Computation offloading strategy based on deep reinforcement learning for connected and autonomous vehicle in vehicular edge computing
Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric Vehicle (EV) is becoming the key subject of next-generation CAVs by virtue of its advantages in energy saving. Due to the limited endurance and computin...
Uložené v:
| Vydané v: | Journal of cloud computing : advances, systems and applications Ročník 10; číslo 1; s. 1 - 17 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
08.06.2021
Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 2192-113X, 2192-113X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric Vehicle (EV) is becoming the key subject of next-generation CAVs by virtue of its advantages in energy saving. Due to the limited endurance and computing capacity of EVs, it is challenging to meet the surging demand for computing-intensive and delay-sensitive in-vehicle intelligent applications. Therefore, computation offloading has been employed to extend a single vehicle’s computing capacity. Although various offloading strategies have been proposed to achieve good computing performace in the Vehicular Edge Computing (VEC) environment, it remains challenging to jointly optimize the offloading failure rate and the total energy consumption of the offloading process. To address this challenge, in this paper, we establish a computation offloading model based on Markov Decision Process (MDP), taking into consideration task dependencies, vehicle mobility, and different computing resources for task offloading. We then design a computation offloading strategy based on deep reinforcement learning, and leverage the Deep Q-Network based on Simulated Annealing (SA-DQN) algorithm to optimize the joint objectives. Experimental results show that the proposed strategy effectively reduces the offloading failure rate and the total energy consumption for application offloading. |
|---|---|
| AbstractList | Abstract Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric Vehicle (EV) is becoming the key subject of next-generation CAVs by virtue of its advantages in energy saving. Due to the limited endurance and computing capacity of EVs, it is challenging to meet the surging demand for computing-intensive and delay-sensitive in-vehicle intelligent applications. Therefore, computation offloading has been employed to extend a single vehicle’s computing capacity. Although various offloading strategies have been proposed to achieve good computing performace in the Vehicular Edge Computing (VEC) environment, it remains challenging to jointly optimize the offloading failure rate and the total energy consumption of the offloading process. To address this challenge, in this paper, we establish a computation offloading model based on Markov Decision Process (MDP), taking into consideration task dependencies, vehicle mobility, and different computing resources for task offloading. We then design a computation offloading strategy based on deep reinforcement learning, and leverage the Deep Q-Network based on Simulated Annealing (SA-DQN) algorithm to optimize the joint objectives. Experimental results show that the proposed strategy effectively reduces the offloading failure rate and the total energy consumption for application offloading. Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric Vehicle (EV) is becoming the key subject of next-generation CAVs by virtue of its advantages in energy saving. Due to the limited endurance and computing capacity of EVs, it is challenging to meet the surging demand for computing-intensive and delay-sensitive in-vehicle intelligent applications. Therefore, computation offloading has been employed to extend a single vehicle’s computing capacity. Although various offloading strategies have been proposed to achieve good computing performace in the Vehicular Edge Computing (VEC) environment, it remains challenging to jointly optimize the offloading failure rate and the total energy consumption of the offloading process. To address this challenge, in this paper, we establish a computation offloading model based on Markov Decision Process (MDP), taking into consideration task dependencies, vehicle mobility, and different computing resources for task offloading. We then design a computation offloading strategy based on deep reinforcement learning, and leverage the Deep Q-Network based on Simulated Annealing (SA-DQN) algorithm to optimize the joint objectives. Experimental results show that the proposed strategy effectively reduces the offloading failure rate and the total energy consumption for application offloading. |
| ArticleNumber | 33 |
| Author | Chen, Xinwei Lin, Changhang Lin, Bing Huang, Ziqing Lu, Yu Lin, Kai |
| Author_xml | – sequence: 1 givenname: Bing surname: Lin fullname: Lin, Bing organization: College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Engineering Research Center of Big Data Application in Private Health Medicine, Putian University – sequence: 2 givenname: Kai surname: Lin fullname: Lin, Kai organization: College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering – sequence: 3 givenname: Changhang orcidid: 0000-0002-2477-0988 surname: Lin fullname: Lin, Changhang email: linchanghang@139.com organization: The School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University – sequence: 4 givenname: Yu surname: Lu fullname: Lu, Yu email: fzluyu@163.com organization: Concord University College, Fujian Normal University – sequence: 5 givenname: Ziqing surname: Huang fullname: Huang, Ziqing organization: College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering – sequence: 6 givenname: Xinwei surname: Chen fullname: Chen, Xinwei organization: Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Minjiang University |
| BookMark | eNp9UUuL1TAUDjKC4zh_wFXAdTWvpulSLj4GBmaj4C6cpie1l97kmqTC_AD_t-lUdHAxi3AOJ98LvpfkIsSAhLzm7C3nRr_LXOqua5jgDWNC6UY_I5eC96LhXH67eLS_INc5HxljnHEhTXdJfh3i6bwWKHMMNHq_RBjnMNFcEhSc7ukAGUdaP0fEM004Bx-TwxOGQheEFDZ0PVEXQ0BXKhhCfWuJIZ7imulP_D67Bekc9nVdIFEcJ6yUzbsKvCLPPSwZr__MK_L144cvh8_N7d2nm8P728a1ipdG9cpx4B32PTjDwI1mgA61AeelUE5Kr5hTvKIGhSCUknxgXtXplJZCXpGbXXeMcLTnNJ8g3dsIs304xDRZSGVLa3upRyHk0HFslZD94P1okGnDWjScYdV6s2udU_yxYi72GNcUanwrWmlM3zKtK0rsKJdizgn9X1fO7Nae3duztT370J7dSOY_kpv3imor8_I0Ve7UXH3ChOlfqidYvwEKlrLQ |
| CitedBy_id | crossref_primary_10_1007_s10489_023_04637_x crossref_primary_10_1109_JIOT_2023_3264281 crossref_primary_10_1016_j_phycom_2025_102810 crossref_primary_10_1007_s11227_022_04911_8 crossref_primary_10_1109_TVT_2023_3289236 crossref_primary_10_1049_itr2_12479 crossref_primary_10_1109_TASE_2023_3330148 crossref_primary_10_1109_TCE_2024_3502408 crossref_primary_10_1088_1742_6596_2670_1_012021 crossref_primary_10_1007_s11227_024_06603_x crossref_primary_10_1016_j_vehcom_2025_100954 crossref_primary_10_1007_s11227_025_07009_z crossref_primary_10_1016_j_vehcom_2025_100898 crossref_primary_10_1145_3603703 crossref_primary_10_1109_TCC_2023_3328614 crossref_primary_10_1109_TCE_2023_3342017 crossref_primary_10_32604_cmes_2022_021394 crossref_primary_10_1016_j_future_2022_12_016 crossref_primary_10_1109_TMC_2023_3289611 crossref_primary_10_1038_s41598_025_98486_y |
| Cites_doi | 10.1109/TVT.2019.2917890 10.1109/glocom.2018.8647564 10.1109/JIOT.2019.2953047 10.1109/trustcom.2012.16 10.1109/ACCESS.2020.2981434 10.1109/sec.2018.00010 10.1109/ev.2019.8892929 10.1109/TITS.2020.2982186 10.1109/JIOT.2018.2876298 10.1145/3317572 10.1109/ACCESS.2018.2881964 10.1109/JIOT.2020.2996213 10.1109/ACCESS.2018.2791504 10.1109/TVT.2020.2991641 10.1109/glocomw.2013.6855711 10.1109/TITS.2020.2980422 10.1109/JIOT.2020.2978830 10.1109/ACCESS.2020.3011705 10.1109/JIOT.2020.2972041 10.1109/itst.2015.7377394 10.23919/date.2018.8342076 10.1109/MVT.2017.2668838 10.1109/glocom.2016.7842160 10.1109/TII.2018.2883991 10.1109/icpads47876.2019.00073 10.1109/TVT.2020.2993849 10.1109/ACCESS.2019.2939384 10.1109/MVT.2018.2879537 10.1109/icccn49398.2020.9209738 10.1109/TVT.2017.2714704 10.1109/cac48633.2019.8996860 10.1109/JIOT.2020.2983660 10.1109/JIOT.2018.2872436 10.13140/RG.2.2.27292.72320 10.1007/s11036-020-01624-1 10.1137/1.9781611975031.50 10.1109/JIOT.2020.3033521 10.1109/vtc2020-spring48590.2020.9128785 10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7RQ 7SC 7XB 8AL 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M2O MBDVC P62 PADUT PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U U9A DOA |
| DOI | 10.1186/s13677-021-00246-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Career & Technical Education Database Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Research Library China Advanced Technologies Database with Aerospace Career and Technical Education (Alumni Edition) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest Career and Technical Education ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7RQ name: Career & Technical Education Database url: https://search.proquest.com/career sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2192-113X |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_936d223b71e54239bffd8e06805e810e 10_1186_s13677_021_00246_6 |
| GrantInformation_xml | – fundername: the Natural Science Foundation of China grantid: No.62072108 – fundername: the Natural Science Foundation of Fujian Province grantid: No.2019J01286 – fundername: the Industry and Science guide Foundation of Fujian Province grantid: No.2017H0011 – fundername: the National Key R&D Program of China grantid: No.2018YFB1004800 – fundername: the Young and Middle-aged Teacher Education Foundation of Fujian Province grantid: No.JT180098 – fundername: Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University) grantid: No.MJUKF-IPIC201907 |
| GroupedDBID | -A0 0R~ 3V. 40G 5VS 7RQ 8FE 8FG 8G5 AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ GUQSH HCIFZ HZ~ IAO ISR ITC K6V K7- KQ8 M0N M2O M~E O9- OK1 PADUT PIMPY PQQKQ PROAC RNS RSV SCO SOJ AASML AAYXX CITATION ICD IVC 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D MBDVC P62 PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U U9A |
| ID | FETCH-LOGICAL-c541t-494c1a17e99ac80acd8ba7e68acf324c33f40c414c1b4ea24431b0f4443c46323 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659184600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2192-113X |
| IngestDate | Fri Oct 03 12:36:23 EDT 2025 Wed Oct 15 14:11:03 EDT 2025 Tue Nov 18 20:50:39 EST 2025 Sat Nov 29 01:40:28 EST 2025 Fri Feb 21 02:49:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Connected and autonomous vehicle Energy consumption Computation offloading Reinforcement learning Simulated annealing Mobility Offloading failure |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-494c1a17e99ac80acd8ba7e68acf324c33f40c414c1b4ea24431b0f4443c46323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2477-0988 |
| OpenAccessLink | https://doaj.org/article/936d223b71e54239bffd8e06805e810e |
| PQID | 2538895066 |
| PQPubID | 2034894 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_936d223b71e54239bffd8e06805e810e proquest_journals_2538895066 crossref_primary_10_1186_s13677_021_00246_6 crossref_citationtrail_10_1186_s13677_021_00246_6 springer_journals_10_1186_s13677_021_00246_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-08 |
| PublicationDateYYYYMMDD | 2021-06-08 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Advances, Systems and Applications |
| PublicationTitle | Journal of cloud computing : advances, systems and applications |
| PublicationTitleAbbrev | J Cloud Comp |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | Zeng F, Chen Q, Meng L, Wu J (2020) Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing. IEEE Trans Intell Transport Syst:1–11. AlfakihTHassanMMGumaeiASavaglioCFortinoGTask Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSAIEEE Access20208540745408410.1109/ACCESS.2020.2981434 DaiPHangZLiuKWuXXingHYuZMulti-Armed Bandit Learning for Computation-Intensive Services in MEC-Empowered Vehicular NetworksIEEE Trans Veh Technol20206977821783410.1109/TVT.2020.2991641 KhayyatMElgendyIAMuthannaAAlshahraniASAlharbiSKoucheryavyAAdvanced Deep Learning-Based Computational Offloading for Multilevel Vehicular Edge-Cloud Computing NetworksIEEE Access2020813705213706210.1109/ACCESS.2020.3011705 Liu L, Chen C, Pei Q, Maharjan S, Zhang Y (2020) Vehicular Edge Computing and Networking: A Survey. Mob Netw Appl. https://doi.org/10.1007/s11036-020-01624-1. LuoQLiCLuanTHShiWCollaborative Data Scheduling for Vehicular Edge Computing via Deep Reinforcement LearningIEEE Internet Things J20207109637965010.1109/JIOT.2020.2983660 Adiththan A, Ramesh S, Samii S (2018) Cloud-assisted control of ground vehicles using adaptive computation offloading techniques In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE), 589–592. https://doi.org/10.23919/date.2018.8342076. WuQLiuHWangRFanPFanQLiZDelay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing SystemsIEEE Internet Things J20207177378510.1109/JIOT.2019.2953047 Wang M, Liang H, Deng R, Zhang R, Shen XS (2013) VANET based online charging strategy for electric vehicles In: 2013 IEEE Global Communications Conference (GLOBECOM), 4804–4809. https://doi.org/10.1109/glocomw.2013.6855711. DaiYXuDMaharjanSZhangYJoint Load Balancing and Offloading in Vehicular Edge Computing and NetworksIEEE Internet Things J2019634377438710.1109/JIOT.2018.2876298 WangYWangKHuangHMiyazakiTGuoSTraffic and Computation Co-Offloading With Reinforcement Learning in Fog Computing for Industrial ApplicationsIEEE Trans Ind Inform201915297698610.1109/TII.2018.2883991 LiuYWangSZhaoQDuSZhouAMaXDependency-Aware Task Scheduling in Vehicular Edge ComputingIEEE Internet Things J2020764961497110.1109/JIOT.2020.2972041 GuoHZhangJLiuJFiWi-Enhanced Vehicular Edge Computing Networks: Collaborative Task OffloadingIEEE Veh Technol Mag2019141455310.1109/MVT.2018.2879537 WuHWolterKJiaoPDengYZhaoYXuMEEDTOAn Energy-Efficient Dynamic Task Offloading Algorithm for Blockchain-Enabled IoT-Edge-Cloud Orchestrated ComputingIEEE Internet Things J2021842163217610.1109/JIOT.2020.3033521 Dong P, Wang X, Rodrigues J (2019) Deep Reinforcement Learning for Vehicular Edge Computing: An Intelligent Offloading System. ACM Trans Intell Syst Technol 10(6). FengJLiuZWuCJiYAVEAutonomous Vehicular Edge Computing Framework with ACO-Based SchedulingIEEE Trans Veh Technol20176612106601067510.1109/TVT.2017.2714704 Sun Y, Song J, Zhou S, Guo X, Niu Z (2018) Task Replication for Vehicular Edge Computing: A Combinatorial Multi-Armed Bandit Based Approach In: 2018 IEEE Global Communications Conference (GLOBECOM), 1–7. https://doi.org/10.1109/glocom.2018.8647564. Wang L, Zhang Q, Li Y, Zhong H, Shi W (2019) MobileEdge: Enhancing On-Board Vehicle Computing Units Using Mobile Edges for CAVs In: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), 470–479. https://doi.org/10.1109/icpads47876.2019.00073. Jiang K, Zhou H, Li D, Liu X, Xu S (2020) A Q-learning based Method for Energy-Efficient Computation Offloading in Mobile Edge Computing In: 2020 29th International Conference on Computer Communications and Networks (ICCCN), 1–7. https://doi.org/10.1109/icccn49398.2020.9209738. Jang Y, Na J, Jeong S, Kang J (2020) Energy-Efficient Task Offloading for Vehicular Edge Computing: Joint Optimization of Offloading and Bit Allocation In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5. https://doi.org/10.1109/vtc2020-spring48590.2020.9128785. Qin Y, Huang D, Zhang X (2012) VehiCloud: Cloud Computing Facilitating Routing in Vehicular Networks In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, 1438–1445. https://doi.org/10.1109/trustcom.2012.16. Su R, Wu F, Zhao J (2019) Deep reinforcement learning method based on DDPG with simulated annealing for satellite attitude control system In: 2019 Chinese Automation Congress (CAC), 390–395. https://doi.org/10.1109/cac48633.2019.8996860. ZhangKMaoYLengSHeYZHANG Y. Mobile-Edge Computing for Vehicular Networks: A Promising Network Paradigm with Predictive Off-LoadingIEEE Veh Technol Mag2017122364410.1109/MVT.2017.2668838 Lin K, Lin B, Chen X, Lu Y, Huang Z, Mo YA (2019) Time-Driven Workflow Scheduling Strategy for Reasoning Tasks of Autonomous Driving in Edge Environment In: 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom), 124–131. https://doi.org/10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028. Lèbre MA, Le Mouel̈ F, Ménard E (2015) On the Importance of Real Data for Microscopic Urban Vehicular Mobility Trace In: Proceedings of the 14th International Conference on ITS Telecommunications (ITST’2015), 22–26, Copenhagen, Denmark. https://doi.org/10.1109/itst.2015.7377394. Dhirani L, Newe T (2020) 5G security in smart manufacturing. ResearchGate. https://doi.org/10.13140/RG.2.2.27292.72320. LeeSSLeeSResource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined With Heuristic InformationIEEE Internet Things J2020710104501046410.1109/JIOT.2020.2996213 Xu X, Zhang X, Liu X, Jiang J, Qi L, Bhuiyan MZA (2020) Adaptive Computation Offloading With Edge for 5G-Envisioned Internet of Connected Vehicles. IEEE Trans Intell Transport Syst:1–10. LiRZhaoZSunQICYangCChenXDeep Reinforcement Learning for Resource Management in Network SlicingIEEE Access20186744297444110.1109/ACCESS.2018.2881964 ZhaoJLiQGongYZhangKComputation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing in Vehicular NetworksIEEE Trans Veh Technol20196887944795610.1109/TVT.2019.2917890 AltahhanATrue Online TD(λ)-Replay An Efficient Model-free Planning with Full Replay2020 International Joint Conference on Neural Networks (IJCNN)2020GlassglowIEEE17 Wang Y, Liu S, Wu X, Shi W (2018) CAVBench: A Benchmark Suite for Connected and Autonomous Vehicles In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), 30–42. https://doi.org/10.1109/sec.2018.00010. LiJXiaoZLiPDiscrete-Time Multi-Player Games Based on Off-Policy Q-LearningIEEE Access2019713464713465910.1109/ACCESS.2019.2939384 Mao Y, Zhang J, Song SH, Letaief KB (2016) Power-Delay Tradeoff in Multi-User Mobile-Edge Computing Systems In: 2016 IEEE Global Communications Conference (GLOBECOM), 1–6. https://doi.org/10.1109/glocom.2016.7842160. ZhanWLuoCWangJWangCMinGDuanHDeep-Reinforcement-Learning-Based Offloading Scheduling for Vehicular Edge ComputingIEEE Internet Things J2020765449546510.1109/JIOT.2020.2978830 SidfordAWangMWuXYeYVariance Reduced Value Iteration, Faster Algorithms for Solving Markov Decision Processes2018USASociety for Industrial and Applied Mathematics10.1137/1.9781611975031.50 Kadav P, Asher ZD (2019) Improving the Range of Electric Vehicles In: 2019 Electric Vehicles International Conference (EV), 1–5. https://doi.org/10.1109/ev.2019.8892929. KeHWangJDengLGeYWangHDeep Reinforcement Learning-Based Adaptive Computation Offloading for MEC in Heterogeneous Vehicular NetworksIEEE Trans Veh Technol20206977916792910.1109/TVT.2020.2993849 PuLChenXMaoGXieQXuJChimera: An Energy-Efficient and Deadline-Aware Hybrid Edge Computing Framework for Vehicular Crowdsensing ApplicationsIEEE Internet Things J201961849910.1109/JIOT.2018.2872436 Organization WHGlobal status report on road safety 2018: Summary2018GenevaWorld Health Organization WuHMulti-Objective Decision-Making for Mobile Cloud Offloading: A SurveyIEEE Access201863962397610.1109/ACCESS.2018.2791504 246_CR15 246_CR37 246_CR3 246_CR38 246_CR4 R Li (246_CR36) 2018; 6 246_CR5 246_CR6 246_CR33 Y Dai (246_CR25) 2019; 6 T Alfakih (246_CR40) 2020; 8 246_CR9 246_CR10 246_CR32 246_CR30 P Dai (246_CR22) 2020; 69 J Li (246_CR35) 2019; 7 Q Wu (246_CR13) 2020; 7 246_CR1 K Zhang (246_CR14) 2017; 12 H Ke (246_CR23) 2020; 69 H Wu (246_CR11) 2021; 8 Y Wang (246_CR17) 2019; 15 M Khayyat (246_CR18) 2020; 8 L Pu (246_CR16) 2019; 6 J Zhao (246_CR8) 2019; 68 H Guo (246_CR21) 2019; 14 246_CR28 246_CR29 Organization WH (246_CR2) 2018 SS Lee (246_CR26) 2020; 7 246_CR27 W Zhan (246_CR24) 2020; 7 H Wu (246_CR12) 2018; 6 A Altahhan (246_CR41) 2020 A Sidford (246_CR34) 2018 Y Liu (246_CR20) 2020; 7 246_CR19 246_CR39 J Feng (246_CR7) 2017; 66 Q Luo (246_CR31) 2020; 7 |
| References_xml | – reference: Kadav P, Asher ZD (2019) Improving the Range of Electric Vehicles In: 2019 Electric Vehicles International Conference (EV), 1–5. https://doi.org/10.1109/ev.2019.8892929. – reference: Qin Y, Huang D, Zhang X (2012) VehiCloud: Cloud Computing Facilitating Routing in Vehicular Networks In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, 1438–1445. https://doi.org/10.1109/trustcom.2012.16. – reference: LuoQLiCLuanTHShiWCollaborative Data Scheduling for Vehicular Edge Computing via Deep Reinforcement LearningIEEE Internet Things J20207109637965010.1109/JIOT.2020.2983660 – reference: DaiYXuDMaharjanSZhangYJoint Load Balancing and Offloading in Vehicular Edge Computing and NetworksIEEE Internet Things J2019634377438710.1109/JIOT.2018.2876298 – reference: Dong P, Wang X, Rodrigues J (2019) Deep Reinforcement Learning for Vehicular Edge Computing: An Intelligent Offloading System. ACM Trans Intell Syst Technol 10(6). – reference: Dhirani L, Newe T (2020) 5G security in smart manufacturing. ResearchGate. https://doi.org/10.13140/RG.2.2.27292.72320. – reference: PuLChenXMaoGXieQXuJChimera: An Energy-Efficient and Deadline-Aware Hybrid Edge Computing Framework for Vehicular Crowdsensing ApplicationsIEEE Internet Things J201961849910.1109/JIOT.2018.2872436 – reference: KeHWangJDengLGeYWangHDeep Reinforcement Learning-Based Adaptive Computation Offloading for MEC in Heterogeneous Vehicular NetworksIEEE Trans Veh Technol20206977916792910.1109/TVT.2020.2993849 – reference: WuHWolterKJiaoPDengYZhaoYXuMEEDTOAn Energy-Efficient Dynamic Task Offloading Algorithm for Blockchain-Enabled IoT-Edge-Cloud Orchestrated ComputingIEEE Internet Things J2021842163217610.1109/JIOT.2020.3033521 – reference: Jang Y, Na J, Jeong S, Kang J (2020) Energy-Efficient Task Offloading for Vehicular Edge Computing: Joint Optimization of Offloading and Bit Allocation In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5. https://doi.org/10.1109/vtc2020-spring48590.2020.9128785. – reference: Organization WHGlobal status report on road safety 2018: Summary2018GenevaWorld Health Organization – reference: Wang Y, Liu S, Wu X, Shi W (2018) CAVBench: A Benchmark Suite for Connected and Autonomous Vehicles In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), 30–42. https://doi.org/10.1109/sec.2018.00010. – reference: WuQLiuHWangRFanPFanQLiZDelay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing SystemsIEEE Internet Things J20207177378510.1109/JIOT.2019.2953047 – reference: SidfordAWangMWuXYeYVariance Reduced Value Iteration, Faster Algorithms for Solving Markov Decision Processes2018USASociety for Industrial and Applied Mathematics10.1137/1.9781611975031.50 – reference: Lin K, Lin B, Chen X, Lu Y, Huang Z, Mo YA (2019) Time-Driven Workflow Scheduling Strategy for Reasoning Tasks of Autonomous Driving in Edge Environment In: 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom), 124–131. https://doi.org/10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028. – reference: Adiththan A, Ramesh S, Samii S (2018) Cloud-assisted control of ground vehicles using adaptive computation offloading techniques In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE), 589–592. https://doi.org/10.23919/date.2018.8342076. – reference: Jiang K, Zhou H, Li D, Liu X, Xu S (2020) A Q-learning based Method for Energy-Efficient Computation Offloading in Mobile Edge Computing In: 2020 29th International Conference on Computer Communications and Networks (ICCCN), 1–7. https://doi.org/10.1109/icccn49398.2020.9209738. – reference: Liu L, Chen C, Pei Q, Maharjan S, Zhang Y (2020) Vehicular Edge Computing and Networking: A Survey. Mob Netw Appl. https://doi.org/10.1007/s11036-020-01624-1. – reference: Lèbre MA, Le Mouel̈ F, Ménard E (2015) On the Importance of Real Data for Microscopic Urban Vehicular Mobility Trace In: Proceedings of the 14th International Conference on ITS Telecommunications (ITST’2015), 22–26, Copenhagen, Denmark. https://doi.org/10.1109/itst.2015.7377394. – reference: KhayyatMElgendyIAMuthannaAAlshahraniASAlharbiSKoucheryavyAAdvanced Deep Learning-Based Computational Offloading for Multilevel Vehicular Edge-Cloud Computing NetworksIEEE Access2020813705213706210.1109/ACCESS.2020.3011705 – reference: Su R, Wu F, Zhao J (2019) Deep reinforcement learning method based on DDPG with simulated annealing for satellite attitude control system In: 2019 Chinese Automation Congress (CAC), 390–395. https://doi.org/10.1109/cac48633.2019.8996860. – reference: FengJLiuZWuCJiYAVEAutonomous Vehicular Edge Computing Framework with ACO-Based SchedulingIEEE Trans Veh Technol20176612106601067510.1109/TVT.2017.2714704 – reference: AlfakihTHassanMMGumaeiASavaglioCFortinoGTask Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSAIEEE Access20208540745408410.1109/ACCESS.2020.2981434 – reference: AltahhanATrue Online TD(λ)-Replay An Efficient Model-free Planning with Full Replay2020 International Joint Conference on Neural Networks (IJCNN)2020GlassglowIEEE17 – reference: Xu X, Zhang X, Liu X, Jiang J, Qi L, Bhuiyan MZA (2020) Adaptive Computation Offloading With Edge for 5G-Envisioned Internet of Connected Vehicles. IEEE Trans Intell Transport Syst:1–10. – reference: Wang L, Zhang Q, Li Y, Zhong H, Shi W (2019) MobileEdge: Enhancing On-Board Vehicle Computing Units Using Mobile Edges for CAVs In: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), 470–479. https://doi.org/10.1109/icpads47876.2019.00073. – reference: ZhaoJLiQGongYZhangKComputation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing in Vehicular NetworksIEEE Trans Veh Technol20196887944795610.1109/TVT.2019.2917890 – reference: LeeSSLeeSResource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined With Heuristic InformationIEEE Internet Things J2020710104501046410.1109/JIOT.2020.2996213 – reference: Mao Y, Zhang J, Song SH, Letaief KB (2016) Power-Delay Tradeoff in Multi-User Mobile-Edge Computing Systems In: 2016 IEEE Global Communications Conference (GLOBECOM), 1–6. https://doi.org/10.1109/glocom.2016.7842160. – reference: LiRZhaoZSunQICYangCChenXDeep Reinforcement Learning for Resource Management in Network SlicingIEEE Access20186744297444110.1109/ACCESS.2018.2881964 – reference: GuoHZhangJLiuJFiWi-Enhanced Vehicular Edge Computing Networks: Collaborative Task OffloadingIEEE Veh Technol Mag2019141455310.1109/MVT.2018.2879537 – reference: Sun Y, Song J, Zhou S, Guo X, Niu Z (2018) Task Replication for Vehicular Edge Computing: A Combinatorial Multi-Armed Bandit Based Approach In: 2018 IEEE Global Communications Conference (GLOBECOM), 1–7. https://doi.org/10.1109/glocom.2018.8647564. – reference: DaiPHangZLiuKWuXXingHYuZMulti-Armed Bandit Learning for Computation-Intensive Services in MEC-Empowered Vehicular NetworksIEEE Trans Veh Technol20206977821783410.1109/TVT.2020.2991641 – reference: Wang M, Liang H, Deng R, Zhang R, Shen XS (2013) VANET based online charging strategy for electric vehicles In: 2013 IEEE Global Communications Conference (GLOBECOM), 4804–4809. https://doi.org/10.1109/glocomw.2013.6855711. – reference: LiuYWangSZhaoQDuSZhouAMaXDependency-Aware Task Scheduling in Vehicular Edge ComputingIEEE Internet Things J2020764961497110.1109/JIOT.2020.2972041 – reference: ZhanWLuoCWangJWangCMinGDuanHDeep-Reinforcement-Learning-Based Offloading Scheduling for Vehicular Edge ComputingIEEE Internet Things J2020765449546510.1109/JIOT.2020.2978830 – reference: WuHMulti-Objective Decision-Making for Mobile Cloud Offloading: A SurveyIEEE Access201863962397610.1109/ACCESS.2018.2791504 – reference: ZhangKMaoYLengSHeYZHANG Y. Mobile-Edge Computing for Vehicular Networks: A Promising Network Paradigm with Predictive Off-LoadingIEEE Veh Technol Mag2017122364410.1109/MVT.2017.2668838 – reference: LiJXiaoZLiPDiscrete-Time Multi-Player Games Based on Off-Policy Q-LearningIEEE Access2019713464713465910.1109/ACCESS.2019.2939384 – reference: Zeng F, Chen Q, Meng L, Wu J (2020) Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing. IEEE Trans Intell Transport Syst:1–11. – reference: WangYWangKHuangHMiyazakiTGuoSTraffic and Computation Co-Offloading With Reinforcement Learning in Fog Computing for Industrial ApplicationsIEEE Trans Ind Inform201915297698610.1109/TII.2018.2883991 – volume: 68 start-page: 7944 issue: 8 year: 2019 ident: 246_CR8 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2019.2917890 – ident: 246_CR28 doi: 10.1109/glocom.2018.8647564 – volume: 7 start-page: 773 issue: 1 year: 2020 ident: 246_CR13 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2953047 – ident: 246_CR30 doi: 10.1109/trustcom.2012.16 – volume: 8 start-page: 54074 year: 2020 ident: 246_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981434 – ident: 246_CR1 doi: 10.1109/sec.2018.00010 – ident: 246_CR5 doi: 10.1109/ev.2019.8892929 – ident: 246_CR19 doi: 10.1109/TITS.2020.2982186 – volume: 6 start-page: 4377 issue: 3 year: 2019 ident: 246_CR25 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2876298 – ident: 246_CR27 doi: 10.1145/3317572 – volume: 6 start-page: 74429 year: 2018 ident: 246_CR36 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2881964 – volume: 7 start-page: 10450 issue: 10 year: 2020 ident: 246_CR26 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2996213 – volume: 6 start-page: 3962 year: 2018 ident: 246_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2791504 – volume: 69 start-page: 7821 issue: 7 year: 2020 ident: 246_CR22 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2991641 – ident: 246_CR4 doi: 10.1109/glocomw.2013.6855711 – ident: 246_CR29 doi: 10.1109/TITS.2020.2980422 – volume: 7 start-page: 5449 issue: 6 year: 2020 ident: 246_CR24 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2978830 – volume: 8 start-page: 137052 year: 2020 ident: 246_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011705 – volume: 7 start-page: 4961 issue: 6 year: 2020 ident: 246_CR20 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2972041 – ident: 246_CR38 doi: 10.1109/itst.2015.7377394 – ident: 246_CR9 doi: 10.23919/date.2018.8342076 – volume: 12 start-page: 36 issue: 2 year: 2017 ident: 246_CR14 publication-title: IEEE Veh Technol Mag doi: 10.1109/MVT.2017.2668838 – ident: 246_CR33 doi: 10.1109/glocom.2016.7842160 – volume: 15 start-page: 976 issue: 2 year: 2019 ident: 246_CR17 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2018.2883991 – ident: 246_CR32 doi: 10.1109/icpads47876.2019.00073 – volume-title: Global status report on road safety 2018: Summary year: 2018 ident: 246_CR2 – volume: 69 start-page: 7916 issue: 7 year: 2020 ident: 246_CR23 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2993849 – volume: 7 start-page: 134647 year: 2019 ident: 246_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939384 – volume: 14 start-page: 45 issue: 1 year: 2019 ident: 246_CR21 publication-title: IEEE Veh Technol Mag doi: 10.1109/MVT.2018.2879537 – ident: 246_CR39 doi: 10.1109/icccn49398.2020.9209738 – volume: 66 start-page: 10660 issue: 12 year: 2017 ident: 246_CR7 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2017.2714704 – ident: 246_CR37 doi: 10.1109/cac48633.2019.8996860 – start-page: 1 volume-title: 2020 International Joint Conference on Neural Networks (IJCNN) year: 2020 ident: 246_CR41 – volume: 7 start-page: 9637 issue: 10 year: 2020 ident: 246_CR31 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2983660 – volume: 6 start-page: 84 issue: 1 year: 2019 ident: 246_CR16 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2872436 – ident: 246_CR6 doi: 10.13140/RG.2.2.27292.72320 – ident: 246_CR10 doi: 10.1007/s11036-020-01624-1 – volume-title: Variance Reduced Value Iteration, Faster Algorithms for Solving Markov Decision Processes year: 2018 ident: 246_CR34 doi: 10.1137/1.9781611975031.50 – volume: 8 start-page: 2163 issue: 4 year: 2021 ident: 246_CR11 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.3033521 – ident: 246_CR15 doi: 10.1109/vtc2020-spring48590.2020.9128785 – ident: 246_CR3 doi: 10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028 |
| SSID | ssj0001012387 |
| Score | 2.3403268 |
| Snippet | Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric Vehicle... Abstract Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban traffic and driving safety. Electric... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Computation offloading Computer Communication Networks Computer Science Computer System Implementation Computer Systems Organization and Communication Networks Connected and autonomous vehicle Deep learning Edge computing Edge-cloud computing cooperation for task offloading in internet-of-things Electric vehicles Energy consumption Failure rates Fatigue limit Information Systems Applications (incl.Internet) Machine learning Markov processes Offloading failure Reinforcement learning Simulated annealing Software Engineering/Programming and Operating Systems Special Purpose and Application-Based Systems Traffic safety Vehicle safety |
| SummonAdditionalLinks | – databaseName: Career & Technical Education Database dbid: 7RQ link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9UwDI9gcODC-CseDJQDN4jWNH1pckKAmDhNgEDaLUqdZEya2rfX9ybxAfje2Gm6pyGxC4eqrZumkWzHvzqOzdjrAMEH25HnXtUCLbQSeB9FIOsUp8WpXGyiPT42Jyf2S3G4jSWscp4T80QdBiAf-WGNmmnsEi3ku9WFoKpRtLpaSmjcZnfQUGuS8_bb152PhQCDaee9MkYfjpShrBUUl0DWSQt9zR7ltP3XsOZfy6PZ6hzt_-94H7D7BW_y95OAPGS3Yv-I7c-1HHhR7cfs90TKfOJDSudDDq7n45S99hcncxc4Pgwxrvg65oyrkJ2LvJSeOOVI4kChM4BAlvsej-2Gtk0M25Ffxp80Bn7WT5cUAMvJncchfxs7eMJ-HH36_vGzKCUaBCwbuRGNbUB62UZrPZjKQzCdb6M2HhJCNVAqNRU0Elt1TfSIJZTsqtTgGRqtavWU7fVDH58xnlS0psb5AxEFYjhvIbUaSWAiBOmbBZMzoxyU_OVURuPc5f8Yo93EXIfMdZm5Ti_Ym6t3VlP2jhtbfyD-X7WkzNuZMKxPXVFkZ5UOCKm6VsYlJU_sUgomUgWTZTSyigt2MMuDK9PB6HbCsGBvZ4naPf73kJ7f3NsLdq_OsqxFZQ7Y3ma9jS_ZXbjcnI3rV1kZ_gCn5RIN priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9UwDI9gcODC-Ks9GCgHbhDRNHlpcoSJidPEAaTdotRJxqSpnV7fm8QH4Htjp-nQECDBoWrrOm2U2PGviWMz9ipCDNH1NHOvWoEWWgm8TyKSdUrz4lRJNtGdnNjTU_epbgqbFm_3ZUmyjNRFra15O1FwsU6QSwEZFiPMbXZnLa0jR76jusehzKwQTLDdskPmt0VvWKESrP8GwvxlUbTYmuP9_6vlA3a_Ykv-bhaGh-xWGh6x_SVvA69q_Jh9n0mlT_iY88VYHOn5NEeq_cbJtEWOD2NKl3yTSnRVKBOJvKaZOONI4kBuMoCglYcBj92WtkiMu4lfpa9UB34-zJfk7Mpp6o5D-Ta-4An7cvzh89FHUdMxCFhruRXaaZBBdsm5ALYJEG0fumRsgIywDJTKugEtkavXKSBuULJvssYzaKNa9ZTtDeOQDhjPKjnb4liB6AHxWnCQO4MksAmiDHrF5NI9HmqsckqZceHLP4s1fm5nj-3sSzt7s2Kvr8tczpE6_sr9nnr9mpOibBfCuDnzVWm9UyYifOo7mdYUKLHPOdpE2UrWycomrdjhIjO-qv7kWzQhKJQI5VbszSIjPx__uUrP_o39ObvXFjEzorGHbG-72aUX7C5cbc-nzcuiEj8A-VMHVQ priority: 102 providerName: Springer Nature |
| Title | Computation offloading strategy based on deep reinforcement learning for connected and autonomous vehicle in vehicular edge computing |
| URI | https://link.springer.com/article/10.1186/s13677-021-00246-6 https://www.proquest.com/docview/2538895066 https://doaj.org/article/936d223b71e54239bffd8e06805e810e |
| Volume | 10 |
| WOSCitedRecordID | wos000659184600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: C24 dateStart: 20121201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODCG7FQVj5wA6tx7PXjSKtWINRlqUAqJ8uxHahUZavNbiV-QP93Z-yktEjAhUMefiSxPOPMF3vyDSGvY4g-2gZn7kXNwEILBunEIlqnVBancrAJPZ-b42O7uBbqC33CCj1w6bgdK1QEE9ZonmZIVte0bTQJI0bMkuFVwrdvpe21j6k8u4JQwejxLxmjdnrkJtMMPRLQLimmbliiTNh_A2X-tjCa7c3BQ3J_AIr0XWngI3IrdY_JgzEIAx3G5BNyUbJyB9Nl254us1c87Qvt7E-KdipSKIwpndFVylSpIc8K0iFmxHcKWTSgz0sABEp9B9tmjf87LDc9PU8_sA30pCun6LlKcR6OhvxsuMFT8vVg_8veezbEVmBhJvmaSSsD91wna30wlQ_RNF4nZXxoAWMFIVpZBcmhViOTBxAgeFO1Eo5BKlGLZ2SrW3bpOaGtSNbUMPABCgD48ja0WkFWMClE7uWE8LGfXRiIxzH-xanLHyBGuSIbB7JxWTZOTcibq2vOCu3GX2vvoviuaiJlds4ARXKDIrl_KdKEbI_Cd8M47l0N9sDYGeCyCXk7KsSv4j836cX_aNJLcq_OCqtYZbbJ1nq1Sa_I3XC-PulXU3JbH32ekju7-_PFEaT2ajnNowD2HzWD_WH9CcoXHw4X3y4BrjwKAQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXylPdUsAHOIHVPLyOfUCIV9Vqy4pDkXozjj0plapku9kt6g_g7_AbmXGSropEbz1wiJI4TmI53zwytudj7GXwwQVTUuQ-zwRa6FzgOYhA1gm6walINlFMp_royHxdY7-HtTA0rXLQiVFRh8ZTjHwnQ8nUZowW8t3sTBBrFI2uDhQaHSwmcPETf9nat_uf8Pu-yrLdz4cf90TPKiD8WKYLIY30qUsLMMZ5nTgfdOkKUNr5Cr0Ln-eVTLxMsVYpwaH5y9MyqSTuvVQ5JTpAlX9L5roguZoUYhXTIQdFF8PaHK12WsqIVgiaB0HWUAl1xf5FmoArvu1fw7HRyu1u_G_9c5_d6_1p_r4TgAdsDeqHbGPgquC96nrEfnVFEYe8qarTJi4e4G2XnfeCkzkPHC8GgBmfQ8wo62PwlPfUGscci7inqUEeHXXuatyWC1oW0ixbfg4_qA38pO4OaYIvp3Al9_Hd-IDH7NuNdMYTtl43NWwyXuVgdIb6ET0m9FGd8VWhsMhr8CF1csTSARjW9_nZiSbk1Mb_NK1sByaLYLIRTFaN2OvLe2ZddpJra38gvF3WpMzisaCZH9teUVmTq4AuY1mkMKbkkGVVBQ3E0DIGnSYwYtsD_myv7lq7At-IvRkQvLr87yZtXf-0F-zO3uGXA3uwP508ZXezKEdKJHqbrS_mS3jGbvvzxUk7fx4FkbPvN43sP3Ewbfg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJcKE-RtsAe4ARW_Nis1weEgBIRFaIcQCqnZb2PUqmyQ5wU9Qfwp_h1zKztRkWitx44RE7Wa8eyv535PDs7H8Aza6y2RUmR-yyN0ENnEf52kSXv5NrJqSA2kc9m8uiomG_B734tDKVV9jYxGGpbG4qRj1IcmbIYo4cc-S4tYn4web34EZGCFM209nIaLUQO3flPfH1rXk0P8Fk_T9PJ-8_vPkSdwkBkxjxZRbzgJtFJ7opCGxlrY2WpcyekNh6Zhskyz2PDE-xVcqfRFWZJGXuOW8NFRkUP0PxvIyXn6QC259NP86-bCA_RFZn3K3WkGDVUHy2PKCuCfKOIxCVvGEQDLjHdvyZng8-b7PzPd-sO3O6YNnvTDo27sOWqe7DTq1iwzqjdh19tU0Aoq70_rcOyAta0dXvPGTl6y3CndW7Bli7UmjUhrMo60Y1jhk3MUNKQQQrPdIWf9YoWjNTrhp2573QN7KRqv1LqL6NAJjPhv_EED-DLtdyMhzCo6so9AuYzV8gULSdyKWSvujA-F9hkpDM20XwISQ8SZbrK7SQgcqrCG5wUqgWWQmCpACwlhvDi4phFW7fkyt5vCXsXPanmeGiol8eqM2GqyIRFMlnmiRtT2cjSeysdabeMnUxiN4T9HouqM4SN2gBxCC97NG92__uSdq8-21O4iYBWH6ezwz24lYYhJaJY7sNgtVy7x3DDnK1OmuWTblQy-Hbd0P4DhkB4eQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computation+offloading+strategy+based+on+deep+reinforcement+learning+for+connected+and+autonomous+vehicle+in+vehicular+edge+computing&rft.jtitle=Journal+of+cloud+computing+%3A+advances%2C+systems+and+applications&rft.au=Bing+Lin&rft.au=Kai+Lin&rft.au=Changhang+Lin&rft.au=Yu+Lu&rft.date=2021-06-08&rft.pub=SpringerOpen&rft.eissn=2192-113X&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1186%2Fs13677-021-00246-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_936d223b71e54239bffd8e06805e810e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-113X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-113X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-113X&client=summon |