Classification of cervical cancer using Dense CapsNet with Seg-UNet and denoising autoencoders
Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however,...
Saved in:
| Published in: | Scientific reports Vol. 14; no. 1; pp. 31764 - 15 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
30.12.2024
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature. |
|---|---|
| AbstractList | Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature. Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature.Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature. Abstract Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature. |
| ArticleNumber | 31764 |
| Author | Innab, Nisreen Ferrara, Massimiliano Ghoneim, Mohamed E. Yang, Hui Aydi, Walid |
| Author_xml | – sequence: 1 givenname: Hui surname: Yang fullname: Yang, Hui email: huiyangscientif@outlook.com organization: Department of Critical Medicine, Baoshan People’s Hospital – sequence: 2 givenname: Walid surname: Aydi fullname: Aydi, Walid organization: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Laboratory of Electronics & Information Technologies, Sfax University – sequence: 3 givenname: Nisreen surname: Innab fullname: Innab, Nisreen organization: Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University – sequence: 4 givenname: Mohamed E. surname: Ghoneim fullname: Ghoneim, Mohamed E. organization: Faculty of Computers and Artificial Intelligence, Damietta University, Mathematics Department, Faculty of Sciences, Umm Al-Qura University – sequence: 5 givenname: Massimiliano surname: Ferrara fullname: Ferrara, Massimiliano email: massimiliano.ferrara@unirc.it organization: Decisions LAB, Department of Law, Economics and Human Sciences, University Mediterranea of Reggio Calabria |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39738568$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhS1UREvpH2CBIrFhE_AzsVcITXlUqmAB3WI59k3qUcYe7KSIf4-blNJ2UW_8-s7xtX2eo4MQAyD0kuC3BDP5LnMilKwx5bWkXKqaPkFHFHNRU0bpwZ3xITrJeYtLE1Rxop6hQ6ZaJkUjj9DPzWhy9r23ZvIxVLGvLKSrMh0ra0IZV3P2YahOIWSoNmafv8JU_fbTZfUdhvriemaCqxyE6BfSzFOEYKODlF-gp70ZM5zc9Mfo4tPHH5sv9fm3z2ebD-e1FZxMNbfQCSEktLwxtO24641QFivZUkld7yRnQIRz0HXCdobjlohOQe8sk6oX7Bidrb4umq3eJ78z6Y-OxutlIaZBmzR5O4Lm0lGmmARjWg5CGUv6BjNrVQdSWVe83q9e-7nbgbMQpmTGe6b3d4K_1EO80oQ0sqFSFoc3Nw4p_pohT3rns4VxNAHinDUjovwFbtqmoK8foNs4p1DeaqGIErxVhXp1t6TbWv79YwHoCtgUc07Q3yIE6-u86DUvuuRFL3nRtIjkA5H10xKDci0_Pi5lqzSXc8IA6X_Zj6j-AoJD1VQ |
| CitedBy_id | crossref_primary_10_1038_s41598_025_07466_9 |
| Cites_doi | 10.1016/j.jksuci.2018.09.014 10.1016/j.pdpdt.2023.103284 10.3389/fcvm.2024.1277123 10.1016/j.bspc.2019.101785 10.1007/s13273-023-00360-3 10.3390/diagnostics12081947 10.1016/j.compbiomed.2024.109183 10.3788/COL202018.051701 10.1093/jnci/djy225 10.1007/s00066-024-02294-8 10.3390/diagnostics12071694 10.1016/j.compbiomed.2021.104649 10.31557/APJCP.2018.19.12.3571 10.3390/en13030609 10.34133/2022/9823184 10.3389/fmed.2024.1486995 10.1088/1361-6560/ad0a5a 10.1016/j.compbiomed.2022.105409 10.1007/s10462-021-10121-0 10.1016/j.eswa.2019.112951 10.1038/s41598-021-93783-8 10.1016/j.asoc.2024.111906 10.31557/APJCP.2018.19.11.3203 10.1088/1361-6560/acf98f 10.1109/TCBB.2019.2963867 10.1049/cit2.12395 10.1016/j.bspc.2019.101566 10.1142/S0218348X24400607 10.3892/ol.2019.11214 10.1038/s41598-024-52413-9 10.11591/ijeecs.v14.i1.pp210-218 10.1186/s12935-020-01742-6 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Nature Publishing Group 2024 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group 2024 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-82489-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central - New (Subscription) Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_48d23938eaa74e59ac1f603cc9be89cd PMC11686288 39738568 10_1038_s41598_024_82489_2 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-4ceb5558e746a27b4dfa59c0987282dfd843e15ddebb5cba40715b9efdc389f53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001386372700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 18:57:51 EDT 2025 Tue Nov 04 02:04:07 EST 2025 Thu Oct 02 06:04:48 EDT 2025 Tue Oct 07 07:58:00 EDT 2025 Thu Apr 03 07:11:47 EDT 2025 Sat Nov 29 03:22:05 EST 2025 Tue Nov 18 21:57:11 EST 2025 Fri Feb 21 02:36:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Dense CapsNet Segmentation Autoencoders Cervical cancer |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-4ceb5558e746a27b4dfa59c0987282dfd843e15ddebb5cba40715b9efdc389f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/48d23938eaa74e59ac1f603cc9be89cd |
| PMID | 39738568 |
| PQID | 3150195479 |
| PQPubID | 2041939 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_48d23938eaa74e59ac1f603cc9be89cd pubmedcentral_primary_oai_pubmedcentral_nih_gov_11686288 proquest_miscellaneous_3150520676 proquest_journals_3150195479 pubmed_primary_39738568 crossref_primary_10_1038_s41598_024_82489_2 crossref_citationtrail_10_1038_s41598_024_82489_2 springer_journals_10_1038_s41598_024_82489_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-30 |
| PublicationDateYYYYMMDD | 2024-12-30 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | AA Abdullah (82489_CR8) 2019; 14 L Ples (82489_CR12) 2022; 12 L Hu (82489_CR14) 2019; 111 P Elayaraja (82489_CR22) 2018; 19 M Chikhaoui (82489_CR7) 2020; 18 82489_CR2 X Li (82489_CR9) 2022; 55 YJ Gaona (82489_CR15) 2022; 12 82489_CR23 E Skerrett (82489_CR19) 2022; 2022 82489_CR21 MM Rahaman (82489_CR27) 2021; 136 82489_CR20 AA Andijany (82489_CR13) 2023; 20 MS Ullah (82489_CR34) 2024; 182 82489_CR29 X Tan (82489_CR25) 2021; 21 Y Li (82489_CR35) 2024; 164 A Manna (82489_CR26) 2021; 11 A Jhingran (82489_CR1) 2020 X Jiang (82489_CR28) 2021; 18 F Rauf (82489_CR33) 2024; 11 82489_CR4 82489_CR11 82489_CR3 82489_CR32 82489_CR6 82489_CR31 82489_CR5 BK Jaya (82489_CR24) 2018; 19 82489_CR30 82489_CR18 82489_CR17 S Gharsellaoui (82489_CR10) 2020; 13 82489_CR16 |
| References_xml | – ident: 82489_CR17 doi: 10.1016/j.jksuci.2018.09.014 – ident: 82489_CR4 doi: 10.1016/j.pdpdt.2023.103284 – volume: 20 start-page: 2023 issue: 44 year: 2023 ident: 82489_CR13 publication-title: Cytojournal – ident: 82489_CR20 doi: 10.3389/fcvm.2024.1277123 – ident: 82489_CR16 doi: 10.1016/j.bspc.2019.101785 – ident: 82489_CR23 doi: 10.1007/s13273-023-00360-3 – volume: 12 start-page: 1947 issue: 8 year: 2022 ident: 82489_CR12 publication-title: Diagnostics doi: 10.3390/diagnostics12081947 – volume: 182 start-page: 109183 year: 2024 ident: 82489_CR34 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.109183 – start-page: 1468 volume-title: Cancers of the Cervix, Vulva, and Vagina, in Abeloff ’s Clinical Oncology year: 2020 ident: 82489_CR1 – ident: 82489_CR6 doi: 10.3788/COL202018.051701 – volume: 111 start-page: 923 issue: 9 year: 2019 ident: 82489_CR14 publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djy225 – ident: 82489_CR3 doi: 10.1007/s00066-024-02294-8 – volume: 12 start-page: 1694 issue: 7 year: 2022 ident: 82489_CR15 publication-title: Diagnostics doi: 10.3390/diagnostics12071694 – volume: 136 start-page: 104649 year: 2021 ident: 82489_CR27 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104649 – volume: 19 start-page: 3571 issue: 12 year: 2018 ident: 82489_CR22 publication-title: Asian Pac. J. Cancer Prevent. doi: 10.31557/APJCP.2018.19.12.3571 – volume: 13 start-page: 609 issue: 3 year: 2020 ident: 82489_CR10 publication-title: Energies doi: 10.3390/en13030609 – volume: 2022 start-page: 1 year: 2022 ident: 82489_CR19 publication-title: BME Front. doi: 10.34133/2022/9823184 – volume: 11 start-page: 1486995 year: 2024 ident: 82489_CR33 publication-title: Front. Med. doi: 10.3389/fmed.2024.1486995 – ident: 82489_CR29 doi: 10.1088/1361-6560/ad0a5a – ident: 82489_CR5 doi: 10.1016/j.compbiomed.2022.105409 – volume: 55 start-page: 4809 year: 2022 ident: 82489_CR9 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10121-0 – ident: 82489_CR2 doi: 10.1016/j.eswa.2019.112951 – volume: 18 start-page: 1 issue: 4 year: 2020 ident: 82489_CR7 publication-title: Indian J. Gynecol. Oncol. – volume: 11 start-page: 14538 issue: 1 year: 2021 ident: 82489_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-021-93783-8 – volume: 164 start-page: 111906 year: 2024 ident: 82489_CR35 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111906 – volume: 19 start-page: 3203 issue: 11 year: 2018 ident: 82489_CR24 publication-title: Asian Pac. J. Cancer Prevent. doi: 10.31557/APJCP.2018.19.11.3203 – ident: 82489_CR30 doi: 10.1088/1361-6560/acf98f – volume: 18 start-page: 995 issue: 3 year: 2021 ident: 82489_CR28 publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2019.2963867 – ident: 82489_CR31 doi: 10.1049/cit2.12395 – ident: 82489_CR18 doi: 10.1016/j.bspc.2019.101566 – ident: 82489_CR32 doi: 10.1142/S0218348X24400607 – ident: 82489_CR11 doi: 10.3892/ol.2019.11214 – ident: 82489_CR21 doi: 10.1038/s41598-024-52413-9 – volume: 14 start-page: 210 issue: 1 year: 2019 ident: 82489_CR8 publication-title: Indonesian J. Elect. Eng. Comput. Sci. doi: 10.11591/ijeecs.v14.i1.pp210-218 – volume: 21 start-page: 1 issue: 1 year: 2021 ident: 82489_CR25 publication-title: Cancer Cell Int. doi: 10.1186/s12935-020-01742-6 |
| SSID | ssj0000529419 |
| Score | 2.4500299 |
| Snippet | Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a... Abstract Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 31764 |
| SubjectTerms | 692/699/75 692/700/228 Algorithms Autoencoders Cervical cancer Classification Deep Learning Dense CapsNet Female Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Machine Learning Medical research multidisciplinary Negligence Neural Networks, Computer Probability learning Science Science (multidisciplinary) Segmentation Uterine Cervical Neoplasms - classification Uterine Cervical Neoplasms - diagnosis Uterine Cervical Neoplasms - pathology |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLb2igICNxg6hx4iT2CUGh4sKqElTqCcseO9uVULLdzSLx7_E42VTLoxeOScaSnXl4PDP-BuBV4y2ii2XlWKUiUKVSuTxVla8rlK6SvonNJurZTJ6dqZMx4LYeyyq3NjEaatchxcgPi-C5EDpZrd4uL1LqGkXZ1bGFxnW4ETwbTiVdn_OTKcZCWSzB1XhXJivk4TrsV3SnLBepzAUV-OzsRxG2_2--5p8lk7_lTeN2dHz3fxdyD-6Mjih7N0jOfbjm2wdwa2hN-fMhfIvdMqmOKLKOdQ3DaFbCGCRJWTEqmZ-zD-Ec7NmRWa5nvmcU1mVf_Dw9pSfTOhbsWreIlGbTdwSbSaXTj-D0-OPXo0_p2IshxVLwPhXoLUGD-VpUJq-tcI0pFWZK1uHQ5honReF5GYyltSVaQ-fE0irfOAwuUVMWj2Gv7Vq_DyxXhEoonMPMCskz47IqUwVynylnhUiAbzmicQQqp34Z33VMmBdSD1zUgYs6clHnCbyexiwHmI4rqd8ToydKgtiOL7rVXI8aq4V0BA8nvTG18KUyyJsqKxCV9VKhS-Bgy1896v1aXzI3gZfT56CxlIYxre82A01JqPlVAk8GqZpmErzDQpaVTEDuyNvOVHe_tIvziArOOV32kWHom61oXs7r3__i6dXLeAa3c9IWgrbMDmCvX238c7iJP_rFevUiqtsvRpgzBQ priority: 102 providerName: ProQuest |
| Title | Classification of cervical cancer using Dense CapsNet with Seg-UNet and denoising autoencoders |
| URI | https://link.springer.com/article/10.1038/s41598-024-82489-2 https://www.ncbi.nlm.nih.gov/pubmed/39738568 https://www.proquest.com/docview/3150195479 https://www.proquest.com/docview/3150520676 https://pubmed.ncbi.nlm.nih.gov/PMC11686288 https://doaj.org/article/48d23938eaa74e59ac1f603cc9be89cd |
| Volume | 14 |
| WOSCitedRecordID | wos001386372700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJtAWRmJG0R1Eie2j7S0gkNXEVBpuWD5lXYllFS72Ur993ic7NLleeFiKclYGs3DnonH3wC8aryx1sWyclulLFClQro8lZXnlRWuEr6JzSb4dCpmM1lfa_WFNWEDPPAguH0mHKJ0Ca81Z76U2mZNRQtrpfFCWoerL-XyWjI1oHrnkmVyvCVDC7G_DDsV3ibLWSpyhqU9WztRBOz_XZT5a7HkTyemcSM6vgd3xwiSvB04vw83fPsAbg89Ja8ewtfY5hILgKLMSdcQG9eDMMeiihcEa93PyLuQwHpyqC-WU98T_B9LPvmz9BSfdOtIWJC6eaTUq75DvEuseX4Ep8dHnw_fp2MThdSWLOtTZr1BTC_PWaVzbphrdCktlYKHbMs1TrDCZ2VY5YwprdGY4JVG-sbZEMs0ZfEYdtqu9U-B5BLhBJlzlhomMqodragsbOapdIaxBLK1QJUdEcax0cU3FU-6C6EGJaigBBWVoPIEXm_mXAz4Gn-lPkA9bSgRGzu-CBajRotR_7KYBPbWWlajwy5VEQJjBL_jMoGXm8_B1fD8RLe-Ww00JcLdVwk8GYxiw0kI6wpRViIBsWUuW6xuf2nn5xHOO8vwlo4IU9-sLesHX3-WxbP_IYvncCdHl0DkSroHO_1i5V_ALXvZz5eLCdzkMx5HMYHdg6Np_XES_SyMJ3mNIw_jbv3hpP7yHSOILOg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1FAQQX9sUQoJHgBFa8tO3uA0KQECVKGEUikXKi6c3DSMgexh5QfopvpKu9RMOSWw4cbVdLbftV9Vb1HsDz0iqtjU8r13lInVXIuElCntsi18zkzJZebKKYTNjJCT9cg59DLQymVQ4x0QdqU2vcI99M3cwF2ckK_mb-LUTVKDxdHSQ0Oljs29MfbsnWvN7bdv_3RZLsvD_a2g17VYFQZzRuQ6qtQpIrW9BcJoWippQZ15FbfLvlhykNo6mNM-f2SmVaSVzxZIrb0mg3uJeoEuFC_iWKzGKYKpgcjns6eGpGY97X5kQp22zc-Ig1bAkNWUIxoWhl_PMyAX-b2_6ZovnbOa0f_nZu_G8f7iZc7yfa5G3nGbdgzVa34UonvXl6Bz55NVDMk_LQJHVJtA-bro1GT1gQLAmYkm23zrdkS86biW0JbluTj3YaHuOVrAxxcbueeUu5bGukBcXU8LtwfCEvdw_Wq7qyD4AkHFkXqTE6UpTFkTRRHvFUxzbiRlEaQDwgQOieiB31QL4KnxCQMtGhRjjUCI8akQTwcmwz72hIzrV-h8AaLZFC3N-oF1PRRyRBmUH6O2alLKjNuNRxmUep1lxZxrUJYGPAk-jjWiPOwBTAs_Gxi0h4zCQrWy87mwxVAfIA7ncoHnviZr8py3IWAFvB90pXV59Usy-e9TyOsZiJuaavBlc469e_v8XD81_jKVzdPfpwIA72JvuP4FqCnoo0ntEGrLeLpX0Ml_X3dtYsnnhXJ_D5ol3kF-7gkh4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tuoC48H4EFjASnCBqHk5iHxCCLRXVQlUJVlouaxzbKZVQUpoUtH-NX4fHSboqj73tgWOSseQk34xfM98H8KQwuVLapZWr1KfWymdcRz5PTZYqplNmCic2kU2n7OiIz3bgZ18Lg2mVfUx0gVpXCvfIh7GduSA7WcaHRZcWMRuNXy6_-agghSetvZxGC5EDc_LDLt_qF5OR_ddPo2j85uP-W79TGPBVQsPGp8rkSHhlMprKKMupLmTCVWAX4nYpogvNaGzCxIaAPE9ULnH1k-TcFFrZgb5AxQgb_nftlJxGA9idTd7PPm12ePAMjYa8q9QJYjas7WiJFW0R9VlEMb1oazR0ogF_m-n-mbD526mtGwzHV__nz3gNrnRTcPKq9ZnrsGPKG3CxFeU8uQnHTicUM6gcaElVEOUCqm2j0EdWBIsF5mRkytqQfbmsp6YhuKFNPpi5f4hXstTERvRq4SzluqmQMBSTxm_B4bm83G0YlFVp7gKJOPIxUq1VkFMWBlIHacBjFZqA65xSD8IeDUJ1FO2oFPJVuFSBmIkWQcIiSDgEiciDZ5s2y5ag5Ezr1wiyjSWSi7sb1WouulglKNNIjMeMlBk1CZcqLNIgVornhnGlPdjrsSW6iFeLU2B58Hjz2MYqPICSpanWrU2CegGpB3daRG96YufFMUtS5gHbwvpWV7eflIsvjg89DLHMidmmz3u3OO3Xv7_FvbNf4xFcsp4h3k2mB_fhcoROi_yewR4MmtXaPIAL6nuzqFcPO78n8Pm8feQXnXScZw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+cervical+cancer+using+Dense+CapsNet+with+Seg-UNet+and+denoising+autoencoders&rft.jtitle=Scientific+reports&rft.au=Yang%2C+Hui&rft.au=Aydi%2C+Walid&rft.au=Innab%2C+Nisreen&rft.au=Ghoneim%2C+Mohamed+E&rft.date=2024-12-30&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=31764&rft_id=info:doi/10.1038%2Fs41598-024-82489-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |