Classification of cervical cancer using Dense CapsNet with Seg-UNet and denoising autoencoders

Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however,...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; pp. 31764 - 15
Main Authors: Yang, Hui, Aydi, Walid, Innab, Nisreen, Ghoneim, Mohamed E., Ferrara, Massimiliano
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 30.12.2024
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature.
AbstractList Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature.
Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature.Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature.
Abstract Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature.
ArticleNumber 31764
Author Innab, Nisreen
Ferrara, Massimiliano
Ghoneim, Mohamed E.
Yang, Hui
Aydi, Walid
Author_xml – sequence: 1
  givenname: Hui
  surname: Yang
  fullname: Yang, Hui
  email: huiyangscientif@outlook.com
  organization: Department of Critical Medicine, Baoshan People’s Hospital
– sequence: 2
  givenname: Walid
  surname: Aydi
  fullname: Aydi, Walid
  organization: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Laboratory of Electronics & Information Technologies, Sfax University
– sequence: 3
  givenname: Nisreen
  surname: Innab
  fullname: Innab, Nisreen
  organization: Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University
– sequence: 4
  givenname: Mohamed E.
  surname: Ghoneim
  fullname: Ghoneim, Mohamed E.
  organization: Faculty of Computers and Artificial Intelligence, Damietta University, Mathematics Department, Faculty of Sciences, Umm Al-Qura University
– sequence: 5
  givenname: Massimiliano
  surname: Ferrara
  fullname: Ferrara, Massimiliano
  email: massimiliano.ferrara@unirc.it
  organization: Decisions LAB, Department of Law, Economics and Human Sciences, University Mediterranea of Reggio Calabria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39738568$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1UREvpH2CBIrFhE_AzsVcITXlUqmAB3WI59k3qUcYe7KSIf4-blNJ2UW_8-s7xtX2eo4MQAyD0kuC3BDP5LnMilKwx5bWkXKqaPkFHFHNRU0bpwZ3xITrJeYtLE1Rxop6hQ6ZaJkUjj9DPzWhy9r23ZvIxVLGvLKSrMh0ra0IZV3P2YahOIWSoNmafv8JU_fbTZfUdhvriemaCqxyE6BfSzFOEYKODlF-gp70ZM5zc9Mfo4tPHH5sv9fm3z2ebD-e1FZxMNbfQCSEktLwxtO24641QFivZUkld7yRnQIRz0HXCdobjlohOQe8sk6oX7Bidrb4umq3eJ78z6Y-OxutlIaZBmzR5O4Lm0lGmmARjWg5CGUv6BjNrVQdSWVe83q9e-7nbgbMQpmTGe6b3d4K_1EO80oQ0sqFSFoc3Nw4p_pohT3rns4VxNAHinDUjovwFbtqmoK8foNs4p1DeaqGIErxVhXp1t6TbWv79YwHoCtgUc07Q3yIE6-u86DUvuuRFL3nRtIjkA5H10xKDci0_Pi5lqzSXc8IA6X_Zj6j-AoJD1VQ
CitedBy_id crossref_primary_10_1038_s41598_025_07466_9
Cites_doi 10.1016/j.jksuci.2018.09.014
10.1016/j.pdpdt.2023.103284
10.3389/fcvm.2024.1277123
10.1016/j.bspc.2019.101785
10.1007/s13273-023-00360-3
10.3390/diagnostics12081947
10.1016/j.compbiomed.2024.109183
10.3788/COL202018.051701
10.1093/jnci/djy225
10.1007/s00066-024-02294-8
10.3390/diagnostics12071694
10.1016/j.compbiomed.2021.104649
10.31557/APJCP.2018.19.12.3571
10.3390/en13030609
10.34133/2022/9823184
10.3389/fmed.2024.1486995
10.1088/1361-6560/ad0a5a
10.1016/j.compbiomed.2022.105409
10.1007/s10462-021-10121-0
10.1016/j.eswa.2019.112951
10.1038/s41598-021-93783-8
10.1016/j.asoc.2024.111906
10.31557/APJCP.2018.19.11.3203
10.1088/1361-6560/acf98f
10.1109/TCBB.2019.2963867
10.1049/cit2.12395
10.1016/j.bspc.2019.101566
10.1142/S0218348X24400607
10.3892/ol.2019.11214
10.1038/s41598-024-52413-9
10.11591/ijeecs.v14.i1.pp210-218
10.1186/s12935-020-01742-6
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-82489-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central - New (Subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_48d23938eaa74e59ac1f603cc9be89cd
PMC11686288
39738568
10_1038_s41598_024_82489_2
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-4ceb5558e746a27b4dfa59c0987282dfd843e15ddebb5cba40715b9efdc389f53
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001386372700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:57:51 EDT 2025
Tue Nov 04 02:04:07 EST 2025
Thu Oct 02 06:04:48 EDT 2025
Tue Oct 07 07:58:00 EDT 2025
Thu Apr 03 07:11:47 EDT 2025
Sat Nov 29 03:22:05 EST 2025
Tue Nov 18 21:57:11 EST 2025
Fri Feb 21 02:36:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Dense CapsNet
Segmentation
Autoencoders
Cervical cancer
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-4ceb5558e746a27b4dfa59c0987282dfd843e15ddebb5cba40715b9efdc389f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/48d23938eaa74e59ac1f603cc9be89cd
PMID 39738568
PQID 3150195479
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_48d23938eaa74e59ac1f603cc9be89cd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11686288
proquest_miscellaneous_3150520676
proquest_journals_3150195479
pubmed_primary_39738568
crossref_primary_10_1038_s41598_024_82489_2
crossref_citationtrail_10_1038_s41598_024_82489_2
springer_journals_10_1038_s41598_024_82489_2
PublicationCentury 2000
PublicationDate 2024-12-30
PublicationDateYYYYMMDD 2024-12-30
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References AA Abdullah (82489_CR8) 2019; 14
L Ples (82489_CR12) 2022; 12
L Hu (82489_CR14) 2019; 111
P Elayaraja (82489_CR22) 2018; 19
M Chikhaoui (82489_CR7) 2020; 18
82489_CR2
X Li (82489_CR9) 2022; 55
YJ Gaona (82489_CR15) 2022; 12
82489_CR23
E Skerrett (82489_CR19) 2022; 2022
82489_CR21
MM Rahaman (82489_CR27) 2021; 136
82489_CR20
AA Andijany (82489_CR13) 2023; 20
MS Ullah (82489_CR34) 2024; 182
82489_CR29
X Tan (82489_CR25) 2021; 21
Y Li (82489_CR35) 2024; 164
A Manna (82489_CR26) 2021; 11
A Jhingran (82489_CR1) 2020
X Jiang (82489_CR28) 2021; 18
F Rauf (82489_CR33) 2024; 11
82489_CR4
82489_CR11
82489_CR3
82489_CR32
82489_CR6
82489_CR31
82489_CR5
BK Jaya (82489_CR24) 2018; 19
82489_CR30
82489_CR18
82489_CR17
S Gharsellaoui (82489_CR10) 2020; 13
82489_CR16
References_xml – ident: 82489_CR17
  doi: 10.1016/j.jksuci.2018.09.014
– ident: 82489_CR4
  doi: 10.1016/j.pdpdt.2023.103284
– volume: 20
  start-page: 2023
  issue: 44
  year: 2023
  ident: 82489_CR13
  publication-title: Cytojournal
– ident: 82489_CR20
  doi: 10.3389/fcvm.2024.1277123
– ident: 82489_CR16
  doi: 10.1016/j.bspc.2019.101785
– ident: 82489_CR23
  doi: 10.1007/s13273-023-00360-3
– volume: 12
  start-page: 1947
  issue: 8
  year: 2022
  ident: 82489_CR12
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12081947
– volume: 182
  start-page: 109183
  year: 2024
  ident: 82489_CR34
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.109183
– start-page: 1468
  volume-title: Cancers of the Cervix, Vulva, and Vagina, in Abeloff ’s Clinical Oncology
  year: 2020
  ident: 82489_CR1
– ident: 82489_CR6
  doi: 10.3788/COL202018.051701
– volume: 111
  start-page: 923
  issue: 9
  year: 2019
  ident: 82489_CR14
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djy225
– ident: 82489_CR3
  doi: 10.1007/s00066-024-02294-8
– volume: 12
  start-page: 1694
  issue: 7
  year: 2022
  ident: 82489_CR15
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12071694
– volume: 136
  start-page: 104649
  year: 2021
  ident: 82489_CR27
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104649
– volume: 19
  start-page: 3571
  issue: 12
  year: 2018
  ident: 82489_CR22
  publication-title: Asian Pac. J. Cancer Prevent.
  doi: 10.31557/APJCP.2018.19.12.3571
– volume: 13
  start-page: 609
  issue: 3
  year: 2020
  ident: 82489_CR10
  publication-title: Energies
  doi: 10.3390/en13030609
– volume: 2022
  start-page: 1
  year: 2022
  ident: 82489_CR19
  publication-title: BME Front.
  doi: 10.34133/2022/9823184
– volume: 11
  start-page: 1486995
  year: 2024
  ident: 82489_CR33
  publication-title: Front. Med.
  doi: 10.3389/fmed.2024.1486995
– ident: 82489_CR29
  doi: 10.1088/1361-6560/ad0a5a
– ident: 82489_CR5
  doi: 10.1016/j.compbiomed.2022.105409
– volume: 55
  start-page: 4809
  year: 2022
  ident: 82489_CR9
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10121-0
– ident: 82489_CR2
  doi: 10.1016/j.eswa.2019.112951
– volume: 18
  start-page: 1
  issue: 4
  year: 2020
  ident: 82489_CR7
  publication-title: Indian J. Gynecol. Oncol.
– volume: 11
  start-page: 14538
  issue: 1
  year: 2021
  ident: 82489_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93783-8
– volume: 164
  start-page: 111906
  year: 2024
  ident: 82489_CR35
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111906
– volume: 19
  start-page: 3203
  issue: 11
  year: 2018
  ident: 82489_CR24
  publication-title: Asian Pac. J. Cancer Prevent.
  doi: 10.31557/APJCP.2018.19.11.3203
– ident: 82489_CR30
  doi: 10.1088/1361-6560/acf98f
– volume: 18
  start-page: 995
  issue: 3
  year: 2021
  ident: 82489_CR28
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2019.2963867
– ident: 82489_CR31
  doi: 10.1049/cit2.12395
– ident: 82489_CR18
  doi: 10.1016/j.bspc.2019.101566
– ident: 82489_CR32
  doi: 10.1142/S0218348X24400607
– ident: 82489_CR11
  doi: 10.3892/ol.2019.11214
– ident: 82489_CR21
  doi: 10.1038/s41598-024-52413-9
– volume: 14
  start-page: 210
  issue: 1
  year: 2019
  ident: 82489_CR8
  publication-title: Indonesian J. Elect. Eng. Comput. Sci.
  doi: 10.11591/ijeecs.v14.i1.pp210-218
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 82489_CR25
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-020-01742-6
SSID ssj0000529419
Score 2.4500299
Snippet Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a...
Abstract Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31764
SubjectTerms 692/699/75
692/700/228
Algorithms
Autoencoders
Cervical cancer
Classification
Deep Learning
Dense CapsNet
Female
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted - methods
Machine Learning
Medical research
multidisciplinary
Negligence
Neural Networks, Computer
Probability learning
Science
Science (multidisciplinary)
Segmentation
Uterine Cervical Neoplasms - classification
Uterine Cervical Neoplasms - diagnosis
Uterine Cervical Neoplasms - pathology
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLb2igICNxg6hx4iT2CUGh4sKqElTqCcseO9uVULLdzSLx7_E42VTLoxeOScaSnXl4PDP-BuBV4y2ii2XlWKUiUKVSuTxVla8rlK6SvonNJurZTJ6dqZMx4LYeyyq3NjEaatchxcgPi-C5EDpZrd4uL1LqGkXZ1bGFxnW4ETwbTiVdn_OTKcZCWSzB1XhXJivk4TrsV3SnLBepzAUV-OzsRxG2_2--5p8lk7_lTeN2dHz3fxdyD-6Mjih7N0jOfbjm2wdwa2hN-fMhfIvdMqmOKLKOdQ3DaFbCGCRJWTEqmZ-zD-Ec7NmRWa5nvmcU1mVf_Dw9pSfTOhbsWreIlGbTdwSbSaXTj-D0-OPXo0_p2IshxVLwPhXoLUGD-VpUJq-tcI0pFWZK1uHQ5honReF5GYyltSVaQ-fE0irfOAwuUVMWj2Gv7Vq_DyxXhEoonMPMCskz47IqUwVynylnhUiAbzmicQQqp34Z33VMmBdSD1zUgYs6clHnCbyexiwHmI4rqd8ToydKgtiOL7rVXI8aq4V0BA8nvTG18KUyyJsqKxCV9VKhS-Bgy1896v1aXzI3gZfT56CxlIYxre82A01JqPlVAk8GqZpmErzDQpaVTEDuyNvOVHe_tIvziArOOV32kWHom61oXs7r3__i6dXLeAa3c9IWgrbMDmCvX238c7iJP_rFevUiqtsvRpgzBQ
  priority: 102
  providerName: ProQuest
Title Classification of cervical cancer using Dense CapsNet with Seg-UNet and denoising autoencoders
URI https://link.springer.com/article/10.1038/s41598-024-82489-2
https://www.ncbi.nlm.nih.gov/pubmed/39738568
https://www.proquest.com/docview/3150195479
https://www.proquest.com/docview/3150520676
https://pubmed.ncbi.nlm.nih.gov/PMC11686288
https://doaj.org/article/48d23938eaa74e59ac1f603cc9be89cd
Volume 14
WOSCitedRecordID wos001386372700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJtAWRmJG0R1Eie2j7S0gkNXEVBpuWD5lXYllFS72Ur993ic7NLleeFiKclYGs3DnonH3wC8aryx1sWyclulLFClQro8lZXnlRWuEr6JzSb4dCpmM1lfa_WFNWEDPPAguH0mHKJ0Ca81Z76U2mZNRQtrpfFCWoerL-XyWjI1oHrnkmVyvCVDC7G_DDsV3ibLWSpyhqU9WztRBOz_XZT5a7HkTyemcSM6vgd3xwiSvB04vw83fPsAbg89Ja8ewtfY5hILgKLMSdcQG9eDMMeiihcEa93PyLuQwHpyqC-WU98T_B9LPvmz9BSfdOtIWJC6eaTUq75DvEuseX4Ep8dHnw_fp2MThdSWLOtTZr1BTC_PWaVzbphrdCktlYKHbMs1TrDCZ2VY5YwprdGY4JVG-sbZEMs0ZfEYdtqu9U-B5BLhBJlzlhomMqodragsbOapdIaxBLK1QJUdEcax0cU3FU-6C6EGJaigBBWVoPIEXm_mXAz4Gn-lPkA9bSgRGzu-CBajRotR_7KYBPbWWlajwy5VEQJjBL_jMoGXm8_B1fD8RLe-Ww00JcLdVwk8GYxiw0kI6wpRViIBsWUuW6xuf2nn5xHOO8vwlo4IU9-sLesHX3-WxbP_IYvncCdHl0DkSroHO_1i5V_ALXvZz5eLCdzkMx5HMYHdg6Np_XES_SyMJ3mNIw_jbv3hpP7yHSOILOg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1FAQQX9sUQoJHgBFa8tO3uA0KQECVKGEUikXKi6c3DSMgexh5QfopvpKu9RMOSWw4cbVdLbftV9Vb1HsDz0iqtjU8r13lInVXIuElCntsi18zkzJZebKKYTNjJCT9cg59DLQymVQ4x0QdqU2vcI99M3cwF2ckK_mb-LUTVKDxdHSQ0Oljs29MfbsnWvN7bdv_3RZLsvD_a2g17VYFQZzRuQ6qtQpIrW9BcJoWippQZ15FbfLvlhykNo6mNM-f2SmVaSVzxZIrb0mg3uJeoEuFC_iWKzGKYKpgcjns6eGpGY97X5kQp22zc-Ig1bAkNWUIxoWhl_PMyAX-b2_6ZovnbOa0f_nZu_G8f7iZc7yfa5G3nGbdgzVa34UonvXl6Bz55NVDMk_LQJHVJtA-bro1GT1gQLAmYkm23zrdkS86biW0JbluTj3YaHuOVrAxxcbueeUu5bGukBcXU8LtwfCEvdw_Wq7qyD4AkHFkXqTE6UpTFkTRRHvFUxzbiRlEaQDwgQOieiB31QL4KnxCQMtGhRjjUCI8akQTwcmwz72hIzrV-h8AaLZFC3N-oF1PRRyRBmUH6O2alLKjNuNRxmUep1lxZxrUJYGPAk-jjWiPOwBTAs_Gxi0h4zCQrWy87mwxVAfIA7ncoHnviZr8py3IWAFvB90pXV59Usy-e9TyOsZiJuaavBlc469e_v8XD81_jKVzdPfpwIA72JvuP4FqCnoo0ntEGrLeLpX0Ml_X3dtYsnnhXJ_D5ol3kF-7gkh4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tuoC48H4EFjASnCBqHk5iHxCCLRXVQlUJVlouaxzbKZVQUpoUtH-NX4fHSboqj73tgWOSseQk34xfM98H8KQwuVLapZWr1KfWymdcRz5PTZYqplNmCic2kU2n7OiIz3bgZ18Lg2mVfUx0gVpXCvfIh7GduSA7WcaHRZcWMRuNXy6_-agghSetvZxGC5EDc_LDLt_qF5OR_ddPo2j85uP-W79TGPBVQsPGp8rkSHhlMprKKMupLmTCVWAX4nYpogvNaGzCxIaAPE9ULnH1k-TcFFrZgb5AxQgb_nftlJxGA9idTd7PPm12ePAMjYa8q9QJYjas7WiJFW0R9VlEMb1oazR0ogF_m-n-mbD526mtGwzHV__nz3gNrnRTcPKq9ZnrsGPKG3CxFeU8uQnHTicUM6gcaElVEOUCqm2j0EdWBIsF5mRkytqQfbmsp6YhuKFNPpi5f4hXstTERvRq4SzluqmQMBSTxm_B4bm83G0YlFVp7gKJOPIxUq1VkFMWBlIHacBjFZqA65xSD8IeDUJ1FO2oFPJVuFSBmIkWQcIiSDgEiciDZ5s2y5ag5Ezr1wiyjSWSi7sb1WouulglKNNIjMeMlBk1CZcqLNIgVornhnGlPdjrsSW6iFeLU2B58Hjz2MYqPICSpanWrU2CegGpB3daRG96YufFMUtS5gHbwvpWV7eflIsvjg89DLHMidmmz3u3OO3Xv7_FvbNf4xFcsp4h3k2mB_fhcoROi_yewR4MmtXaPIAL6nuzqFcPO78n8Pm8feQXnXScZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+cervical+cancer+using+Dense+CapsNet+with+Seg-UNet+and+denoising+autoencoders&rft.jtitle=Scientific+reports&rft.au=Yang%2C+Hui&rft.au=Aydi%2C+Walid&rft.au=Innab%2C+Nisreen&rft.au=Ghoneim%2C+Mohamed+E&rft.date=2024-12-30&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=31764&rft_id=info:doi/10.1038%2Fs41598-024-82489-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon