArticleNumber 20435
Author Shan, Ye
Xu, Li
Qi, Zhang
Guoqi, Xiang
Dongcheng, He
Yingjie, Dong
Author_xml – sequence: 1
  givenname: Zhang
  surname: Qi
  fullname: Qi, Zhang
  organization: Chengdu Technological University, Panzhihua University
– sequence: 2
  givenname: Dong
  surname: Yingjie
  fullname: Yingjie, Dong
  organization: Panzhihua Hangyou New Material Technology Co., Ltd
– sequence: 3
  givenname: Ye
  surname: Shan
  fullname: Shan, Ye
  email: sourlemonant@126.com
  organization: Panzhihua University
– sequence: 4
  givenname: Li
  surname: Xu
  fullname: Xu, Li
  organization: Chengdu Technological University
– sequence: 5
  givenname: He
  surname: Dongcheng
  fullname: Dongcheng, He
  organization: Panzhihua University
– sequence: 6
  givenname: Xiang
  surname: Guoqi
  fullname: Guoqi, Xiang
  organization: Panzhihua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39227613$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v3CAQRVWqJk3zB3qokHrpxS3f2KdqtepHpEi5tGeEzdhhZYML3kTtry-7m6abHIIQjOC9NwPzXqOTEAMg9JaSj5Tw-lMWVDZ1RZioNJFaVuIFOmNEyIpxxk6O4lN0kfOGlCFZI2jzCp3yhjGtKD9DYRWwn-YUb8HhdbSLx9fz4if_p4Qx4NU4xOSXmwnflRVP23Hx8wg4L8kuMHjIuI8JQxh8AEg-DNhB9kPA8VimJGhHmPIb9LK3Y4aL-_0c_fz65cf6e3V1_e1yvbqqOinoUgnXOt3qHsAx2be10pZTzakVjZZMEdFyqSy0nHS8c46C5NCD6hQhtLa65-fo8qDrot2YOfnJpt8mWm_2BzENxqbFdyOYlhAFDRe1tkq4TrXgmsa1PWlLYl7mOfp80Jq37QSug1DePj4SfXwT_I0Z4q2hlGtGuSoKH-4VUvy1hbyYyecOxtEGiNtsOC29UZTVskDfP4Fu4jaF8ld7FFdC6B3q3XFJD7X862sBsAOgSzHnBP0DhBKz8485-McU_5i9f4wopPoJqfPLvn_lWX58nsoP1DzvPADpf9nPsP4CONrcfg
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3601091
crossref_primary_10_1038_s41598_025_94260_2
crossref_primary_10_1088_1742_6596_3039_1_012003
crossref_primary_10_1371_journal_pone_0318021
crossref_primary_10_1371_journal_pone_0329332
crossref_primary_10_3390_biomimetics10050323
Cites_doi 10.3389/fmech.2022.1126450
10.1080/17445760.2024.2350010
10.1080/00387010.2023.2285510
10.1007/s00366-022-01604-x
10.1016/j.knosys.2023.110984
10.1016/j.advengsoft.2022.103276
10.1109/ACCESS.2021.3106269
10.1038/s41598-024-57098-8
10.1002/cpe.5949
10.1038/s41598-022-27144-4
10.1016/j.ins.2024.120823
10.1007/s11227-021-04255-9
10.1371/journal.pone.0260725
10.3934/mbe.2022105
10.1016/j.aej.2023.11.004
10.1016/j.compbiomed.2024.108329
10.1016/j.knosys.2024.111389
10.3390/pr12030479
10.3390/biomimetics8020149
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-70575-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 44
ExternalDocumentID oai_doaj_org_article_b006e93487a64dc6bed99dbf0bfb83b8
PMC11372136
39227613
10_1038_s41598_024_70575_4
Genre Journal Article
GrantInformation_xml – fundername: the University Key Laboratory of Sichuan in Process Equipment and Control Engineering
  grantid: GK201905
– fundername: Natural Science Foundation of Sichuan Province
  grantid: 2022NSFSC0454
  funderid: http://dx.doi.org/10.13039/501100018542
– fundername: Key Laboratory of Fluid and Power Machinery, Ministry of Education
  grantid: LTDL2020-006
  funderid: http://dx.doi.org/10.13039/501100011159
– fundername: Panzhihua City Science and Technology Program with Targeted financial transfer payment
  grantid: 222Y2F-GG-04
– fundername: Sichuan Science and Technology Program
  grantid: 2023ZYD01396
– fundername: Sichuan Technology & Engineering Research Center for Vanadium Titanium Materials
  grantid: 2020FTGC-Z-02
– fundername: Natural Science Foundation of Sichuan Province
  grantid: 2022NSFSC0454
– fundername: Key Laboratory of Fluid and Power Machinery, Ministry of Education
  grantid: LTDL2020-006
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-4dbd7b7feed25fb867a31731a49752604b356aeb30c3cdd1e53efe6c60018a7f3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305757100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:33:07 EST 2025
Tue Nov 04 02:05:01 EST 2025
Sun Aug 24 02:53:17 EDT 2025
Tue Oct 07 08:07:28 EDT 2025
Wed Feb 19 02:07:38 EST 2025
Tue Nov 18 20:58:51 EST 2025
Sat Nov 29 05:24:06 EST 2025
Fri Feb 21 02:37:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CEC2017
Engineering design optimization problems
Alert updating strategy
COA
Adaptive T-distribution variation strategy
Chaotic sequence
Nonlinear inertia weight
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-4dbd7b7feed25fb867a31731a49752604b356aeb30c3cdd1e53efe6c60018a7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b006e93487a64dc6bed99dbf0bfb83b8
PMID 39227613
PQID 3100364475
PQPubID 2041939
PageCount 44
ParticipantIDs doaj_primary_oai_doaj_org_article_b006e93487a64dc6bed99dbf0bfb83b8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11372136
proquest_miscellaneous_3100561285
proquest_journals_3100364475
pubmed_primary_39227613
crossref_primary_10_1038_s41598_024_70575_4
crossref_citationtrail_10_1038_s41598_024_70575_4
springer_journals_10_1038_s41598_024_70575_4
PublicationCentury 2000
PublicationDate 2024-09-03
PublicationDateYYYYMMDD 2024-09-03
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhang, Mo (CR5) 2022; 78
Dehghani, Trojovský (CR16) 2023
Chopra, Mohsin Ansari, Seyyedabbasi, Kiani (CR17) 2023; 39
Fan (CR4) 2021; 16
Zhu, Zhu, Li, Qiu (CR10) 2024
Vashishtha (CR20) 2023; 280
Liu, Ma, Li (CR8) 2021; 14
Trojovský, Dehghani (CR18) 2023; 8
Chauhan (CR22) 2024; 286
Fan (CR2) 2023; 10
Jia (CR3) 2023; 10
Chopra, Mohsin Ansari, Seyyedabbasi, Kiani (CR15) 2022; 198
Chauhan (CR21) 2024; 677
Seyyedabbasi (CR28) 2023; 39
Sang-To, Le-Minh, Mirjalili, Abdel Wahab, Cuong-Le (CR24) 2022; 173
Sang-To, Le-Minh, Mirjalili, Abdel Wahab, Cuong-Le (CR27) 2023; 13
Ding, Wu, Zhao (CR6) 2020; 32
Cao, Han, Rong, Zhan, Liu (CR9) 2023; 51
Liu, Wang (CR11) 2021; 9
CR7
Ji, Dogani, Jin, Zhang (CR13) 2024; 12
Hashim, Houssein, Mostafa, Hussien, Helmy (CR14) 2023; 85
Houssein, Hammad, Emam, Ali (CR19) 2024; 173
Yin, Tian, Zhang, Li (CR12) 2024; 57
Hassan, Kamel, Mohamed (CR26) 2024; 14
Chauhan (CR25) 2020; 56
Dehghani, Montazeri, Trojovská, Trojovský (CR1) 2023; 259
Yin, Luo, Du, Zhou (CR23) 2022; 19
J Fan (70575_CR2) 2023; 10
S Chauhan (70575_CR21) 2024; 677
H Jia (70575_CR3) 2023; 10
70575_CR7
P Trojovský (70575_CR18) 2023; 8
S Chauhan (70575_CR22) 2024; 286
G Vashishtha (70575_CR20) 2023; 280
X Yin (70575_CR12) 2024; 57
T Sang-To (70575_CR24) 2022; 173
J-S Liu (70575_CR8) 2021; 14
K Ji (70575_CR13) 2024; 12
M Dehghani (70575_CR16) 2023
S Chauhan (70575_CR25) 2020; 56
J Fan (70575_CR4) 2021; 16
Y Zhang (70575_CR5) 2022; 78
N Chopra (70575_CR17) 2023; 39
FA Hashim (70575_CR14) 2023; 85
MH Hassan (70575_CR26) 2024; 14
H Ding (70575_CR6) 2020; 32
M Dehghani (70575_CR1) 2023; 259
S Yin (70575_CR23) 2022; 19
EH Houssein (70575_CR19) 2024; 173
Y Cao (70575_CR9) 2023; 51
N Chopra (70575_CR15) 2022; 198
M Zhu (70575_CR10) 2024
J Liu (70575_CR11) 2021; 9
T Sang-To (70575_CR27) 2023; 13
A Seyyedabbasi (70575_CR28) 2023; 39
References_xml – year: 2023
  ident: CR16
  article-title: Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2022.1126450
– volume: 51
  start-page: 108
  year: 2023
  end-page: 116
  ident: CR9
  article-title: Dispatch of a cascade hydro-thermal-wind-photovoltaic-storage complementary system based on GCTMSA
  publication-title: Dianli Xitong Baohu yu Kongzhi/Power Syst. Prot. Control
– year: 2024
  ident: CR10
  article-title: An improved slime mould algorithm using multiple strategies
  publication-title: Int. J. Parallel Emergent Distrib. Syst.
  doi: 10.1080/17445760.2024.2350010
– volume: 57
  start-page: 31
  year: 2024
  end-page: 44
  ident: CR12
  article-title: Quantitative analysis of millet mixtures based on terahertz time-domain spectroscopy and improved Coati optimization algorithm
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387010.2023.2285510
– volume: 39
  start-page: 2627
  year: 2023
  end-page: 2651
  ident: CR28
  article-title: Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01604-x
– volume: 280
  year: 2023
  ident: CR20
  article-title: Intelligent fault diagnosis of worm gearbox based on adaptive CNN using amended gorilla troop optimization with quantum gate mutation strategy
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110984
– volume: 173
  year: 2022
  ident: CR24
  article-title: A new movement strategy of grey wolf optimizer for optimization problems and structural damage identification
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103276
– volume: 9
  start-page: 117581
  year: 2021
  end-page: 117595
  ident: CR11
  article-title: A hybrid sparrow search algorithm based on constructing similarity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3106269
– volume: 14
  start-page: 7650
  year: 2024
  ident: CR26
  article-title: Enhanced gorilla troops optimizer powered by marine predator algorithm: Global optimization and engineering design
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-57098-8
– volume: 32
  start-page: 5949
  year: 2020
  ident: CR6
  article-title: Whale optimization algorithm based on nonlinear convergence factor and chaotic inertial weight
  publication-title: Concurr. Comput.
  doi: 10.1002/cpe.5949
– volume: 13
  start-page: 124
  year: 2023
  ident: CR27
  article-title: Enhancing grasshopper optimization algorithm (GOA) with levy flight for engineering applications
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-27144-4
– volume: 259
  year: 2023
  ident: CR1
  article-title: Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 677
  year: 2024
  ident: CR21
  article-title: A quasi-reflected and Gaussian mutated arithmetic optimisation algorithm for global optimisation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120823
– volume: 78
  start-page: 10950
  year: 2022
  end-page: 10996
  ident: CR5
  article-title: Chaotic adaptive sailfish optimizer with genetic characteristics for global optimization
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-04255-9
– volume: 56
  year: 2020
  ident: CR25
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 16
  year: 2021
  ident: CR4
  article-title: An improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0260725
– volume: 14
  start-page: 1068
  year: 2021
  end-page: 1076
  ident: CR8
  article-title: Enhanced gorilla troops optimizer powered by marine predator algorithm: Global optimization and engineering design
  publication-title: Sci. Rep.
– volume: 198
  year: 2022
  ident: CR15
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Eng. Comput.
– volume: 39
  start-page: 2627
  year: 2023
  end-page: 2651
  ident: CR17
  article-title: Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01604-x
– volume: 19
  start-page: 2240
  year: 2022
  end-page: 2285
  ident: CR23
  article-title: DTSMA: Dominant swarm with adaptive T-distribution mutation-based slime mould algorithm
  publication-title: MBE
  doi: 10.3934/mbe.2022105
– volume: 85
  start-page: 29
  year: 2023
  end-page: 48
  ident: CR14
  article-title: An efficient adaptive-mutated Coati optimization algorithm for feature selection and global optimization
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.11.004
– volume: 10
  start-page: 2065
  year: 2023
  end-page: 2093
  ident: CR2
  article-title: Modified beluga whale optimization with multi-strategies for solving engineering problems
  publication-title: J. Comput. Des. Eng.
– volume: 10
  start-page: 2223
  year: 2023
  end-page: 2250
  ident: CR3
  article-title: Improve Coati optimization algorithm for solving constrained engineering optimization problems
  publication-title: J. Comput. Des. Eng.
– volume: 173
  year: 2024
  ident: CR19
  article-title: An enhanced Coati Optimization Algorithm for global optimization and feature selection in EEG emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108329
– volume: 286
  year: 2024
  ident: CR22
  article-title: Parallel structure of crayfish optimization with arithmetic optimization for classifying the friction behaviour of Ti-6Al-4V alloy for complex machinery applications
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.111389
– ident: CR7
– volume: 12
  start-page: 479
  year: 2024
  ident: CR13
  article-title: Integrating improved Coati Optimization Algorithm and bidirectional long short-term memory network for advanced fault warning in industrial systems
  publication-title: Processes
  doi: 10.3390/pr12030479
– volume: 8
  start-page: 149
  year: 2023
  ident: CR18
  article-title: Subtraction-average-based optimizer: a new swarm-inspired metaheuristic algorithm for solving optimization problems
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8020149
– volume: 19
  start-page: 2240
  year: 2022
  ident: 70575_CR23
  publication-title: MBE
  doi: 10.3934/mbe.2022105
– volume: 12
  start-page: 479
  year: 2024
  ident: 70575_CR13
  publication-title: Processes
  doi: 10.3390/pr12030479
– volume: 280
  year: 2023
  ident: 70575_CR20
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110984
– year: 2024
  ident: 70575_CR10
  publication-title: Int. J. Parallel Emergent Distrib. Syst.
  doi: 10.1080/17445760.2024.2350010
– volume: 9
  start-page: 117581
  year: 2021
  ident: 70575_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3106269
– volume: 57
  start-page: 31
  year: 2024
  ident: 70575_CR12
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387010.2023.2285510
– volume: 85
  start-page: 29
  year: 2023
  ident: 70575_CR14
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.11.004
– volume: 10
  start-page: 2065
  year: 2023
  ident: 70575_CR2
  publication-title: J. Comput. Des. Eng.
– volume: 14
  start-page: 1068
  year: 2021
  ident: 70575_CR8
  publication-title: Sci. Rep.
– volume: 286
  year: 2024
  ident: 70575_CR22
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.111389
– volume: 173
  year: 2022
  ident: 70575_CR24
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103276
– volume: 39
  start-page: 2627
  year: 2023
  ident: 70575_CR28
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01604-x
– volume: 198
  year: 2022
  ident: 70575_CR15
  publication-title: Eng. Comput.
– volume: 39
  start-page: 2627
  year: 2023
  ident: 70575_CR17
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01604-x
– volume: 51
  start-page: 108
  year: 2023
  ident: 70575_CR9
  publication-title: Dianli Xitong Baohu yu Kongzhi/Power Syst. Prot. Control
– volume: 677
  year: 2024
  ident: 70575_CR21
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120823
– volume: 56
  year: 2020
  ident: 70575_CR25
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 173
  year: 2024
  ident: 70575_CR19
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108329
– year: 2023
  ident: 70575_CR16
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2022.1126450
– volume: 8
  start-page: 149
  year: 2023
  ident: 70575_CR18
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8020149
– volume: 78
  start-page: 10950
  year: 2022
  ident: 70575_CR5
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-04255-9
– ident: 70575_CR7
– volume: 10
  start-page: 2223
  year: 2023
  ident: 70575_CR3
  publication-title: J. Comput. Des. Eng.
– volume: 259
  year: 2023
  ident: 70575_CR1
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 14
  start-page: 7650
  year: 2024
  ident: 70575_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-57098-8
– volume: 16
  year: 2021
  ident: 70575_CR4
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0260725
– volume: 32
  start-page: 5949
  year: 2020
  ident: 70575_CR6
  publication-title: Concurr. Comput.
  doi: 10.1002/cpe.5949
– volume: 13
  start-page: 124
  year: 2023
  ident: 70575_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-27144-4
SSID ssj0000529419
Score 2.472131
Snippet Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local...
Abstract Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20435
SubjectTerms 639/166
639/705
Adaptive T-distribution variation strategy
Alert updating strategy
Algorithms
CEC2017
Chaotic sequence
COA
Convergence
Design engineering
Design optimization
Humanities and Social Sciences
multidisciplinary
Nonlinear inertia weight
Optimization algorithms
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: ProQuest Biological Science
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaggMSFfQkUZCRuEHW8JHZOaKioOKDSA0i9WfGSdqQ2KZMUiX_Pe46TYVh64RYljmX7s9_u9wh57W3JOfMitzKIXFp40rIAZcWJhllVA8eOSH9Sh4f6-Lg6Sga3PoVVTjQxEmrfObSR76EhWpSYnu7dxbccq0ahdzWV0LhObmCWBBFD945mGwt6sSSr0l2ZhdB7PfArvFPGZa5QUsnlFj-Kafv_Jmv-GTL5m980sqODu_87kXvkThJE6XLcOffJtdA-ILfG0pQ_HpJ22dJVNDgET_c7wI9-Bupynq5t0uXZCXQ6nJ5TtOTSKS6R9sOUe4KCOEzDJt0h9TFYhHa_dpPq2fSPyNeDD1_2P-apNkPuCsmGXHrrlVUNsFheNFaXqgZJRLBaVqoAHUlaUZQ1aOoLJ5z3LBQiNKF0KF_pWjXiMdlpuzY8JVTzOjhhBXewLE0AghG41UzaSitnfZURNiFkXEpcjvUzzkx0oAttRlQNoGoiqkZm5M38z8WYtuPK1u8R-LklptyOL7r1iUkn2CB9CpUABa8upXelDb6qvG0WFqYvrM7I7oS3SXSgNxuwM_Jq_gwnGN0ydRu6y7EN1ijV0ObJuMvmkYD0yhVIXBnRW_tva6jbX9rVacwSzpgA7V6UGXk7bdXNuP69Fs-unsZzcpvj6UGXmtglO8P6MrwgN933YdWvX8bj9xPb4Tm4
  priority: 102
  providerName: ProQuest
Title An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems
URI https://link.springer.com/article/10.1038/s41598-024-70575-4
https://www.ncbi.nlm.nih.gov/pubmed/39227613
https://www.proquest.com/docview/3100364475
https://www.proquest.com/docview/3100561285
https://pubmed.ncbi.nlm.nih.gov/PMC11372136
https://doaj.org/article/b006e93487a64dc6bed99dbf0bfb83b8
Volume 14
WOSCitedRecordID wos001305757100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BLkhcEG8CS2UkbhBRPxI7x-5qVyCxJUIglZMVP8JW2k1Qm0Xi3zN2km7L88LFqhqncueR-SZjfwPwwpmcMep4aoTnqTD4SYkMkxXLa2pkhRE7avqdnM_VYlGUW62-wp6wnh64F1xocpj7giOurnLhbG68Kwpn6qmpjeImHvNF1LOVTPWs3qwQtBhOyUy5er3GSBVOkzGRyoBRUrETiSJh_-9Q5q-bJX-qmMZAdHIHbg8Iksz6ld-Fa765Bzf7npLf70Mza8gyvinwjhy1KHjyHh8LF8N5SzI7_9Kult3ZBQmvYMm4oZCsu5E0giCOJf6Kp5C4uMuDtNs_MzSiWT-ATyfHH4_epENThdRmgnapcMZJI2uMjSxDEeayQgjBaSUKmWFyIwzP8gpT7Knl1jnqM-5rn9sAjFQla_4Q9pq28Y-BKFZ5yw1nluei9ujpnhlFhSmUtMYVCdBRwNoOjOOh8cW5jpVvrnSvFI1K0VEpWiTwcnPP155v46-zD4PeNjMDV3b8Ai1IDxak_2VBCRyMWteDA691qHvgvxIyS-D55jK6XqinVI1vL_s5obmowjmPeiPZrARhJ5MIlRJQO-azs9TdK83yLNJ7U8oxLed5Aq9GS7ta159l8eR_yOIp3GLBRULFjB_AXre69M_ghv3WLderCVyXCxlHNYH9w-N5-WES_Q7HU1aGUeK4X749LT__AEzWNAY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFHXjyTOAaGlULXqsvRQpN5M_Ei7UpuUzRbUP8VvZOwkuyyP3nrgFiWO5cc3D8-MZwBeWJ0yRi2PtXA8FhqfpEjwsGJ4SXVWoMQOOz3KxmO5v5_vrsCP_i6MD6vseWJg1LY23ka-7g3RPPXp6d6efI191SjvXe1LaLSw2HFn3_HI1rzZfo_7-5KxzQ97G1txV1UgNomgs1hYbTOdlSgcWFJqmWYFylBOC5FnCWr3QvMkLfCMOTDcWEtdwl3pUuM1A1lkJcd-L8FlVCOYDKGCu3ObjveaCZp3d3MGXK43KB_9HTYm4sxrRrFYkn-hTMDfdNs_QzR_89MG8bd5839buFtwo1O0ybCljNuw4qo7cLUtvXl2F6phRSbBoOIs2agRn-QTcs_j7loqGR4d4CRmh8fEW6pJH3dJmlmfW4Oguk_cIp0jsSEYhtS_dtPV62nuwecLmex9WK3qyj0EIlnhDNecGdyG0iFDdExLKnQuM6NtHgHtEaFMl5jd1wc5UiFAgEvVokghilRAkRIRvJr_c9KmJTm39TsPtHlLn1I8vKinB6rjUMrzX5dzPMAWqbAm1c7mudXlQOP0uZYRrPX4Uh2fa9QCXBE8n39GDuXdTkXl6tO2ja_BKrHNgxbV85Ggds4y1CgjkEt4Xxrq8pdqchiyoFPKM0Z5GsHrnjQW4_r3Wjw6fxrP4NrW3seRGm2Pdx7DdeYp17sP-Rqszqan7glcMd9mk2b6NJA-gS8XTTI_AT82l-c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmgmthM7B4SGloqq1TAHkHoz8ZJ2pDYpkymof41fx7OTzDAsvfXALUqcyI6_tz-_B_DC6ozSxLJYc8dirvFK8hSNFcPKRIsCJXbY6T0xHsv9_XyyBj_6szA-rbLniYFR29p4H_nAO6JZ5svTDcouLWKytf325GvsO0j5SGvfTqOFyK47-47mW_NmZwv3-iWl2-8_bX6Iuw4DsUl5Mo-51VZoUaKgoGmpZSYKlKcsKXguUtT0uWZpVqC9OTTMWJu4lLnSZcZrCbIQJcPvXoLLwhctD2mDk4V_x0fQeJJ353SGTA4alJX-PBvlsfBaUsxXZGFoGfA3PffPdM3fYrZBFG7f_J9_4i240SngZNRSzG1Yc9UduNq25Dy7C9WoItPgaHGWbNaIW_IRuepxd1yVjI4OcBHzw2PiPdikz8ckzbyvuUHQDCBuWeaR2JAkQ-pfP9P18WnuwecLWex9WK_qyj0EImnhDNOMGtyS0iGjdFTLhOtcCqNtHkHSo0OZrmC77xtypELiAJOqRZRCRKmAKMUjeLV456QtV3Lu6HcedIuRvtR4uFHPDlTHuZTnyy5naNgWGbcm087mudXlUOPymZYRbPRYUx3_a9QSaBE8XzxGzuXDUUXl6tN2jO_NKnHMgxbhi5mg1k4FapoRyBXsr0x19Uk1PQzV0ZOECZqwLILXPZks5_Xvf_Ho_GU8g2tIKWpvZ7z7GK5TT8Q-qsg2YH0-O3VP4Ir5Np82s6eBCxD4ctEU8xMEgaCk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+Coati+Optimization+Algorithm+with+multiple+strategies+for+engineering+design+optimization+problems&rft.jtitle=Scientific+reports&rft.au=Zhang+Qi&rft.au=Dong+Yingjie&rft.au=Ye+Shan&rft.au=Li+Xu&rft.date=2024-09-03&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=44&rft_id=info:doi/10.1038%2Fs41598-024-70575-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b006e93487a64dc6bed99dbf0bfb83b8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon