Research on coal mine longwall face gas state analysis and safety warning strategy based on multi-sensor forecasting models
Intelligent computing is transforming safety inspection methods and response strategies in coal mines. Due to the significant safety hazards associated with mining excavation, this study proposes a multi-source data based predictive model for assessing gas risk and implementing countermeasures. By e...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 14; H. 1; S. 13795 - 12 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
14.06.2024
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Intelligent computing is transforming safety inspection methods and response strategies in coal mines. Due to the significant safety hazards associated with mining excavation, this study proposes a multi-source data based predictive model for assessing gas risk and implementing countermeasures. By examining the patterns of gas dispersion at the longwall face, utilizing both temporal and spatial correlation, a predictive model is crafted that incorporates safety thresholds for gas concentrations, four-level early warning method and response strategy are devised by integrating weighted predictive confidence with these correlations. Initially tested using a public dataset from Poland, this method was later verified in coal mine in China. This paper discusses the validity and correlation of multi-source monitoring data in temporal and spatial correlation and proposes a risk warning mechanism based on it, which can be applied not only for safety warning but also for regulatory management. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-024-64181-7 |