Disorder-specific neurodynamic features in schizophrenia inferred by neurodynamic embedded contrastive variational autoencoder model

Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer valuable insights into the pathological mechanisms of schizophrenia (SCZ). In this study, we integrated a neurodynamic model with the classical Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational psychiatry Jg. 14; H. 1; S. 496 - 14
Hauptverfasser: Ding, Chaoyue, Sun, Yuqing, Li, Kunchi, Xie, Sangma, Yan, Hao, Li, Peng, Yan, Jun, Chen, Jun, Wang, Huiling, Wang, Huaning, Chen, Yunchun, Yang, Yongfeng, Lv, Luxian, Zhang, Hongxing, Lu, Lin, Zhang, Dai, Chen, Yaojing, Zhang, Zhanjun, Jiang, Tianzi, Liu, Bing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 18.12.2024
Nature Publishing Group
Schlagworte:
ISSN:2158-3188, 2158-3188
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer valuable insights into the pathological mechanisms of schizophrenia (SCZ). In this study, we integrated a neurodynamic model with the classical Contrastive Variational Autoencoder (CVAE) to extract and evaluate macro-scale SCZ-specific features, including subject-level, region-level parameters, and time-varying states. Firstly, we demonstrated the robust fitting of the model within our multi-site dataset. Subsequently, by employing representational similarity analysis and a deep learning classifier, we confirmed the specificity and disorder-related information capturing ability of SCZ-specific features. Moreover, analysis of the attractor characteristics of the neurodynamic system revealed significant differences in attractor space patterns between SCZ-specific states and shared states. Finally, we utilized Partial Least Squares (PLS) regression to examine the multivariate mapping relationship between SCZ-specific features and symptoms, identifying two sets of correlated modes implicating unique molecular mechanisms: one mode corresponding to negative and general symptoms, and another mode corresponding to positive symptoms. Our results provide valuable insights into disorder-specific neurodynamic features and states associated with SCZ, laying the foundation for understanding the intricate pathophysiology of this disorder.
AbstractList Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer valuable insights into the pathological mechanisms of schizophrenia (SCZ). In this study, we integrated a neurodynamic model with the classical Contrastive Variational Autoencoder (CVAE) to extract and evaluate macro-scale SCZ-specific features, including subject-level, region-level parameters, and time-varying states. Firstly, we demonstrated the robust fitting of the model within our multi-site dataset. Subsequently, by employing representational similarity analysis and a deep learning classifier, we confirmed the specificity and disorder-related information capturing ability of SCZ-specific features. Moreover, analysis of the attractor characteristics of the neurodynamic system revealed significant differences in attractor space patterns between SCZ-specific states and shared states. Finally, we utilized Partial Least Squares (PLS) regression to examine the multivariate mapping relationship between SCZ-specific features and symptoms, identifying two sets of correlated modes implicating unique molecular mechanisms: one mode corresponding to negative and general symptoms, and another mode corresponding to positive symptoms. Our results provide valuable insights into disorder-specific neurodynamic features and states associated with SCZ, laying the foundation for understanding the intricate pathophysiology of this disorder.
Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer valuable insights into the pathological mechanisms of schizophrenia (SCZ). In this study, we integrated a neurodynamic model with the classical Contrastive Variational Autoencoder (CVAE) to extract and evaluate macro-scale SCZ-specific features, including subject-level, region-level parameters, and time-varying states. Firstly, we demonstrated the robust fitting of the model within our multi-site dataset. Subsequently, by employing representational similarity analysis and a deep learning classifier, we confirmed the specificity and disorder-related information capturing ability of SCZ-specific features. Moreover, analysis of the attractor characteristics of the neurodynamic system revealed significant differences in attractor space patterns between SCZ-specific states and shared states. Finally, we utilized Partial Least Squares (PLS) regression to examine the multivariate mapping relationship between SCZ-specific features and symptoms, identifying two sets of correlated modes implicating unique molecular mechanisms: one mode corresponding to negative and general symptoms, and another mode corresponding to positive symptoms. Our results provide valuable insights into disorder-specific neurodynamic features and states associated with SCZ, laying the foundation for understanding the intricate pathophysiology of this disorder.Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer valuable insights into the pathological mechanisms of schizophrenia (SCZ). In this study, we integrated a neurodynamic model with the classical Contrastive Variational Autoencoder (CVAE) to extract and evaluate macro-scale SCZ-specific features, including subject-level, region-level parameters, and time-varying states. Firstly, we demonstrated the robust fitting of the model within our multi-site dataset. Subsequently, by employing representational similarity analysis and a deep learning classifier, we confirmed the specificity and disorder-related information capturing ability of SCZ-specific features. Moreover, analysis of the attractor characteristics of the neurodynamic system revealed significant differences in attractor space patterns between SCZ-specific states and shared states. Finally, we utilized Partial Least Squares (PLS) regression to examine the multivariate mapping relationship between SCZ-specific features and symptoms, identifying two sets of correlated modes implicating unique molecular mechanisms: one mode corresponding to negative and general symptoms, and another mode corresponding to positive symptoms. Our results provide valuable insights into disorder-specific neurodynamic features and states associated with SCZ, laying the foundation for understanding the intricate pathophysiology of this disorder.
Abstract Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer valuable insights into the pathological mechanisms of schizophrenia (SCZ). In this study, we integrated a neurodynamic model with the classical Contrastive Variational Autoencoder (CVAE) to extract and evaluate macro-scale SCZ-specific features, including subject-level, region-level parameters, and time-varying states. Firstly, we demonstrated the robust fitting of the model within our multi-site dataset. Subsequently, by employing representational similarity analysis and a deep learning classifier, we confirmed the specificity and disorder-related information capturing ability of SCZ-specific features. Moreover, analysis of the attractor characteristics of the neurodynamic system revealed significant differences in attractor space patterns between SCZ-specific states and shared states. Finally, we utilized Partial Least Squares (PLS) regression to examine the multivariate mapping relationship between SCZ-specific features and symptoms, identifying two sets of correlated modes implicating unique molecular mechanisms: one mode corresponding to negative and general symptoms, and another mode corresponding to positive symptoms. Our results provide valuable insights into disorder-specific neurodynamic features and states associated with SCZ, laying the foundation for understanding the intricate pathophysiology of this disorder.
ArticleNumber 496
Author Zhang, Hongxing
Jiang, Tianzi
Xie, Sangma
Li, Kunchi
Chen, Jun
Lv, Luxian
Lu, Lin
Yan, Hao
Wang, Huiling
Ding, Chaoyue
Yang, Yongfeng
Zhang, Dai
Liu, Bing
Wang, Huaning
Sun, Yuqing
Zhang, Zhanjun
Li, Peng
Chen, Yunchun
Chen, Yaojing
Yan, Jun
Author_xml – sequence: 1
  givenname: Chaoyue
  surname: Ding
  fullname: Ding, Chaoyue
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Chinese Academy of Sciences
– sequence: 2
  givenname: Yuqing
  surname: Sun
  fullname: Sun, Yuqing
  organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University
– sequence: 3
  givenname: Kunchi
  surname: Li
  fullname: Li, Kunchi
  organization: Brainnetome Center, Institute of Automation, Chinese Academy of Sciences
– sequence: 4
  givenname: Sangma
  orcidid: 0000-0002-4113-2670
  surname: Xie
  fullname: Xie, Sangma
  organization: Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University
– sequence: 5
  givenname: Hao
  orcidid: 0000-0003-0376-9037
  surname: Yan
  fullname: Yan, Hao
  organization: Institute of Mental Health, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
– sequence: 6
  givenname: Peng
  surname: Li
  fullname: Li, Peng
  organization: Institute of Mental Health, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
– sequence: 7
  givenname: Jun
  surname: Yan
  fullname: Yan, Jun
  organization: Institute of Mental Health, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
– sequence: 8
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  organization: Department of Radiology, Renmin Hospital of Wuhan University
– sequence: 9
  givenname: Huiling
  surname: Wang
  fullname: Wang, Huiling
  organization: Department of Psychiatry, Renmin Hospital of Wuhan University
– sequence: 10
  givenname: Huaning
  orcidid: 0000-0003-1981-4293
  surname: Wang
  fullname: Wang, Huaning
  organization: Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University
– sequence: 11
  givenname: Yunchun
  surname: Chen
  fullname: Chen, Yunchun
  organization: Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University
– sequence: 12
  givenname: Yongfeng
  orcidid: 0000-0003-0358-0752
  surname: Yang
  fullname: Yang, Yongfeng
  organization: Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan
– sequence: 13
  givenname: Luxian
  orcidid: 0000-0002-3963-660X
  surname: Lv
  fullname: Lv, Luxian
  organization: Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan
– sequence: 14
  givenname: Hongxing
  orcidid: 0000-0003-1412-1359
  surname: Zhang
  fullname: Zhang, Hongxing
  organization: Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan
– sequence: 15
  givenname: Lin
  orcidid: 0000-0003-0742-9072
  surname: Lu
  fullname: Lu, Lin
  organization: Institute of Mental Health, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
– sequence: 16
  givenname: Dai
  surname: Zhang
  fullname: Zhang, Dai
  organization: Institute of Mental Health, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
– sequence: 17
  givenname: Yaojing
  surname: Chen
  fullname: Chen, Yaojing
  organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, IDG/McGovern Institute for Brain Research, Beijing Normal University
– sequence: 18
  givenname: Zhanjun
  orcidid: 0000-0001-7266-4218
  surname: Zhang
  fullname: Zhang, Zhanjun
  email: zhang_rzs@bnu.edu.cn
  organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, IDG/McGovern Institute for Brain Research, Beijing Normal University
– sequence: 19
  givenname: Tianzi
  orcidid: 0000-0002-0607-3775
  surname: Jiang
  fullname: Jiang, Tianzi
  email: jiangtz@nlpr.ia.ac.cn
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Research Center for Augmented Intelligence, Zhejiang Lab, Innovation Academy for Artificial Intelligence, Chinese Academy of Sciences
– sequence: 20
  givenname: Bing
  orcidid: 0000-0003-2029-5187
  surname: Liu
  fullname: Liu, Bing
  email: bing.liu@bnu.edu.cn
  organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, IDG/McGovern Institute for Brain Research, Beijing Normal University, Chinese Institute for Brain Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39695106$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxIVLwN9xTgiVFipV4gJny7HHu14l9mInK23P_HC8u6V0e6gP_ph5782MZ15XJyEGqKq3GH3EiMpPmWHayQYR1iBKEGraF9UZwVw2FEt58uh-Wl3kvEJlcSZxi19Vp7QTHcdInFV_vvock4XU5DUY77ypA8wp2m3QY3k40NOcINc-1Nks_V1cLxMEr4vBQUpg6357TIGxB2uLw8QwJZ0nv4F6o5PXk49BD7WepwjBxBK1Hss-vKleOj1kuLg_z6tf11c_L783tz--3Vx-uW0MZ3hqmNEYYdEboUlPnO0JA8l6QAgTQ7DopMW9sRxzEK7tpDTctcg6aSmyttP0vLo56NqoV2qd_KjTVkXt1d4Q00LpNHkzgKIOGEWIccIdc5xKyWjnBBRdXuK0RevzQWs99yNYA7tahyPRY0_wS7WIG4Wx4FxyURQ-3Cuk-HuGPKnRZwPDoAPEOSuKWYspIhIV6Psn0FWcU_nLPUoIRmTXFdS7xyk95PKv2wVADgCTYs4J3AMEI7WbKnWYKlWmSu2nSu0KlU9Ixk_7Vpay_PA8lR6oucQJC0j_036G9Resb-Qq
CitedBy_id crossref_primary_10_1111_pcn_13829
Cites_doi 10.1073/pnas.1608282113
10.1016/j.neuroimage.2020.117038
10.1176/appi.ajp.2020.20030340
10.1126/science.abb4588
10.1016/j.ijdevneu.2010.08.003
10.1038/nature11405
10.1016/j.neunet.2019.10.014
10.1126/science.abm2461
10.1016/j.schres.2006.02.017
10.1016/j.neuroimage.2023.120302
10.1038/s41380-020-00983-1
10.1038/s41467-021-26704-y
10.1038/s44220-023-00110-3
10.1523/JNEUROSCI.2310-14.2015
10.1016/j.neuroimage.2018.04.032
10.1038/nature18933
10.1126/science.aad6469
10.1126/sciadv.aat7854
10.1016/j.neuroimage.2015.05.018
10.1177/1359786806071246
10.1016/j.neuron.2017.02.048
10.1016/j.brainresbull.2010.07.012
10.21203/rs.3.rs-3344208/v1
10.1054/plef.1999.0027
10.1073/pnas.1405289111
10.1093/schbul/17.1.27
10.1016/j.neuron.2011.09.032
10.3389/fpsyt.2018.00622
10.1093/nar/gkp427
10.1093/oxfordjournals.schbul.a006887
10.1098/rsif.2013.0048
10.1063/1.4851117
10.1098/rstb.2011.0351
10.1192/j.eurpsy.2023.342
10.1038/tp.2016.154
10.7554/eLife.72129
10.1038/s41591-020-0793-8
10.1038/s41593-022-01070-0
10.1038/s41467-019-12765-7
10.1093/schbul/17.4.609
10.1126/sciadv.abq7547
10.1093/cercor/bhac301
10.1038/nn.4497
10.1002/advs.202400929
10.1038/nn.4164
10.1016/j.psychres.2011.12.051
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41398-024-03200-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database

CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2158-3188
EndPage 14
ExternalDocumentID oai_doaj_org_article_3fe43004525f4f5388439f6ef79598d7
PMC11655856
39695106
10_1038_s41398_024_03200_7
Genre Journal Article
GrantInformation_xml – fundername: Beijing Nova Program
  grantid: 20230484425
  funderid: https://doi.org/10.13039/501100005090
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 82372049
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 82372049
– fundername: Beijing Nova Program
  grantid: 20230484425
GroupedDBID ---
0R~
3V.
53G
5VS
7X7
88E
8FI
8FJ
AAJSJ
AAKDD
ABUWG
ACGFO
ACGFS
ACMJI
ACSMW
ADBBV
ADFRT
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
KQ8
LGEZI
LOTEE
M1P
M~E
NADUK
NAO
NXXTH
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-4ca1016bc6a2b2fdb24e84be0012c21698d1bcd515e6f7988c5f70df8d30dd9a3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001381000100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-3188
IngestDate Fri Oct 03 12:32:45 EDT 2025
Tue Nov 04 02:03:29 EST 2025
Fri Sep 05 08:29:46 EDT 2025
Tue Oct 07 06:49:53 EDT 2025
Sun Mar 30 02:12:39 EDT 2025
Sat Nov 29 02:05:56 EST 2025
Tue Nov 18 21:08:04 EST 2025
Fri Feb 21 02:36:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-4ca1016bc6a2b2fdb24e84be0012c21698d1bcd515e6f7988c5f70df8d30dd9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3963-660X
0000-0002-4113-2670
0000-0003-2029-5187
0000-0003-1412-1359
0000-0001-7266-4218
0000-0003-0358-0752
0000-0002-0607-3775
0000-0003-1981-4293
0000-0003-0742-9072
0000-0003-0376-9037
OpenAccessLink https://doaj.org/article/3fe43004525f4f5388439f6ef79598d7
PMID 39695106
PQID 3146642899
PQPubID 2041978
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_3fe43004525f4f5388439f6ef79598d7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11655856
proquest_miscellaneous_3147130280
proquest_journals_3146642899
pubmed_primary_39695106
crossref_primary_10_1038_s41398_024_03200_7
crossref_citationtrail_10_1038_s41398_024_03200_7
springer_journals_10_1038_s41398_024_03200_7
PublicationCentury 2000
PublicationDate 2024-12-18
PublicationDateYYYYMMDD 2024-12-18
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Translational psychiatry
PublicationTitleAbbrev Transl Psychiatry
PublicationTitleAlternate Transl Psychiatry
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References MP van den Heuvel (3200_CR45) 2017; 93
3200_CR20
MF Glasser (3200_CR50) 2016; 536
GJ Yang (3200_CR10) 2014; 111
V Sip (3200_CR12) 2023; 9
JS Kelso (3200_CR37) 2012; 367
MJ Hawrylycz (3200_CR25) 2012; 489
NV Kraguljac (3200_CR13) 2021; 178
W Gao (3200_CR16) 2019; 185
BD Fulcher (3200_CR23) 2013; 10
3200_CR24
N Kriegeskorte (3200_CR22) 2008; 2
D Wang (3200_CR4) 2021; 26
V Kumari (3200_CR3) 2006; 84
NC Andreasen (3200_CR15) 1991; 17
J Chen (3200_CR28) 2009; 37
E Kang (3200_CR48) 2011; 72
D Wang (3200_CR52) 2015; 18
MJ Gandal (3200_CR1) 2018; 359
RD Markello (3200_CR26) 2021; 10
M Breakspear (3200_CR7) 2017; 20
P Lanillos (3200_CR6) 2020; 122
GJ Yang (3200_CR30) 2016; 113
JB Burt (3200_CR27) 2020; 220
A Anticevic (3200_CR31) 2015; 35
AI Luppi (3200_CR36) 2022; 25
Y Horiuchi (3200_CR32) 2016; 6
C Ding (3200_CR9) 2024; 11
C Gröhn (3200_CR35) 2022; 27
TH McGlashan (3200_CR41) 1991; 17
DF Horrobin (3200_CR46) 1999; 60
J Cabral (3200_CR29) 2013; 23
A Aglinskas (3200_CR17) 2022; 376
DS Margulies (3200_CR33) 2016; 113
J Kim (3200_CR39) 2016; 124
3200_CR11
JD Murray (3200_CR5) 2018; 3
K Amunts (3200_CR51) 2020; 369
A Picardi (3200_CR40) 2012; 198
P Khadse (3200_CR44) 2023; 66
MG Preti (3200_CR34) 2019; 10
Y Sun (3200_CR38) 2023; 279
W Shi (3200_CR14) 2023; 33
X Kong (3200_CR8) 2021; 12
M Wang (3200_CR19) 2023; 1
M Beneyto (3200_CR2) 2011; 29
A Li (3200_CR18) 2020; 26
A Buonanno (3200_CR47) 2010; 83
TM Maynard (3200_CR49) 2001; 27
P Chue (3200_CR42) 2006; 20
P Wang (3200_CR21) 2019; 5
M Wang (3200_CR43) 2023; 1
References_xml – volume: 113
  start-page: 12574
  year: 2016
  ident: 3200_CR33
  publication-title: Proc Natl Acad Sci.
  doi: 10.1073/pnas.1608282113
– volume: 220
  year: 2020
  ident: 3200_CR27
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2020.117038
– volume: 178
  start-page: 509
  year: 2021
  ident: 3200_CR13
  publication-title: Am J Psychiatry.
  doi: 10.1176/appi.ajp.2020.20030340
– volume: 369
  start-page: 988
  year: 2020
  ident: 3200_CR51
  publication-title: Science.
  doi: 10.1126/science.abb4588
– ident: 3200_CR20
– volume: 29
  start-page: 295
  year: 2011
  ident: 3200_CR2
  publication-title: Int J Dev Neurosci.
  doi: 10.1016/j.ijdevneu.2010.08.003
– volume: 489
  start-page: 391
  year: 2012
  ident: 3200_CR25
  publication-title: Nature.
  doi: 10.1038/nature11405
– volume: 122
  start-page: 338
  year: 2020
  ident: 3200_CR6
  publication-title: Neural Networks.
  doi: 10.1016/j.neunet.2019.10.014
– volume: 376
  start-page: 1070
  year: 2022
  ident: 3200_CR17
  publication-title: Science.
  doi: 10.1126/science.abm2461
– volume: 84
  start-page: 144
  year: 2006
  ident: 3200_CR3
  publication-title: Schizophr Res.
  doi: 10.1016/j.schres.2006.02.017
– volume: 279
  year: 2023
  ident: 3200_CR38
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2023.120302
– volume: 26
  start-page: 2493
  year: 2021
  ident: 3200_CR4
  publication-title: Mol Psychiatry.
  doi: 10.1038/s41380-020-00983-1
– volume: 12
  start-page: 6373.
  year: 2021
  ident: 3200_CR8
  publication-title: Nat Commun.
  doi: 10.1038/s41467-021-26704-y
– volume: 1
  start-page: 22
  year: 2023
  ident: 3200_CR19
  publication-title: Nat Ment Health.
  doi: 10.1038/s44220-023-00110-3
– volume: 35
  start-page: 267
  year: 2015
  ident: 3200_CR31
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.2310-14.2015
– volume: 185
  start-page: 802
  year: 2019
  ident: 3200_CR16
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2018.04.032
– volume: 536
  start-page: 171
  year: 2016
  ident: 3200_CR50
  publication-title: Nature.
  doi: 10.1038/nature18933
– volume: 359
  start-page: 693
  year: 2018
  ident: 3200_CR1
  publication-title: Science.
  doi: 10.1126/science.aad6469
– volume: 5
  year: 2019
  ident: 3200_CR21
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.aat7854
– volume: 124
  start-page: 127
  year: 2016
  ident: 3200_CR39
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2015.05.018
– volume: 20
  start-page: 38
  year: 2006
  ident: 3200_CR42
  publication-title: Journal of Psychopharmacology.
  doi: 10.1177/1359786806071246
– volume: 93
  start-page: 1248
  year: 2017
  ident: 3200_CR45
  publication-title: Neuron.
  doi: 10.1016/j.neuron.2017.02.048
– volume: 83
  start-page: 122
  year: 2010
  ident: 3200_CR47
  publication-title: Brain Res Bull.
  doi: 10.1016/j.brainresbull.2010.07.012
– ident: 3200_CR24
  doi: 10.21203/rs.3.rs-3344208/v1
– volume: 60
  start-page: 141
  year: 1999
  ident: 3200_CR46
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA).
  doi: 10.1054/plef.1999.0027
– volume: 111
  start-page: 7438
  year: 2014
  ident: 3200_CR10
  publication-title: Proc Natl Acad Sci.
  doi: 10.1073/pnas.1405289111
– volume: 17
  start-page: 27
  year: 1991
  ident: 3200_CR15
  publication-title: Schizophr Bull.
  doi: 10.1093/schbul/17.1.27
– volume: 72
  start-page: 559
  year: 2011
  ident: 3200_CR48
  publication-title: Neuron.
  doi: 10.1016/j.neuron.2011.09.032
– ident: 3200_CR11
  doi: 10.3389/fpsyt.2018.00622
– volume: 27
  start-page: 100219
  year: 2022
  ident: 3200_CR35
  publication-title: Schizophrenia Research: Cognition.
– volume: 1
  start-page: 633
  year: 2023
  ident: 3200_CR43
  publication-title: Nat Ment Health.
  doi: 10.1038/s44220-023-00110-3
– volume: 37
  start-page: W305
  year: 2009
  ident: 3200_CR28
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp427
– volume: 2
  start-page: 249
  year: 2008
  ident: 3200_CR22
  publication-title: Front Syst Neurosci.
– volume: 27
  start-page: 457
  year: 2001
  ident: 3200_CR49
  publication-title: Schizophr Bull.
  doi: 10.1093/oxfordjournals.schbul.a006887
– volume: 10
  start-page: 20130048
  year: 2013
  ident: 3200_CR23
  publication-title: Journal of the Royal Society Interface.
  doi: 10.1098/rsif.2013.0048
– volume: 23
  start-page: 046111
  year: 2013
  ident: 3200_CR29
  publication-title: Chaos
  doi: 10.1063/1.4851117
– volume: 367
  start-page: 906
  year: 2012
  ident: 3200_CR37
  publication-title: Philos Trans R Soc, B.
  doi: 10.1098/rstb.2011.0351
– volume: 66
  start-page: S134
  year: 2023
  ident: 3200_CR44
  publication-title: Eur Psychiatry.
  doi: 10.1192/j.eurpsy.2023.342
– volume: 6
  year: 2016
  ident: 3200_CR32
  publication-title: Transl Psychiatry.
  doi: 10.1038/tp.2016.154
– volume: 10
  year: 2021
  ident: 3200_CR26
  publication-title: elife.
  doi: 10.7554/eLife.72129
– volume: 26
  start-page: 558
  year: 2020
  ident: 3200_CR18
  publication-title: Nat Med.
  doi: 10.1038/s41591-020-0793-8
– volume: 25
  start-page: 771
  year: 2022
  ident: 3200_CR36
  publication-title: Nat Neurosci.
  doi: 10.1038/s41593-022-01070-0
– volume: 10
  year: 2019
  ident: 3200_CR34
  publication-title: Nat Commun.
  doi: 10.1038/s41467-019-12765-7
– volume: 17
  start-page: 609
  year: 1991
  ident: 3200_CR41
  publication-title: Schizophr Bull.
  doi: 10.1093/schbul/17.4.609
– volume: 9
  year: 2023
  ident: 3200_CR12
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.abq7547
– volume: 33
  start-page: 3683
  year: 2023
  ident: 3200_CR14
  publication-title: Cereb Cortex.
  doi: 10.1093/cercor/bhac301
– volume: 20
  start-page: 340
  year: 2017
  ident: 3200_CR7
  publication-title: Nat Neurosci.
  doi: 10.1038/nn.4497
– volume: 11
  start-page: 2400929.
  year: 2024
  ident: 3200_CR9
  publication-title: Adv Sci
  doi: 10.1002/advs.202400929
– volume: 18
  start-page: 1853
  year: 2015
  ident: 3200_CR52
  publication-title: Nat Neurosci.
  doi: 10.1038/nn.4164
– volume: 3
  start-page: 777
  year: 2018
  ident: 3200_CR5
  publication-title: Biol Psychiatry: Cognit Neurosci Neuroimaging.
– volume: 198
  start-page: 386
  year: 2012
  ident: 3200_CR40
  publication-title: Psychiatry Res.
  doi: 10.1016/j.psychres.2011.12.051
– volume: 113
  start-page: E219
  year: 2016
  ident: 3200_CR30
  publication-title: Proc Natl Acad Sci.
SSID ssj0000548171
Score 2.3838942
Snippet Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer...
Abstract Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 496
SubjectTerms 38/39
59/36
59/57
631/378/340
692/699/476/1799
Adult
Behavioral Sciences
Biological Psychology
Brain - physiopathology
Deep Learning
Female
Humans
Male
Medicine
Medicine & Public Health
Models, Neurological
Neurosciences
Pharmacotherapy
Psychiatry
Schizophrenia
Schizophrenia - physiopathology
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFiEu5Q0pBRmJG1gb5-mcKkBUcGi1B5DKyXL8KCtBUpLdStz54fU4Tkp49MR1Y-8668_jsWfm-wBe5DqpjJIVzRSPaWZKTas0R8kwmVa11SWzsRebKI-P-clJtQrl0X1IqxxtojfUA9sz5m07I7zUrcIb82XKkBYdDwsHZ98pakhhrDUIalyHHSTe4gvYWX04Wn2e7lyce8JZyULtTJzyZe9sONaYJRlFJfGYlrP9ydP4_833_DOF8rc4qt-eDm__3xe7A7vBTSWvB1zdhWumuQc3j0Ig_j78HFk7KZZqYroR8cyYehC4J9Z4wtCerBvS_5rXRzD7q-uMJvWPeRfzrTbOCmris-dlj3aYnLujfLiuJHK7aZF20_0q8QI-D-DT4buPb9_TIOhAVZ6xjcODxMuCWhUyqROr6yQzPKsN-lwqYUXFNauVdi6WKSwSqanclrG2XKex1g49D2HRtI15DERVscltbN15yPlUNpM2z22FZGlYaivzCNg4jUIFtnMU3fgqfNQ95WKYeuGmXvipF2UEL6c-ZwPXx5Wt3yA6ppbI0-0_aLtTEZa9SK3JUk9bn9vMus2FOwfQFsaixDvX7kv2R1CIYDx6cYmBCJ5Pj92yx1iObEy79W1KjDnzOIJHAxSnkaRVgX5zEQGfgXQ21PmTZv3FU4sjGZM7QLqur0Y8X47r3__F3tWv8QRuJbjEWEIZ34fFptuap3BDnW_WffcsrNILyJxOTw
  priority: 102
  providerName: ProQuest
Title Disorder-specific neurodynamic features in schizophrenia inferred by neurodynamic embedded contrastive variational autoencoder model
URI https://link.springer.com/article/10.1038/s41398-024-03200-7
https://www.ncbi.nlm.nih.gov/pubmed/39695106
https://www.proquest.com/docview/3146642899
https://www.proquest.com/docview/3147130280
https://pubmed.ncbi.nlm.nih.gov/PMC11655856
https://doaj.org/article/3fe43004525f4f5388439f6ef79598d7
Volume 14
WOSCitedRecordID wos001381000100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2158-3188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000548171
  issn: 2158-3188
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2158-3188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000548171
  issn: 2158-3188
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2158-3188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000548171
  issn: 2158-3188
  databaseCode: 7X7
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2158-3188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000548171
  issn: 2158-3188
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2158-3188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000548171
  issn: 2158-3188
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BghAXtLzDLpWRuEG0ceLEznEXdQWHVhUCqZysxA9RCVLUtCvtZU_8cGactDTL68IlB8dWrHnYM5mZbwBe5jYtnanKWBiVxMJJG5dZTi3DqqysvZXcJ6HZhJxO1XxezvZafVFOWAcP3BHuJPNOZAH4O_fCo3oqvEJ94Tw1yVY21JGj1bPnTHWo3kJxyfsqmSRTJy2e1lRNloqYeoYnsRzcRAGw_3dW5q_JktcipuEiOj-Ee70FyU67nd-HG655AHcmfYz8IXzfAmrGVEVJmUAsgFbarvc88y5gebZs0bB2P-WOUWLWauUsqy-HS9zX2uEBZVlIbK9aOiLZBXrZ_Z9EVm3WS0LExK-y0FvnEXw8H3948zbuey3EJhd8jayqyI-vTVGldeptnQqnRO3IHDIpL5DUvDYWrR9XeMI4M7mXifXKZom1yNjHcNAsG_cUmCkTl_vEo6uC5o4Xlc9zXxKOGVXBVnkEfEt3bXogcuqH8UWHgHimdMcrjbzSgVdaRvBqt-ZbB8Px19lnxM7dTILQDgMoWLoXLP0vwYrgeCsMutfrVmec4PjJSY3gxe41aiSFWarGLTdhjqRwsEoieNLJzm4nWVmQSVtEoAZSNdjq8E2z-BxQvwknCX07XPp6K4A_9_VnWjz7H7Q4grspaQ5PY66O4WC92rjncNtcrBftagQ35VyGpxrBrbPxdPZ-FNQRn5OrMY7N3k1mn34AndE4Tw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQEX9iVQwEhwgqjZ7RwQYqtatR1xKNLcjOMFRqKZkswUzZ3fw2_kPU-SMiy99cAxEztxPG-1n78P4EluktJqVYaZFlGYWW7CMs2JMkylZeUMj13kySb4aCTG4_L9Gvzoz8JQWWVvE72hNlNNa-SbaUxA6JQevDz6GhJrFO2u9hQaS7HYtYtvmLK1L3be4v_7NEm23h282Q47VoFQ51k8w0EpylgrXaikSpypksyKrLLk-HUSF6UwcaUN-nlbOELz0rnjkXHCpJEx-An43HNwHu04pxIyPubDmg6GPyLmcXc2J0rFZos-gs6wJVlITOVRyFf8n6cJ-Fts-2eJ5m_7tN79bV393ybuGlzpAm32aqkZ12HN1jfg4n5XSnATvve4oyEdNqWCKeaxPc2iVod44ayHPG3ZpGbtr5WJjOrXmsYaVi1Wu9jDyqIdN8zX_6uWPAk7Vs2kW3Blaj6bEnAovpV5CqJb8OFM5uA2rNfT2t4FpsvI5i5ymNFhVOgy5fLclQT3RoeFVR5A3AuK1B1eO9GGfJG-biAVcilcEoVLeuGSPIBnQ5-jJVrJqa1fk_wNLQlp3P8wbT7JznDJ1Nks9cD7ucscukeBIawrrCOSemHwIRu92MnO_LXyROYCeDzcRsNFu1GqttO5b8Np11xEAdxZCvswkrQsKPIvAhArarAy1NU79eSzB0cnOClMgbHr815jTsb177m4d_pnPIJL2wf7e3JvZ7R7Hy4npNBxEsZiA9Znzdw-gAv6eDZpm4feIjD4eNaa9BOTA59o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgiouvB-BAosEJ7Bie23v-oAQUCKqQtQDSL0t631AJOoUOynKnV_Fr2NmY6eER289cEy8dtabee7OfB_Ao9ympTO6jDIj4yhzwkYlz4kyTPOy8lYkPg5kE2I8lgcH5f4G_Oh7YaissreJwVDbqaE98iFPCAid0oOh78oi9ndGz4--RsQgRSetPZ3GUkT23OIbpm_ts90d_K8fp-no9ftXb6KOYSAyeZbMcIKastfKFDqtUm-rNHMyqxwFASZNilLapDIWfb4rPCF7mdyL2HppeWwtvg4-9xycF5wLoo0QB2K1v4OhkExE0vXpxFwOW_QX1M-WZhGxlseRWPOFgTLgb3Hun-Wav53ZBlc4uvw_L-IVuNQF4OzFUmOuwoarr8HWu67E4Dp87_FII2pCpUIqFjA_7aLWh_jBuwCF2rJJzdpfKxYZ1bU1jbOsWqzf4g4rh_bdstAXoFvyMOxYN5NuI5bp-WxKgKL4qyxQE92AD2eyBjdhs57W7jYwU8Yu97HHTA-jRZ9pn-e-JBg4aiLW-QCSXmiU6XDciU7kiwr1BFyqpaApFDQVBE2JATxZ3XO0RDE5dfRLksXVSEIgD19Mm0-qM2iKe5fxAMif-8yj25QY2vrCeSKvlxYfst2LoOrMYqtO5G8AD1eX0aDRKZWu3XQexgg6TZfxAG4tBX81E14WlBEUA5BrKrE21fUr9eRzAE0nmClMjfHWp732nMzr32tx5_TXeABbqEDq7e547y5cTEm3kzRK5DZszpq5uwcXzPFs0jb3g3Fg8PGsFeknAb6oHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disorder-specific+neurodynamic+features+in+schizophrenia+inferred+by+neurodynamic+embedded+contrastive+variational+autoencoder+model&rft.jtitle=Translational+psychiatry&rft.au=Ding%2C+Chaoyue&rft.au=Sun%2C+Yuqing&rft.au=Li%2C+Kunchi&rft.au=Xie%2C+Sangma&rft.date=2024-12-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2158-3188&rft.volume=14&rft_id=info:doi/10.1038%2Fs41398-024-03200-7&rft_id=info%3Apmid%2F39695106&rft.externalDocID=PMC11655856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3188&client=summon