An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems
Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic seque...
Uložené v:
| Vydané v: | Scientific reports Ročník 14; číslo 1; s. 20435 - 44 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
03.09.2024
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified. |
|---|---|
| AbstractList | Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified.Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified. Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified. Abstract Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified. |
| ArticleNumber | 20435 |
| Author | Shan, Ye Xu, Li Qi, Zhang Guoqi, Xiang Dongcheng, He Yingjie, Dong |
| Author_xml | – sequence: 1 givenname: Zhang surname: Qi fullname: Qi, Zhang organization: Chengdu Technological University, Panzhihua University – sequence: 2 givenname: Dong surname: Yingjie fullname: Yingjie, Dong organization: Panzhihua Hangyou New Material Technology Co., Ltd – sequence: 3 givenname: Ye surname: Shan fullname: Shan, Ye email: sourlemonant@126.com organization: Panzhihua University – sequence: 4 givenname: Li surname: Xu fullname: Xu, Li organization: Chengdu Technological University – sequence: 5 givenname: He surname: Dongcheng fullname: Dongcheng, He organization: Panzhihua University – sequence: 6 givenname: Xiang surname: Guoqi fullname: Guoqi, Xiang organization: Panzhihua University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39227613$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1v3CAQRVWqJk3zB3qokHrpxS3f2KdqtepHpEi5tGeEzdhhZYML3kTtry-7m6abHIIQjOC9NwPzXqOTEAMg9JaSj5Tw-lMWVDZ1RZioNJFaVuIFOmNEyIpxxk6O4lN0kfOGlCFZI2jzCp3yhjGtKD9DYRWwn-YUb8HhdbSLx9fz4if_p4Qx4NU4xOSXmwnflRVP23Hx8wg4L8kuMHjIuI8JQxh8AEg-DNhB9kPA8VimJGhHmPIb9LK3Y4aL-_0c_fz65cf6e3V1_e1yvbqqOinoUgnXOt3qHsAx2be10pZTzakVjZZMEdFyqSy0nHS8c46C5NCD6hQhtLa65-fo8qDrot2YOfnJpt8mWm_2BzENxqbFdyOYlhAFDRe1tkq4TrXgmsa1PWlLYl7mOfp80Jq37QSug1DePj4SfXwT_I0Z4q2hlGtGuSoKH-4VUvy1hbyYyecOxtEGiNtsOC29UZTVskDfP4Fu4jaF8ld7FFdC6B3q3XFJD7X862sBsAOgSzHnBP0DhBKz8485-McU_5i9f4wopPoJqfPLvn_lWX58nsoP1DzvPADpf9nPsP4CONrcfg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3601091 crossref_primary_10_1038_s41598_025_94260_2 crossref_primary_10_1088_1742_6596_3039_1_012003 crossref_primary_10_1371_journal_pone_0318021 crossref_primary_10_1371_journal_pone_0329332 crossref_primary_10_3390_biomimetics10050323 |
| Cites_doi | 10.3389/fmech.2022.1126450 10.1080/17445760.2024.2350010 10.1080/00387010.2023.2285510 10.1007/s00366-022-01604-x 10.1016/j.knosys.2023.110984 10.1016/j.advengsoft.2022.103276 10.1109/ACCESS.2021.3106269 10.1038/s41598-024-57098-8 10.1002/cpe.5949 10.1038/s41598-022-27144-4 10.1016/j.ins.2024.120823 10.1007/s11227-021-04255-9 10.1371/journal.pone.0260725 10.3934/mbe.2022105 10.1016/j.aej.2023.11.004 10.1016/j.compbiomed.2024.108329 10.1016/j.knosys.2024.111389 10.3390/pr12030479 10.3390/biomimetics8020149 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-70575-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 44 |
| ExternalDocumentID | oai_doaj_org_article_b006e93487a64dc6bed99dbf0bfb83b8 PMC11372136 39227613 10_1038_s41598_024_70575_4 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: the University Key Laboratory of Sichuan in Process Equipment and Control Engineering grantid: GK201905 – fundername: Natural Science Foundation of Sichuan Province grantid: 2022NSFSC0454 funderid: http://dx.doi.org/10.13039/501100018542 – fundername: Key Laboratory of Fluid and Power Machinery, Ministry of Education grantid: LTDL2020-006 funderid: http://dx.doi.org/10.13039/501100011159 – fundername: Panzhihua City Science and Technology Program with Targeted financial transfer payment grantid: 222Y2F-GG-04 – fundername: Sichuan Science and Technology Program grantid: 2023ZYD01396 – fundername: Sichuan Technology & Engineering Research Center for Vanadium Titanium Materials grantid: 2020FTGC-Z-02 – fundername: Natural Science Foundation of Sichuan Province grantid: 2022NSFSC0454 – fundername: Key Laboratory of Fluid and Power Machinery, Ministry of Education grantid: LTDL2020-006 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-4dbd7b7feed25fb867a31731a49752604b356aeb30c3cdd1e53efe6c60018a7f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305757100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:33:07 EST 2025 Tue Nov 04 02:05:01 EST 2025 Sun Aug 24 02:53:17 EDT 2025 Tue Oct 07 08:07:28 EDT 2025 Wed Feb 19 02:07:38 EST 2025 Tue Nov 18 20:58:51 EST 2025 Sat Nov 29 05:24:06 EST 2025 Fri Feb 21 02:37:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | CEC2017 Engineering design optimization problems Alert updating strategy COA Adaptive T-distribution variation strategy Chaotic sequence Nonlinear inertia weight |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-4dbd7b7feed25fb867a31731a49752604b356aeb30c3cdd1e53efe6c60018a7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/b006e93487a64dc6bed99dbf0bfb83b8 |
| PMID | 39227613 |
| PQID | 3100364475 |
| PQPubID | 2041939 |
| PageCount | 44 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b006e93487a64dc6bed99dbf0bfb83b8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11372136 proquest_miscellaneous_3100561285 proquest_journals_3100364475 pubmed_primary_39227613 crossref_primary_10_1038_s41598_024_70575_4 crossref_citationtrail_10_1038_s41598_024_70575_4 springer_journals_10_1038_s41598_024_70575_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-03 |
| PublicationDateYYYYMMDD | 2024-09-03 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Zhang, Mo (CR5) 2022; 78 Dehghani, Trojovský (CR16) 2023 Chopra, Mohsin Ansari, Seyyedabbasi, Kiani (CR17) 2023; 39 Fan (CR4) 2021; 16 Zhu, Zhu, Li, Qiu (CR10) 2024 Vashishtha (CR20) 2023; 280 Liu, Ma, Li (CR8) 2021; 14 Trojovský, Dehghani (CR18) 2023; 8 Chauhan (CR22) 2024; 286 Fan (CR2) 2023; 10 Jia (CR3) 2023; 10 Chopra, Mohsin Ansari, Seyyedabbasi, Kiani (CR15) 2022; 198 Chauhan (CR21) 2024; 677 Seyyedabbasi (CR28) 2023; 39 Sang-To, Le-Minh, Mirjalili, Abdel Wahab, Cuong-Le (CR24) 2022; 173 Sang-To, Le-Minh, Mirjalili, Abdel Wahab, Cuong-Le (CR27) 2023; 13 Ding, Wu, Zhao (CR6) 2020; 32 Cao, Han, Rong, Zhan, Liu (CR9) 2023; 51 Liu, Wang (CR11) 2021; 9 CR7 Ji, Dogani, Jin, Zhang (CR13) 2024; 12 Hashim, Houssein, Mostafa, Hussien, Helmy (CR14) 2023; 85 Houssein, Hammad, Emam, Ali (CR19) 2024; 173 Yin, Tian, Zhang, Li (CR12) 2024; 57 Hassan, Kamel, Mohamed (CR26) 2024; 14 Chauhan (CR25) 2020; 56 Dehghani, Montazeri, Trojovská, Trojovský (CR1) 2023; 259 Yin, Luo, Du, Zhou (CR23) 2022; 19 J Fan (70575_CR2) 2023; 10 S Chauhan (70575_CR21) 2024; 677 H Jia (70575_CR3) 2023; 10 70575_CR7 P Trojovský (70575_CR18) 2023; 8 S Chauhan (70575_CR22) 2024; 286 G Vashishtha (70575_CR20) 2023; 280 X Yin (70575_CR12) 2024; 57 T Sang-To (70575_CR24) 2022; 173 J-S Liu (70575_CR8) 2021; 14 K Ji (70575_CR13) 2024; 12 M Dehghani (70575_CR16) 2023 S Chauhan (70575_CR25) 2020; 56 J Fan (70575_CR4) 2021; 16 Y Zhang (70575_CR5) 2022; 78 N Chopra (70575_CR17) 2023; 39 FA Hashim (70575_CR14) 2023; 85 MH Hassan (70575_CR26) 2024; 14 H Ding (70575_CR6) 2020; 32 M Dehghani (70575_CR1) 2023; 259 S Yin (70575_CR23) 2022; 19 EH Houssein (70575_CR19) 2024; 173 Y Cao (70575_CR9) 2023; 51 N Chopra (70575_CR15) 2022; 198 M Zhu (70575_CR10) 2024 J Liu (70575_CR11) 2021; 9 T Sang-To (70575_CR27) 2023; 13 A Seyyedabbasi (70575_CR28) 2023; 39 |
| References_xml | – year: 2023 ident: CR16 article-title: Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2022.1126450 – volume: 51 start-page: 108 year: 2023 end-page: 116 ident: CR9 article-title: Dispatch of a cascade hydro-thermal-wind-photovoltaic-storage complementary system based on GCTMSA publication-title: Dianli Xitong Baohu yu Kongzhi/Power Syst. Prot. Control – year: 2024 ident: CR10 article-title: An improved slime mould algorithm using multiple strategies publication-title: Int. J. Parallel Emergent Distrib. Syst. doi: 10.1080/17445760.2024.2350010 – volume: 57 start-page: 31 year: 2024 end-page: 44 ident: CR12 article-title: Quantitative analysis of millet mixtures based on terahertz time-domain spectroscopy and improved Coati optimization algorithm publication-title: Spectrosc. Lett. doi: 10.1080/00387010.2023.2285510 – volume: 39 start-page: 2627 year: 2023 end-page: 2651 ident: CR28 article-title: Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-022-01604-x – volume: 280 year: 2023 ident: CR20 article-title: Intelligent fault diagnosis of worm gearbox based on adaptive CNN using amended gorilla troop optimization with quantum gate mutation strategy publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110984 – volume: 173 year: 2022 ident: CR24 article-title: A new movement strategy of grey wolf optimizer for optimization problems and structural damage identification publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103276 – volume: 9 start-page: 117581 year: 2021 end-page: 117595 ident: CR11 article-title: A hybrid sparrow search algorithm based on constructing similarity publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3106269 – volume: 14 start-page: 7650 year: 2024 ident: CR26 article-title: Enhanced gorilla troops optimizer powered by marine predator algorithm: Global optimization and engineering design publication-title: Sci. Rep. doi: 10.1038/s41598-024-57098-8 – volume: 32 start-page: 5949 year: 2020 ident: CR6 article-title: Whale optimization algorithm based on nonlinear convergence factor and chaotic inertial weight publication-title: Concurr. Comput. doi: 10.1002/cpe.5949 – volume: 13 start-page: 124 year: 2023 ident: CR27 article-title: Enhancing grasshopper optimization algorithm (GOA) with levy flight for engineering applications publication-title: Sci. Rep. doi: 10.1038/s41598-022-27144-4 – volume: 259 year: 2023 ident: CR1 article-title: Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 677 year: 2024 ident: CR21 article-title: A quasi-reflected and Gaussian mutated arithmetic optimisation algorithm for global optimisation publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120823 – volume: 78 start-page: 10950 year: 2022 end-page: 10996 ident: CR5 article-title: Chaotic adaptive sailfish optimizer with genetic characteristics for global optimization publication-title: J. Supercomput. doi: 10.1007/s11227-021-04255-9 – volume: 56 year: 2020 ident: CR25 article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results publication-title: Comput. Methods Appl. Mech. Eng. – volume: 16 year: 2021 ident: CR4 article-title: An improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism publication-title: PLoS ONE doi: 10.1371/journal.pone.0260725 – volume: 14 start-page: 1068 year: 2021 end-page: 1076 ident: CR8 article-title: Enhanced gorilla troops optimizer powered by marine predator algorithm: Global optimization and engineering design publication-title: Sci. Rep. – volume: 198 year: 2022 ident: CR15 article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications publication-title: Eng. Comput. – volume: 39 start-page: 2627 year: 2023 end-page: 2651 ident: CR17 article-title: Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-022-01604-x – volume: 19 start-page: 2240 year: 2022 end-page: 2285 ident: CR23 article-title: DTSMA: Dominant swarm with adaptive T-distribution mutation-based slime mould algorithm publication-title: MBE doi: 10.3934/mbe.2022105 – volume: 85 start-page: 29 year: 2023 end-page: 48 ident: CR14 article-title: An efficient adaptive-mutated Coati optimization algorithm for feature selection and global optimization publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.11.004 – volume: 10 start-page: 2065 year: 2023 end-page: 2093 ident: CR2 article-title: Modified beluga whale optimization with multi-strategies for solving engineering problems publication-title: J. Comput. Des. Eng. – volume: 10 start-page: 2223 year: 2023 end-page: 2250 ident: CR3 article-title: Improve Coati optimization algorithm for solving constrained engineering optimization problems publication-title: J. Comput. Des. Eng. – volume: 173 year: 2024 ident: CR19 article-title: An enhanced Coati Optimization Algorithm for global optimization and feature selection in EEG emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108329 – volume: 286 year: 2024 ident: CR22 article-title: Parallel structure of crayfish optimization with arithmetic optimization for classifying the friction behaviour of Ti-6Al-4V alloy for complex machinery applications publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2024.111389 – ident: CR7 – volume: 12 start-page: 479 year: 2024 ident: CR13 article-title: Integrating improved Coati Optimization Algorithm and bidirectional long short-term memory network for advanced fault warning in industrial systems publication-title: Processes doi: 10.3390/pr12030479 – volume: 8 start-page: 149 year: 2023 ident: CR18 article-title: Subtraction-average-based optimizer: a new swarm-inspired metaheuristic algorithm for solving optimization problems publication-title: Biomimetics doi: 10.3390/biomimetics8020149 – volume: 19 start-page: 2240 year: 2022 ident: 70575_CR23 publication-title: MBE doi: 10.3934/mbe.2022105 – volume: 12 start-page: 479 year: 2024 ident: 70575_CR13 publication-title: Processes doi: 10.3390/pr12030479 – volume: 280 year: 2023 ident: 70575_CR20 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110984 – year: 2024 ident: 70575_CR10 publication-title: Int. J. Parallel Emergent Distrib. Syst. doi: 10.1080/17445760.2024.2350010 – volume: 9 start-page: 117581 year: 2021 ident: 70575_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3106269 – volume: 57 start-page: 31 year: 2024 ident: 70575_CR12 publication-title: Spectrosc. Lett. doi: 10.1080/00387010.2023.2285510 – volume: 85 start-page: 29 year: 2023 ident: 70575_CR14 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.11.004 – volume: 10 start-page: 2065 year: 2023 ident: 70575_CR2 publication-title: J. Comput. Des. Eng. – volume: 14 start-page: 1068 year: 2021 ident: 70575_CR8 publication-title: Sci. Rep. – volume: 286 year: 2024 ident: 70575_CR22 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2024.111389 – volume: 173 year: 2022 ident: 70575_CR24 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103276 – volume: 39 start-page: 2627 year: 2023 ident: 70575_CR28 publication-title: Eng. Comput. doi: 10.1007/s00366-022-01604-x – volume: 198 year: 2022 ident: 70575_CR15 publication-title: Eng. Comput. – volume: 39 start-page: 2627 year: 2023 ident: 70575_CR17 publication-title: Eng. Comput. doi: 10.1007/s00366-022-01604-x – volume: 51 start-page: 108 year: 2023 ident: 70575_CR9 publication-title: Dianli Xitong Baohu yu Kongzhi/Power Syst. Prot. Control – volume: 677 year: 2024 ident: 70575_CR21 publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120823 – volume: 56 year: 2020 ident: 70575_CR25 publication-title: Comput. Methods Appl. Mech. Eng. – volume: 173 year: 2024 ident: 70575_CR19 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108329 – year: 2023 ident: 70575_CR16 publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2022.1126450 – volume: 8 start-page: 149 year: 2023 ident: 70575_CR18 publication-title: Biomimetics doi: 10.3390/biomimetics8020149 – volume: 78 start-page: 10950 year: 2022 ident: 70575_CR5 publication-title: J. Supercomput. doi: 10.1007/s11227-021-04255-9 – ident: 70575_CR7 – volume: 10 start-page: 2223 year: 2023 ident: 70575_CR3 publication-title: J. Comput. Des. Eng. – volume: 259 year: 2023 ident: 70575_CR1 publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 14 start-page: 7650 year: 2024 ident: 70575_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-024-57098-8 – volume: 16 year: 2021 ident: 70575_CR4 publication-title: PLoS ONE doi: 10.1371/journal.pone.0260725 – volume: 32 start-page: 5949 year: 2020 ident: 70575_CR6 publication-title: Concurr. Comput. doi: 10.1002/cpe.5949 – volume: 13 start-page: 124 year: 2023 ident: 70575_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-022-27144-4 |
| SSID | ssj0000529419 |
| Score | 2.472131 |
| Snippet | Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local... Abstract Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 20435 |
| SubjectTerms | 639/166 639/705 Adaptive T-distribution variation strategy Alert updating strategy Algorithms CEC2017 Chaotic sequence COA Convergence Design engineering Design optimization Humanities and Social Sciences multidisciplinary Nonlinear inertia weight Optimization algorithms Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: ProQuest Biological Science dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaggMSFfQkUZCRuEHW8JHZOaKioOKDSA0i9WfGSdqQ2KZMUiX_Pe46TYVh64RYljmX7s9_u9wh57W3JOfMitzKIXFp40rIAZcWJhllVA8eOSH9Sh4f6-Lg6Sga3PoVVTjQxEmrfObSR76EhWpSYnu7dxbccq0ahdzWV0LhObmCWBBFD945mGwt6sSSr0l2ZhdB7PfArvFPGZa5QUsnlFj-Kafv_Jmv-GTL5m980sqODu_87kXvkThJE6XLcOffJtdA-ILfG0pQ_HpJ22dJVNDgET_c7wI9-Bupynq5t0uXZCXQ6nJ5TtOTSKS6R9sOUe4KCOEzDJt0h9TFYhHa_dpPq2fSPyNeDD1_2P-apNkPuCsmGXHrrlVUNsFheNFaXqgZJRLBaVqoAHUlaUZQ1aOoLJ5z3LBQiNKF0KF_pWjXiMdlpuzY8JVTzOjhhBXewLE0AghG41UzaSitnfZURNiFkXEpcjvUzzkx0oAttRlQNoGoiqkZm5M38z8WYtuPK1u8R-LklptyOL7r1iUkn2CB9CpUABa8upXelDb6qvG0WFqYvrM7I7oS3SXSgNxuwM_Jq_gwnGN0ydRu6y7EN1ijV0ObJuMvmkYD0yhVIXBnRW_tva6jbX9rVacwSzpgA7V6UGXk7bdXNuP69Fs-unsZzcpvj6UGXmtglO8P6MrwgN933YdWvX8bj9xPb4Tm4 priority: 102 providerName: ProQuest |
| Title | An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems |
| URI | https://link.springer.com/article/10.1038/s41598-024-70575-4 https://www.ncbi.nlm.nih.gov/pubmed/39227613 https://www.proquest.com/docview/3100364475 https://www.proquest.com/docview/3100561285 https://pubmed.ncbi.nlm.nih.gov/PMC11372136 https://doaj.org/article/b006e93487a64dc6bed99dbf0bfb83b8 |
| Volume | 14 |
| WOSCitedRecordID | wos001305757100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BLkhcEG8CS2UkbhBRPxI7x-5qVyCxJUIglZMVP8JW2k1Qm0Xi3zN2km7L88LFqhqncueR-SZjfwPwwpmcMep4aoTnqTD4SYkMkxXLa2pkhRE7avqdnM_VYlGUW62-wp6wnh64F1xocpj7giOurnLhbG68Kwpn6qmpjeImHvNF1LOVTPWs3qwQtBhOyUy5er3GSBVOkzGRyoBRUrETiSJh_-9Q5q-bJX-qmMZAdHIHbg8Iksz6ld-Fa765Bzf7npLf70Mza8gyvinwjhy1KHjyHh8LF8N5SzI7_9Kult3ZBQmvYMm4oZCsu5E0giCOJf6Kp5C4uMuDtNs_MzSiWT-ATyfHH4_epENThdRmgnapcMZJI2uMjSxDEeayQgjBaSUKmWFyIwzP8gpT7Knl1jnqM-5rn9sAjFQla_4Q9pq28Y-BKFZ5yw1nluei9ujpnhlFhSmUtMYVCdBRwNoOjOOh8cW5jpVvrnSvFI1K0VEpWiTwcnPP155v46-zD4PeNjMDV3b8Ai1IDxak_2VBCRyMWteDA691qHvgvxIyS-D55jK6XqinVI1vL_s5obmowjmPeiPZrARhJ5MIlRJQO-azs9TdK83yLNJ7U8oxLed5Aq9GS7ta159l8eR_yOIp3GLBRULFjB_AXre69M_ghv3WLderCVyXCxlHNYH9w-N5-WES_Q7HU1aGUeK4X749LT__AEzWNAY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFHXjyTOAaGlULXqsvRQpN5M_Ei7UpuUzRbUP8VvZOwkuyyP3nrgFiWO5cc3D8-MZwBeWJ0yRi2PtXA8FhqfpEjwsGJ4SXVWoMQOOz3KxmO5v5_vrsCP_i6MD6vseWJg1LY23ka-7g3RPPXp6d6efI191SjvXe1LaLSw2HFn3_HI1rzZfo_7-5KxzQ97G1txV1UgNomgs1hYbTOdlSgcWFJqmWYFylBOC5FnCWr3QvMkLfCMOTDcWEtdwl3pUuM1A1lkJcd-L8FlVCOYDKGCu3ObjveaCZp3d3MGXK43KB_9HTYm4sxrRrFYkn-hTMDfdNs_QzR_89MG8bd5839buFtwo1O0ybCljNuw4qo7cLUtvXl2F6phRSbBoOIs2agRn-QTcs_j7loqGR4d4CRmh8fEW6pJH3dJmlmfW4Oguk_cIp0jsSEYhtS_dtPV62nuwecLmex9WK3qyj0EIlnhDNecGdyG0iFDdExLKnQuM6NtHgHtEaFMl5jd1wc5UiFAgEvVokghilRAkRIRvJr_c9KmJTm39TsPtHlLn1I8vKinB6rjUMrzX5dzPMAWqbAm1c7mudXlQOP0uZYRrPX4Uh2fa9QCXBE8n39GDuXdTkXl6tO2ja_BKrHNgxbV85Ggds4y1CgjkEt4Xxrq8pdqchiyoFPKM0Z5GsHrnjQW4_r3Wjw6fxrP4NrW3seRGm2Pdx7DdeYp17sP-Rqszqan7glcMd9mk2b6NJA-gS8XTTI_AT82l-c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmgmthM7B4SGloqq1TAHkHoz8ZJ2pDYpkymof41fx7OTzDAsvfXALUqcyI6_tz-_B_DC6ozSxLJYc8dirvFK8hSNFcPKRIsCJXbY6T0xHsv9_XyyBj_6szA-rbLniYFR29p4H_nAO6JZ5svTDcouLWKytf325GvsO0j5SGvfTqOFyK47-47mW_NmZwv3-iWl2-8_bX6Iuw4DsUl5Mo-51VZoUaKgoGmpZSYKlKcsKXguUtT0uWZpVqC9OTTMWJu4lLnSZcZrCbIQJcPvXoLLwhctD2mDk4V_x0fQeJJ353SGTA4alJX-PBvlsfBaUsxXZGFoGfA3PffPdM3fYrZBFG7f_J9_4i240SngZNRSzG1Yc9UduNq25Dy7C9WoItPgaHGWbNaIW_IRuepxd1yVjI4OcBHzw2PiPdikz8ckzbyvuUHQDCBuWeaR2JAkQ-pfP9P18WnuwecLWex9WK_qyj0EImnhDNOMGtyS0iGjdFTLhOtcCqNtHkHSo0OZrmC77xtypELiAJOqRZRCRKmAKMUjeLV456QtV3Lu6HcedIuRvtR4uFHPDlTHuZTnyy5naNgWGbcm087mudXlUOPymZYRbPRYUx3_a9QSaBE8XzxGzuXDUUXl6tN2jO_NKnHMgxbhi5mg1k4FapoRyBXsr0x19Uk1PQzV0ZOECZqwLILXPZks5_Xvf_Ho_GU8g2tIKWpvZ7z7GK5TT8Q-qsg2YH0-O3VP4Ir5Np82s6eBCxD4ctEU8xMEgaCk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+Coati+Optimization+Algorithm+with+multiple+strategies+for+engineering+design+optimization+problems&rft.jtitle=Scientific+reports&rft.au=Zhang+Qi&rft.au=Dong+Yingjie&rft.au=Ye+Shan&rft.au=Li+Xu&rft.date=2024-09-03&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=44&rft_id=info:doi/10.1038%2Fs41598-024-70575-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b006e93487a64dc6bed99dbf0bfb83b8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |