Computation offloading strategy based on deep reinforcement learning for connected and autonomous vehicle in vehicular edge computing

Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric Vehicle (EV) is becoming the key subject of next-generation CAVs by virtue of its advantages in energy saving. Due to the limited endurance and computin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cloud computing : advances, systems and applications Vol. 10; no. 1; pp. 1 - 17
Main Authors: Lin, Bing, Lin, Kai, Lin, Changhang, Lu, Yu, Huang, Ziqing, Chen, Xinwei
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 08.06.2021
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:2192-113X, 2192-113X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric Vehicle (EV) is becoming the key subject of next-generation CAVs by virtue of its advantages in energy saving. Due to the limited endurance and computing capacity of EVs, it is challenging to meet the surging demand for computing-intensive and delay-sensitive in-vehicle intelligent applications. Therefore, computation offloading has been employed to extend a single vehicle’s computing capacity. Although various offloading strategies have been proposed to achieve good computing performace in the Vehicular Edge Computing (VEC) environment, it remains challenging to jointly optimize the offloading failure rate and the total energy consumption of the offloading process. To address this challenge, in this paper, we establish a computation offloading model based on Markov Decision Process (MDP), taking into consideration task dependencies, vehicle mobility, and different computing resources for task offloading. We then design a computation offloading strategy based on deep reinforcement learning, and leverage the Deep Q-Network based on Simulated Annealing (SA-DQN) algorithm to optimize the joint objectives. Experimental results show that the proposed strategy effectively reduces the offloading failure rate and the total energy consumption for application offloading.
AbstractList Abstract Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric Vehicle (EV) is becoming the key subject of next-generation CAVs by virtue of its advantages in energy saving. Due to the limited endurance and computing capacity of EVs, it is challenging to meet the surging demand for computing-intensive and delay-sensitive in-vehicle intelligent applications. Therefore, computation offloading has been employed to extend a single vehicle’s computing capacity. Although various offloading strategies have been proposed to achieve good computing performace in the Vehicular Edge Computing (VEC) environment, it remains challenging to jointly optimize the offloading failure rate and the total energy consumption of the offloading process. To address this challenge, in this paper, we establish a computation offloading model based on Markov Decision Process (MDP), taking into consideration task dependencies, vehicle mobility, and different computing resources for task offloading. We then design a computation offloading strategy based on deep reinforcement learning, and leverage the Deep Q-Network based on Simulated Annealing (SA-DQN) algorithm to optimize the joint objectives. Experimental results show that the proposed strategy effectively reduces the offloading failure rate and the total energy consumption for application offloading.
Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric Vehicle (EV) is becoming the key subject of next-generation CAVs by virtue of its advantages in energy saving. Due to the limited endurance and computing capacity of EVs, it is challenging to meet the surging demand for computing-intensive and delay-sensitive in-vehicle intelligent applications. Therefore, computation offloading has been employed to extend a single vehicle’s computing capacity. Although various offloading strategies have been proposed to achieve good computing performace in the Vehicular Edge Computing (VEC) environment, it remains challenging to jointly optimize the offloading failure rate and the total energy consumption of the offloading process. To address this challenge, in this paper, we establish a computation offloading model based on Markov Decision Process (MDP), taking into consideration task dependencies, vehicle mobility, and different computing resources for task offloading. We then design a computation offloading strategy based on deep reinforcement learning, and leverage the Deep Q-Network based on Simulated Annealing (SA-DQN) algorithm to optimize the joint objectives. Experimental results show that the proposed strategy effectively reduces the offloading failure rate and the total energy consumption for application offloading.
ArticleNumber 33
Author Chen, Xinwei
Lin, Changhang
Lin, Bing
Huang, Ziqing
Lu, Yu
Lin, Kai
Author_xml – sequence: 1
  givenname: Bing
  surname: Lin
  fullname: Lin, Bing
  organization: College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Engineering Research Center of Big Data Application in Private Health Medicine, Putian University
– sequence: 2
  givenname: Kai
  surname: Lin
  fullname: Lin, Kai
  organization: College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering
– sequence: 3
  givenname: Changhang
  orcidid: 0000-0002-2477-0988
  surname: Lin
  fullname: Lin, Changhang
  email: linchanghang@139.com
  organization: The School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University
– sequence: 4
  givenname: Yu
  surname: Lu
  fullname: Lu, Yu
  email: fzluyu@163.com
  organization: Concord University College, Fujian Normal University
– sequence: 5
  givenname: Ziqing
  surname: Huang
  fullname: Huang, Ziqing
  organization: College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering
– sequence: 6
  givenname: Xinwei
  surname: Chen
  fullname: Chen, Xinwei
  organization: Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Minjiang University
BookMark eNp9UUuL1TAUDjKC4zh_wFXAdTWvpulSLj4GBmaj4C6cpie1l97kmqTC_AD_t-lUdHAxi3AOJ98LvpfkIsSAhLzm7C3nRr_LXOqua5jgDWNC6UY_I5eC96LhXH67eLS_INc5HxljnHEhTXdJfh3i6bwWKHMMNHq_RBjnMNFcEhSc7ukAGUdaP0fEM004Bx-TwxOGQheEFDZ0PVEXQ0BXKhhCfWuJIZ7imulP_D67Bekc9nVdIFEcJ6yUzbsKvCLPPSwZr__MK_L144cvh8_N7d2nm8P728a1ipdG9cpx4B32PTjDwI1mgA61AeelUE5Kr5hTvKIGhSCUknxgXtXplJZCXpGbXXeMcLTnNJ8g3dsIs304xDRZSGVLa3upRyHk0HFslZD94P1okGnDWjScYdV6s2udU_yxYi72GNcUanwrWmlM3zKtK0rsKJdizgn9X1fO7Nae3duztT370J7dSOY_kpv3imor8_I0Ve7UXH3ChOlfqidYvwEKlrLQ
CitedBy_id crossref_primary_10_1007_s10489_023_04637_x
crossref_primary_10_1109_JIOT_2023_3264281
crossref_primary_10_1016_j_phycom_2025_102810
crossref_primary_10_1007_s11227_022_04911_8
crossref_primary_10_1109_TVT_2023_3289236
crossref_primary_10_1049_itr2_12479
crossref_primary_10_1109_TASE_2023_3330148
crossref_primary_10_1109_TCE_2024_3502408
crossref_primary_10_1088_1742_6596_2670_1_012021
crossref_primary_10_1007_s11227_024_06603_x
crossref_primary_10_1016_j_vehcom_2025_100954
crossref_primary_10_1007_s11227_025_07009_z
crossref_primary_10_1016_j_vehcom_2025_100898
crossref_primary_10_1145_3603703
crossref_primary_10_1109_TCC_2023_3328614
crossref_primary_10_1109_TCE_2023_3342017
crossref_primary_10_32604_cmes_2022_021394
crossref_primary_10_1016_j_future_2022_12_016
crossref_primary_10_1109_TMC_2023_3289611
crossref_primary_10_1038_s41598_025_98486_y
Cites_doi 10.1109/TVT.2019.2917890
10.1109/glocom.2018.8647564
10.1109/JIOT.2019.2953047
10.1109/trustcom.2012.16
10.1109/ACCESS.2020.2981434
10.1109/sec.2018.00010
10.1109/ev.2019.8892929
10.1109/TITS.2020.2982186
10.1109/JIOT.2018.2876298
10.1145/3317572
10.1109/ACCESS.2018.2881964
10.1109/JIOT.2020.2996213
10.1109/ACCESS.2018.2791504
10.1109/TVT.2020.2991641
10.1109/glocomw.2013.6855711
10.1109/TITS.2020.2980422
10.1109/JIOT.2020.2978830
10.1109/ACCESS.2020.3011705
10.1109/JIOT.2020.2972041
10.1109/itst.2015.7377394
10.23919/date.2018.8342076
10.1109/MVT.2017.2668838
10.1109/glocom.2016.7842160
10.1109/TII.2018.2883991
10.1109/icpads47876.2019.00073
10.1109/TVT.2020.2993849
10.1109/ACCESS.2019.2939384
10.1109/MVT.2018.2879537
10.1109/icccn49398.2020.9209738
10.1109/TVT.2017.2714704
10.1109/cac48633.2019.8996860
10.1109/JIOT.2020.2983660
10.1109/JIOT.2018.2872436
10.13140/RG.2.2.27292.72320
10.1007/s11036-020-01624-1
10.1137/1.9781611975031.50
10.1109/JIOT.2020.3033521
10.1109/vtc2020-spring48590.2020.9128785
10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7RQ
7SC
7XB
8AL
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2O
MBDVC
P62
PADUT
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
U9A
DOA
DOI 10.1186/s13677-021-00246-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Career & Technical Education Database
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest research library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Research Library China
Advanced Technologies Database with Aerospace
Career and Technical Education (Alumni Edition)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7RQ
  name: Career & Technical Education Database
  url: https://search.proquest.com/career
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2192-113X
EndPage 17
ExternalDocumentID oai_doaj_org_article_936d223b71e54239bffd8e06805e810e
10_1186_s13677_021_00246_6
GrantInformation_xml – fundername: the Natural Science Foundation of China
  grantid: No.62072108
– fundername: the Natural Science Foundation of Fujian Province
  grantid: No.2019J01286
– fundername: the Industry and Science guide Foundation of Fujian Province
  grantid: No.2017H0011
– fundername: the National Key R&D Program of China
  grantid: No.2018YFB1004800
– fundername: the Young and Middle-aged Teacher Education Foundation of Fujian Province
  grantid: No.JT180098
– fundername: Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University)
  grantid: No.MJUKF-IPIC201907
GroupedDBID -A0
0R~
3V.
40G
5VS
7RQ
8FE
8FG
8G5
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
IAO
ISR
ITC
K6V
K7-
KQ8
M0N
M2O
M~E
O9-
OK1
PADUT
PIMPY
PQQKQ
PROAC
RNS
RSV
SCO
SOJ
AASML
AAYXX
CITATION
ICD
IVC
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
U9A
ID FETCH-LOGICAL-c541t-494c1a17e99ac80acd8ba7e68acf324c33f40c414c1b4ea24431b0f4443c46323
IEDL.DBID C24
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659184600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2192-113X
IngestDate Fri Oct 03 12:36:23 EDT 2025
Wed Oct 15 14:11:03 EDT 2025
Tue Nov 18 20:50:39 EST 2025
Sat Nov 29 01:40:28 EST 2025
Fri Feb 21 02:49:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Connected and autonomous vehicle
Energy consumption
Computation offloading
Reinforcement learning
Simulated annealing
Mobility
Offloading failure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-494c1a17e99ac80acd8ba7e68acf324c33f40c414c1b4ea24431b0f4443c46323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2477-0988
OpenAccessLink https://link.springer.com/10.1186/s13677-021-00246-6
PQID 2538895066
PQPubID 2034894
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_936d223b71e54239bffd8e06805e810e
proquest_journals_2538895066
crossref_primary_10_1186_s13677_021_00246_6
crossref_citationtrail_10_1186_s13677_021_00246_6
springer_journals_10_1186_s13677_021_00246_6
PublicationCentury 2000
PublicationDate 2021-06-08
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-08
  day: 08
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Advances, Systems and Applications
PublicationTitle Journal of cloud computing : advances, systems and applications
PublicationTitleAbbrev J Cloud Comp
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Zeng F, Chen Q, Meng L, Wu J (2020) Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing. IEEE Trans Intell Transport Syst:1–11.
AlfakihTHassanMMGumaeiASavaglioCFortinoGTask Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSAIEEE Access20208540745408410.1109/ACCESS.2020.2981434
DaiPHangZLiuKWuXXingHYuZMulti-Armed Bandit Learning for Computation-Intensive Services in MEC-Empowered Vehicular NetworksIEEE Trans Veh Technol20206977821783410.1109/TVT.2020.2991641
KhayyatMElgendyIAMuthannaAAlshahraniASAlharbiSKoucheryavyAAdvanced Deep Learning-Based Computational Offloading for Multilevel Vehicular Edge-Cloud Computing NetworksIEEE Access2020813705213706210.1109/ACCESS.2020.3011705
Liu L, Chen C, Pei Q, Maharjan S, Zhang Y (2020) Vehicular Edge Computing and Networking: A Survey. Mob Netw Appl. https://doi.org/10.1007/s11036-020-01624-1.
LuoQLiCLuanTHShiWCollaborative Data Scheduling for Vehicular Edge Computing via Deep Reinforcement LearningIEEE Internet Things J20207109637965010.1109/JIOT.2020.2983660
Adiththan A, Ramesh S, Samii S (2018) Cloud-assisted control of ground vehicles using adaptive computation offloading techniques In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE), 589–592. https://doi.org/10.23919/date.2018.8342076.
WuQLiuHWangRFanPFanQLiZDelay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing SystemsIEEE Internet Things J20207177378510.1109/JIOT.2019.2953047
Wang M, Liang H, Deng R, Zhang R, Shen XS (2013) VANET based online charging strategy for electric vehicles In: 2013 IEEE Global Communications Conference (GLOBECOM), 4804–4809. https://doi.org/10.1109/glocomw.2013.6855711.
DaiYXuDMaharjanSZhangYJoint Load Balancing and Offloading in Vehicular Edge Computing and NetworksIEEE Internet Things J2019634377438710.1109/JIOT.2018.2876298
WangYWangKHuangHMiyazakiTGuoSTraffic and Computation Co-Offloading With Reinforcement Learning in Fog Computing for Industrial ApplicationsIEEE Trans Ind Inform201915297698610.1109/TII.2018.2883991
LiuYWangSZhaoQDuSZhouAMaXDependency-Aware Task Scheduling in Vehicular Edge ComputingIEEE Internet Things J2020764961497110.1109/JIOT.2020.2972041
GuoHZhangJLiuJFiWi-Enhanced Vehicular Edge Computing Networks: Collaborative Task OffloadingIEEE Veh Technol Mag2019141455310.1109/MVT.2018.2879537
WuHWolterKJiaoPDengYZhaoYXuMEEDTOAn Energy-Efficient Dynamic Task Offloading Algorithm for Blockchain-Enabled IoT-Edge-Cloud Orchestrated ComputingIEEE Internet Things J2021842163217610.1109/JIOT.2020.3033521
Dong P, Wang X, Rodrigues J (2019) Deep Reinforcement Learning for Vehicular Edge Computing: An Intelligent Offloading System. ACM Trans Intell Syst Technol 10(6).
FengJLiuZWuCJiYAVEAutonomous Vehicular Edge Computing Framework with ACO-Based SchedulingIEEE Trans Veh Technol20176612106601067510.1109/TVT.2017.2714704
Sun Y, Song J, Zhou S, Guo X, Niu Z (2018) Task Replication for Vehicular Edge Computing: A Combinatorial Multi-Armed Bandit Based Approach In: 2018 IEEE Global Communications Conference (GLOBECOM), 1–7. https://doi.org/10.1109/glocom.2018.8647564.
Wang L, Zhang Q, Li Y, Zhong H, Shi W (2019) MobileEdge: Enhancing On-Board Vehicle Computing Units Using Mobile Edges for CAVs In: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), 470–479. https://doi.org/10.1109/icpads47876.2019.00073.
Jiang K, Zhou H, Li D, Liu X, Xu S (2020) A Q-learning based Method for Energy-Efficient Computation Offloading in Mobile Edge Computing In: 2020 29th International Conference on Computer Communications and Networks (ICCCN), 1–7. https://doi.org/10.1109/icccn49398.2020.9209738.
Jang Y, Na J, Jeong S, Kang J (2020) Energy-Efficient Task Offloading for Vehicular Edge Computing: Joint Optimization of Offloading and Bit Allocation In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5. https://doi.org/10.1109/vtc2020-spring48590.2020.9128785.
Qin Y, Huang D, Zhang X (2012) VehiCloud: Cloud Computing Facilitating Routing in Vehicular Networks In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, 1438–1445. https://doi.org/10.1109/trustcom.2012.16.
Su R, Wu F, Zhao J (2019) Deep reinforcement learning method based on DDPG with simulated annealing for satellite attitude control system In: 2019 Chinese Automation Congress (CAC), 390–395. https://doi.org/10.1109/cac48633.2019.8996860.
ZhangKMaoYLengSHeYZHANG Y. Mobile-Edge Computing for Vehicular Networks: A Promising Network Paradigm with Predictive Off-LoadingIEEE Veh Technol Mag2017122364410.1109/MVT.2017.2668838
Lin K, Lin B, Chen X, Lu Y, Huang Z, Mo YA (2019) Time-Driven Workflow Scheduling Strategy for Reasoning Tasks of Autonomous Driving in Edge Environment In: 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom), 124–131. https://doi.org/10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028.
Lèbre MA, Le Mouel̈ F, Ménard E (2015) On the Importance of Real Data for Microscopic Urban Vehicular Mobility Trace In: Proceedings of the 14th International Conference on ITS Telecommunications (ITST’2015), 22–26, Copenhagen, Denmark. https://doi.org/10.1109/itst.2015.7377394.
Dhirani L, Newe T (2020) 5G security in smart manufacturing. ResearchGate. https://doi.org/10.13140/RG.2.2.27292.72320.
LeeSSLeeSResource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined With Heuristic InformationIEEE Internet Things J2020710104501046410.1109/JIOT.2020.2996213
Xu X, Zhang X, Liu X, Jiang J, Qi L, Bhuiyan MZA (2020) Adaptive Computation Offloading With Edge for 5G-Envisioned Internet of Connected Vehicles. IEEE Trans Intell Transport Syst:1–10.
LiRZhaoZSunQICYangCChenXDeep Reinforcement Learning for Resource Management in Network SlicingIEEE Access20186744297444110.1109/ACCESS.2018.2881964
ZhaoJLiQGongYZhangKComputation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing in Vehicular NetworksIEEE Trans Veh Technol20196887944795610.1109/TVT.2019.2917890
AltahhanATrue Online TD(λ)-Replay An Efficient Model-free Planning with Full Replay2020 International Joint Conference on Neural Networks (IJCNN)2020GlassglowIEEE17
Wang Y, Liu S, Wu X, Shi W (2018) CAVBench: A Benchmark Suite for Connected and Autonomous Vehicles In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), 30–42. https://doi.org/10.1109/sec.2018.00010.
LiJXiaoZLiPDiscrete-Time Multi-Player Games Based on Off-Policy Q-LearningIEEE Access2019713464713465910.1109/ACCESS.2019.2939384
Mao Y, Zhang J, Song SH, Letaief KB (2016) Power-Delay Tradeoff in Multi-User Mobile-Edge Computing Systems In: 2016 IEEE Global Communications Conference (GLOBECOM), 1–6. https://doi.org/10.1109/glocom.2016.7842160.
ZhanWLuoCWangJWangCMinGDuanHDeep-Reinforcement-Learning-Based Offloading Scheduling for Vehicular Edge ComputingIEEE Internet Things J2020765449546510.1109/JIOT.2020.2978830
SidfordAWangMWuXYeYVariance Reduced Value Iteration, Faster Algorithms for Solving Markov Decision Processes2018USASociety for Industrial and Applied Mathematics10.1137/1.9781611975031.50
Kadav P, Asher ZD (2019) Improving the Range of Electric Vehicles In: 2019 Electric Vehicles International Conference (EV), 1–5. https://doi.org/10.1109/ev.2019.8892929.
KeHWangJDengLGeYWangHDeep Reinforcement Learning-Based Adaptive Computation Offloading for MEC in Heterogeneous Vehicular NetworksIEEE Trans Veh Technol20206977916792910.1109/TVT.2020.2993849
PuLChenXMaoGXieQXuJChimera: An Energy-Efficient and Deadline-Aware Hybrid Edge Computing Framework for Vehicular Crowdsensing ApplicationsIEEE Internet Things J201961849910.1109/JIOT.2018.2872436
Organization WHGlobal status report on road safety 2018: Summary2018GenevaWorld Health Organization
WuHMulti-Objective Decision-Making for Mobile Cloud Offloading: A SurveyIEEE Access201863962397610.1109/ACCESS.2018.2791504
246_CR15
246_CR37
246_CR3
246_CR38
246_CR4
R Li (246_CR36) 2018; 6
246_CR5
246_CR6
246_CR33
Y Dai (246_CR25) 2019; 6
T Alfakih (246_CR40) 2020; 8
246_CR9
246_CR10
246_CR32
246_CR30
P Dai (246_CR22) 2020; 69
J Li (246_CR35) 2019; 7
Q Wu (246_CR13) 2020; 7
246_CR1
K Zhang (246_CR14) 2017; 12
H Ke (246_CR23) 2020; 69
H Wu (246_CR11) 2021; 8
Y Wang (246_CR17) 2019; 15
M Khayyat (246_CR18) 2020; 8
L Pu (246_CR16) 2019; 6
J Zhao (246_CR8) 2019; 68
H Guo (246_CR21) 2019; 14
246_CR28
246_CR29
Organization WH (246_CR2) 2018
SS Lee (246_CR26) 2020; 7
246_CR27
W Zhan (246_CR24) 2020; 7
H Wu (246_CR12) 2018; 6
A Altahhan (246_CR41) 2020
A Sidford (246_CR34) 2018
Y Liu (246_CR20) 2020; 7
246_CR19
246_CR39
J Feng (246_CR7) 2017; 66
Q Luo (246_CR31) 2020; 7
References_xml – reference: Kadav P, Asher ZD (2019) Improving the Range of Electric Vehicles In: 2019 Electric Vehicles International Conference (EV), 1–5. https://doi.org/10.1109/ev.2019.8892929.
– reference: Qin Y, Huang D, Zhang X (2012) VehiCloud: Cloud Computing Facilitating Routing in Vehicular Networks In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, 1438–1445. https://doi.org/10.1109/trustcom.2012.16.
– reference: LuoQLiCLuanTHShiWCollaborative Data Scheduling for Vehicular Edge Computing via Deep Reinforcement LearningIEEE Internet Things J20207109637965010.1109/JIOT.2020.2983660
– reference: DaiYXuDMaharjanSZhangYJoint Load Balancing and Offloading in Vehicular Edge Computing and NetworksIEEE Internet Things J2019634377438710.1109/JIOT.2018.2876298
– reference: Dong P, Wang X, Rodrigues J (2019) Deep Reinforcement Learning for Vehicular Edge Computing: An Intelligent Offloading System. ACM Trans Intell Syst Technol 10(6).
– reference: Dhirani L, Newe T (2020) 5G security in smart manufacturing. ResearchGate. https://doi.org/10.13140/RG.2.2.27292.72320.
– reference: PuLChenXMaoGXieQXuJChimera: An Energy-Efficient and Deadline-Aware Hybrid Edge Computing Framework for Vehicular Crowdsensing ApplicationsIEEE Internet Things J201961849910.1109/JIOT.2018.2872436
– reference: KeHWangJDengLGeYWangHDeep Reinforcement Learning-Based Adaptive Computation Offloading for MEC in Heterogeneous Vehicular NetworksIEEE Trans Veh Technol20206977916792910.1109/TVT.2020.2993849
– reference: WuHWolterKJiaoPDengYZhaoYXuMEEDTOAn Energy-Efficient Dynamic Task Offloading Algorithm for Blockchain-Enabled IoT-Edge-Cloud Orchestrated ComputingIEEE Internet Things J2021842163217610.1109/JIOT.2020.3033521
– reference: Jang Y, Na J, Jeong S, Kang J (2020) Energy-Efficient Task Offloading for Vehicular Edge Computing: Joint Optimization of Offloading and Bit Allocation In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5. https://doi.org/10.1109/vtc2020-spring48590.2020.9128785.
– reference: Organization WHGlobal status report on road safety 2018: Summary2018GenevaWorld Health Organization
– reference: Wang Y, Liu S, Wu X, Shi W (2018) CAVBench: A Benchmark Suite for Connected and Autonomous Vehicles In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), 30–42. https://doi.org/10.1109/sec.2018.00010.
– reference: WuQLiuHWangRFanPFanQLiZDelay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing SystemsIEEE Internet Things J20207177378510.1109/JIOT.2019.2953047
– reference: SidfordAWangMWuXYeYVariance Reduced Value Iteration, Faster Algorithms for Solving Markov Decision Processes2018USASociety for Industrial and Applied Mathematics10.1137/1.9781611975031.50
– reference: Lin K, Lin B, Chen X, Lu Y, Huang Z, Mo YA (2019) Time-Driven Workflow Scheduling Strategy for Reasoning Tasks of Autonomous Driving in Edge Environment In: 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom), 124–131. https://doi.org/10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028.
– reference: Adiththan A, Ramesh S, Samii S (2018) Cloud-assisted control of ground vehicles using adaptive computation offloading techniques In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE), 589–592. https://doi.org/10.23919/date.2018.8342076.
– reference: Jiang K, Zhou H, Li D, Liu X, Xu S (2020) A Q-learning based Method for Energy-Efficient Computation Offloading in Mobile Edge Computing In: 2020 29th International Conference on Computer Communications and Networks (ICCCN), 1–7. https://doi.org/10.1109/icccn49398.2020.9209738.
– reference: Liu L, Chen C, Pei Q, Maharjan S, Zhang Y (2020) Vehicular Edge Computing and Networking: A Survey. Mob Netw Appl. https://doi.org/10.1007/s11036-020-01624-1.
– reference: Lèbre MA, Le Mouel̈ F, Ménard E (2015) On the Importance of Real Data for Microscopic Urban Vehicular Mobility Trace In: Proceedings of the 14th International Conference on ITS Telecommunications (ITST’2015), 22–26, Copenhagen, Denmark. https://doi.org/10.1109/itst.2015.7377394.
– reference: KhayyatMElgendyIAMuthannaAAlshahraniASAlharbiSKoucheryavyAAdvanced Deep Learning-Based Computational Offloading for Multilevel Vehicular Edge-Cloud Computing NetworksIEEE Access2020813705213706210.1109/ACCESS.2020.3011705
– reference: Su R, Wu F, Zhao J (2019) Deep reinforcement learning method based on DDPG with simulated annealing for satellite attitude control system In: 2019 Chinese Automation Congress (CAC), 390–395. https://doi.org/10.1109/cac48633.2019.8996860.
– reference: FengJLiuZWuCJiYAVEAutonomous Vehicular Edge Computing Framework with ACO-Based SchedulingIEEE Trans Veh Technol20176612106601067510.1109/TVT.2017.2714704
– reference: AlfakihTHassanMMGumaeiASavaglioCFortinoGTask Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSAIEEE Access20208540745408410.1109/ACCESS.2020.2981434
– reference: AltahhanATrue Online TD(λ)-Replay An Efficient Model-free Planning with Full Replay2020 International Joint Conference on Neural Networks (IJCNN)2020GlassglowIEEE17
– reference: Xu X, Zhang X, Liu X, Jiang J, Qi L, Bhuiyan MZA (2020) Adaptive Computation Offloading With Edge for 5G-Envisioned Internet of Connected Vehicles. IEEE Trans Intell Transport Syst:1–10.
– reference: Wang L, Zhang Q, Li Y, Zhong H, Shi W (2019) MobileEdge: Enhancing On-Board Vehicle Computing Units Using Mobile Edges for CAVs In: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), 470–479. https://doi.org/10.1109/icpads47876.2019.00073.
– reference: ZhaoJLiQGongYZhangKComputation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing in Vehicular NetworksIEEE Trans Veh Technol20196887944795610.1109/TVT.2019.2917890
– reference: LeeSSLeeSResource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined With Heuristic InformationIEEE Internet Things J2020710104501046410.1109/JIOT.2020.2996213
– reference: Mao Y, Zhang J, Song SH, Letaief KB (2016) Power-Delay Tradeoff in Multi-User Mobile-Edge Computing Systems In: 2016 IEEE Global Communications Conference (GLOBECOM), 1–6. https://doi.org/10.1109/glocom.2016.7842160.
– reference: LiRZhaoZSunQICYangCChenXDeep Reinforcement Learning for Resource Management in Network SlicingIEEE Access20186744297444110.1109/ACCESS.2018.2881964
– reference: GuoHZhangJLiuJFiWi-Enhanced Vehicular Edge Computing Networks: Collaborative Task OffloadingIEEE Veh Technol Mag2019141455310.1109/MVT.2018.2879537
– reference: Sun Y, Song J, Zhou S, Guo X, Niu Z (2018) Task Replication for Vehicular Edge Computing: A Combinatorial Multi-Armed Bandit Based Approach In: 2018 IEEE Global Communications Conference (GLOBECOM), 1–7. https://doi.org/10.1109/glocom.2018.8647564.
– reference: DaiPHangZLiuKWuXXingHYuZMulti-Armed Bandit Learning for Computation-Intensive Services in MEC-Empowered Vehicular NetworksIEEE Trans Veh Technol20206977821783410.1109/TVT.2020.2991641
– reference: Wang M, Liang H, Deng R, Zhang R, Shen XS (2013) VANET based online charging strategy for electric vehicles In: 2013 IEEE Global Communications Conference (GLOBECOM), 4804–4809. https://doi.org/10.1109/glocomw.2013.6855711.
– reference: LiuYWangSZhaoQDuSZhouAMaXDependency-Aware Task Scheduling in Vehicular Edge ComputingIEEE Internet Things J2020764961497110.1109/JIOT.2020.2972041
– reference: ZhanWLuoCWangJWangCMinGDuanHDeep-Reinforcement-Learning-Based Offloading Scheduling for Vehicular Edge ComputingIEEE Internet Things J2020765449546510.1109/JIOT.2020.2978830
– reference: WuHMulti-Objective Decision-Making for Mobile Cloud Offloading: A SurveyIEEE Access201863962397610.1109/ACCESS.2018.2791504
– reference: ZhangKMaoYLengSHeYZHANG Y. Mobile-Edge Computing for Vehicular Networks: A Promising Network Paradigm with Predictive Off-LoadingIEEE Veh Technol Mag2017122364410.1109/MVT.2017.2668838
– reference: LiJXiaoZLiPDiscrete-Time Multi-Player Games Based on Off-Policy Q-LearningIEEE Access2019713464713465910.1109/ACCESS.2019.2939384
– reference: Zeng F, Chen Q, Meng L, Wu J (2020) Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing. IEEE Trans Intell Transport Syst:1–11.
– reference: WangYWangKHuangHMiyazakiTGuoSTraffic and Computation Co-Offloading With Reinforcement Learning in Fog Computing for Industrial ApplicationsIEEE Trans Ind Inform201915297698610.1109/TII.2018.2883991
– volume: 68
  start-page: 7944
  issue: 8
  year: 2019
  ident: 246_CR8
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2019.2917890
– ident: 246_CR28
  doi: 10.1109/glocom.2018.8647564
– volume: 7
  start-page: 773
  issue: 1
  year: 2020
  ident: 246_CR13
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2953047
– ident: 246_CR30
  doi: 10.1109/trustcom.2012.16
– volume: 8
  start-page: 54074
  year: 2020
  ident: 246_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981434
– ident: 246_CR1
  doi: 10.1109/sec.2018.00010
– ident: 246_CR5
  doi: 10.1109/ev.2019.8892929
– ident: 246_CR19
  doi: 10.1109/TITS.2020.2982186
– volume: 6
  start-page: 4377
  issue: 3
  year: 2019
  ident: 246_CR25
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2876298
– ident: 246_CR27
  doi: 10.1145/3317572
– volume: 6
  start-page: 74429
  year: 2018
  ident: 246_CR36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2881964
– volume: 7
  start-page: 10450
  issue: 10
  year: 2020
  ident: 246_CR26
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2996213
– volume: 6
  start-page: 3962
  year: 2018
  ident: 246_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2791504
– volume: 69
  start-page: 7821
  issue: 7
  year: 2020
  ident: 246_CR22
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2991641
– ident: 246_CR4
  doi: 10.1109/glocomw.2013.6855711
– ident: 246_CR29
  doi: 10.1109/TITS.2020.2980422
– volume: 7
  start-page: 5449
  issue: 6
  year: 2020
  ident: 246_CR24
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2978830
– volume: 8
  start-page: 137052
  year: 2020
  ident: 246_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011705
– volume: 7
  start-page: 4961
  issue: 6
  year: 2020
  ident: 246_CR20
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2972041
– ident: 246_CR38
  doi: 10.1109/itst.2015.7377394
– ident: 246_CR9
  doi: 10.23919/date.2018.8342076
– volume: 12
  start-page: 36
  issue: 2
  year: 2017
  ident: 246_CR14
  publication-title: IEEE Veh Technol Mag
  doi: 10.1109/MVT.2017.2668838
– ident: 246_CR33
  doi: 10.1109/glocom.2016.7842160
– volume: 15
  start-page: 976
  issue: 2
  year: 2019
  ident: 246_CR17
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2883991
– ident: 246_CR32
  doi: 10.1109/icpads47876.2019.00073
– volume-title: Global status report on road safety 2018: Summary
  year: 2018
  ident: 246_CR2
– volume: 69
  start-page: 7916
  issue: 7
  year: 2020
  ident: 246_CR23
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2993849
– volume: 7
  start-page: 134647
  year: 2019
  ident: 246_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939384
– volume: 14
  start-page: 45
  issue: 1
  year: 2019
  ident: 246_CR21
  publication-title: IEEE Veh Technol Mag
  doi: 10.1109/MVT.2018.2879537
– ident: 246_CR39
  doi: 10.1109/icccn49398.2020.9209738
– volume: 66
  start-page: 10660
  issue: 12
  year: 2017
  ident: 246_CR7
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2017.2714704
– ident: 246_CR37
  doi: 10.1109/cac48633.2019.8996860
– start-page: 1
  volume-title: 2020 International Joint Conference on Neural Networks (IJCNN)
  year: 2020
  ident: 246_CR41
– volume: 7
  start-page: 9637
  issue: 10
  year: 2020
  ident: 246_CR31
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2983660
– volume: 6
  start-page: 84
  issue: 1
  year: 2019
  ident: 246_CR16
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2872436
– ident: 246_CR6
  doi: 10.13140/RG.2.2.27292.72320
– ident: 246_CR10
  doi: 10.1007/s11036-020-01624-1
– volume-title: Variance Reduced Value Iteration, Faster Algorithms for Solving Markov Decision Processes
  year: 2018
  ident: 246_CR34
  doi: 10.1137/1.9781611975031.50
– volume: 8
  start-page: 2163
  issue: 4
  year: 2021
  ident: 246_CR11
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.3033521
– ident: 246_CR15
  doi: 10.1109/vtc2020-spring48590.2020.9128785
– ident: 246_CR3
  doi: 10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028
SSID ssj0001012387
Score 2.3403268
Snippet Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric Vehicle...
Abstract Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Computation offloading
Computer Communication Networks
Computer Science
Computer System Implementation
Computer Systems Organization and Communication Networks
Connected and autonomous vehicle
Deep learning
Edge computing
Edge-cloud computing cooperation for task offloading in internet-of-things
Electric vehicles
Energy consumption
Failure rates
Fatigue limit
Information Systems Applications (incl.Internet)
Machine learning
Markov processes
Offloading failure
Reinforcement learning
Simulated annealing
Software Engineering/Programming and Operating Systems
Special Purpose and Application-Based Systems
Traffic safety
Vehicle safety
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYEL34iFgnzgBlbt2HHsI6BWnCoOIPVmOWMbKlXZarNbiR_Q_90ZJyktEvTCIUpkO8nIM8k82-M3jL1rdMoOvBTojBUtMybheq-FK85DBLSaXGqyie742J2c-K83Un1RTNhEDzx13IHXNqEL6zuVWyKr60tJLlPGiDY7JTP9fWXnbwym6uwKQQXXLbtknD0YiZusExSRQH7JCnvLE1XC_lso84-F0epvjh6zhzNQ5B8nAZ-we3l4yh4tSRj4_E0-Y5dTUe1gvi7lbF2j4vk40c7-4uSnEsfKlPM53-RKlQp1VpDPOSN-cCziQDEvgAiUxwGP3Zb2O6x3I7_IP0kGfjpMlxS5ymkejkN9Nz7gOft-dPjt8xcx51YQ0Bq1FcYbUFF12fsITkZIro9dti5CQYwFWhcjwShs1ZscEQRo1cti8AzG6ka_YHvDesgvGZcltQictMehlFEZvAPZlwgedJM6a1ZMLf0cYCYep_wXZ6EOQJwNk24C6iZU3QS7Yu-v7zmfaDf-2foTqe-6JVFm1wI0pDAbUrjLkFZsf1F-mL_jMTToD5xvEZet2IfFIH5X_12kV_9DpNfsQVMN1grp9tnedrPLb9h9uNiejpu31eKvAKTOAyc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Career & Technical Education Database
  dbid: 7RQ
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcOBCy5dYaCsfuIHVOHYc-4QAUXGqCgKpN8sZ26VSlWw3u5X4AfxvPI7TVZHohUOUyHEcSzP2jMfj9wh5UwsfNJiKJWPMcZvRM90ZwXTUBhwkrQkxk020Jyf67MycloDbWNIq5zkxT9R-AIyRH9VpZGrTJAv5fnnFkDUKd1cLhcZ98iAZaoV63n77uo2xoMOg2_msjFZHIyKUtQzzEtA6KaZu2aMM23_L1_xrezRbnePd_-3vHnlc_E36YVKQJ-Re6J-S3ZnLgZah_Yz8noqynOgQ4-WQk-vpOKHX_qJo7jxNL30IS7oKGXEVcnCRFuqJc5qKKGDqDCRHlro-XZs1HpsYNiO9Dj-xD_Sinx4xAZZiOI9C_ndq4Dn5cfz5-6cvrFA0MGgkXzNpJHDH22CMA1058LpzbVDaQUyuGggRZQWSp1qdDC75EoJ3VZTpDlKJWrwgO_3Qh5eEVtE3KEOTVmSSBzAaqi46MCBq3yq5IHwWlIWCX440Gpc2r2O0spNwbRKuzcK1akHe3nyznNA77qz9EeV_UxORt3PBsDq3ZSBbI5RPLlXX8tAgeGIXo9cBGUyaoHkVFmR_1gdbpoPRbpVhQd7NGrV9_e8uvbq7tdfkUZ11WbFK75Od9WoTDshDuF5fjKvDPBj-AKWpEgM
  priority: 102
  providerName: ProQuest
Title Computation offloading strategy based on deep reinforcement learning for connected and autonomous vehicle in vehicular edge computing
URI https://link.springer.com/article/10.1186/s13677-021-00246-6
https://www.proquest.com/docview/2538895066
https://doaj.org/article/936d223b71e54239bffd8e06805e810e
Volume 10
WOSCitedRecordID wos000659184600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: C24
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlgMXylMslJUP3MAijh3HPtKqFQh1WSqQyslKJnapVCXVZrcSP4D_zdhJiooACQ5xIj8Sy57JfB6PZwBe5LLxBm3GSRiLuM3YcFNbyU0wFiskqvEhBZsoFwtzemqX46GwfrJ2n7Yk0586sbXRr_voXKzk0aQgChbN9RbsFMLYaMh3MJ5xSJqVCBNMOZ2Q-W3TG1IoOeu_gTB_2RRNsuZo9_96eQ_ujtiSvRmI4T7c8u0D2J3iNrCRjR_C9yErzQnrQrjokiE96wdPtd9YFG0No8LG-0u28sm7KiZFIhvDTJwxymIYzWSQQCurWro263hEotv07Mp_jX1g5-3wGI1dWVTdMUzfphc8gs9Hh58O3vIxHAPHQok1V1ahqETpra3QZBU2pq5Kr02FgWAZShlUhkpQrVr5inCDFHUWFN1RaZnLx7Dddq1_AiwLTUFYS1pafSnh0RrM6lChRZk3pVYzENP0OBx9lceQGRcurVmMdsM4Oxpnl8bZ6Rm8vG5zOXjq-Gvt_Tjr1zWjl-2U0a3O3Mi0zkrdEHyqS-GL6CixDqExPkYrKbwRmZ_B3kQzbmT93uUkQogoCcrN4NVEIz-L_9ylp_9W_RncyROZaZ6ZPdherzb-OdzGq_V5v5rDVnnycQ47-4eL5ck8Mcg86RsofV9ySo_zD1S-fHe8_PIDowoORg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqggQbylOdUsALWIHVOPY49gIhXlWrKSMWRerOJNd2qVQl08lMUT-A3-Eb8XWSjopEd12wiBLZjmM55z78uoeQl7lwXoPJWDTGHJcZHdOVEUwHbaCEiBofEtlEMZ3qoyPzdY38Hs7C4LbKQScmRe0awDnynTxKpjbjaCHfzc4Yskbh6upAodHBYuIvfsYhW_t2_1P8v6_yfPfz4cc91rMKMBhLvmDSSOAlL7wxJeisBKersvBKlxCidwFCBJmB5LFUJX0ZzZ_gVRZkvINUAgMdRJV_SwpdoFxNCraa00EHRRfD2RytdlqMiFYw3AeB1lAxdcX-JZqAK77tX8uxycrtbvxv_XOf3Ov9afq-E4AHZM3XD8nGwFVBe9X1iPzqkhIOaRPCaZMOD9C2i857QdGcOxoznfczOvcpoiykyVPaU2sc05hEAbcGQXTUaVnHa7nAYyHNsqXn_ge2gZ7U3SNu8KU4XUkhfTtW8Jh8u5HOeELW66b2m4RmwY2jfylMHHFK7sFoyKpQggGRu0LJEeEDMCz08dmRJuTUpnGaVrYDk41gsglMVo3I68t3Zl10kmtLf0C8XZbEyOIpoZkf215RWSOUiy5jVXA_xuCQVQhOe2RoGXvNMz8i2wP-bK_uWrsC34i8GRC8yv53k7aur-0FubN3-OXAHuxPJ0_J3TzJkWKZ3ibri_nSPyO34Xxx0s6fJ0Gk5PtNI_sPdR5t7g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqLUJcKL9i2wI-wAmszY83sQ8IAWXFqrDaA0jlZJKxXSpVybLZLeoD8FI8HTNO0lWR6K0HDlEi23Es5_PM2B7Px9izJLVOgY4EKuOYthmtUKVOhfJKQwGIGucD2UQ-m6mjIz3fYr_7szDkVtnLxCCobQ20Rj5KcGQqPUYNOfKdW8T8YPJ68UMQgxTttPZ0Gi1EDt35T5y-Na-mB_ivnyfJ5P3ndx9ExzAgYCzjlZBaQlzEudO6ABUVYFVZ5C5TBXi0NCBNvYxAxliqlK5AVZjGZeQl3kFmKQU9QPG_jSa5TAZsez79NP-6WeEhc0Xl_UkdlY0aio-WC_KKIN2YieySNgykAZcs3b82Z4POm-z8z711h93uLG3-ph0ad9mWq-6xnZ7FgndC7T771SYFhPLa-9M6HCvgTRu395yTorccM61zC750IdYshGVV3pFuHHNM4kBOQ4AmPC8qvNYrOjBSrxt-5r5TG_hJ1T6S6y-nhUwO4dtYwQP25Vo64yEbVHXlHjEeeTtGyzPVOBeVsQOtICp9ARrSxOaZHLK4B4mBLnI7EYicmjCDU5lpgWUQWCYAy2RD9uLinUUbt-TK0m8JexclKeZ4SKiXx6YTYUanmUVjssxjN6awkaX3Vjnibhk7FUduyPZ7LJpOEDZmA8Qhe9mjeZP97ybtXl3bU3YTAW0-TmeHe-xWEoZUJiK1zwar5do9ZjfgbHXSLJ90o5Kzb9cN7T-LXHhv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computation+offloading+strategy+based+on+deep+reinforcement+learning+for+connected+and+autonomous+vehicle+in+vehicular+edge+computing&rft.jtitle=Journal+of+cloud+computing+%3A+advances%2C+systems+and+applications&rft.au=Lin%2C+Bing&rft.au=Lin%2C+Kai&rft.au=Lin%2C+Changhang&rft.au=Lu%2C+Yu&rft.date=2021-06-08&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2192-113X&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13677-021-00246-6&rft.externalDocID=10_1186_s13677_021_00246_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-113X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-113X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-113X&client=summon