YOLOv8-seg-CP: a lightweight instance segmentation algorithm for chip pad based on improved YOLOv8-seg model
Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 14; číslo 1; s. 27716 - 18 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
12.11.2024
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production. |
|---|---|
| AbstractList | Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production. Abstract Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production. Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production. Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production.Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production. |
| ArticleNumber | 27716 |
| Author | Zhang, Zongjian Zhou, Chiyang Tan, Yufei Zou, Yanli |
| Author_xml | – sequence: 1 givenname: Zongjian surname: Zhang fullname: Zhang, Zongjian organization: Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region – sequence: 2 givenname: Yanli surname: Zou fullname: Zou, Yanli email: zouyanli72@163.com organization: Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region – sequence: 3 givenname: Yufei surname: Tan fullname: Tan, Yufei organization: Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region – sequence: 4 givenname: Chiyang surname: Zhou fullname: Zhou, Chiyang organization: Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39532990$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNUREvpH-CALHHhEvBnbHNB1YpCpZWWAxw4WbbjZL1K4mBnl_Lv6zQt_TjUB3vked9H4_G8Lo6GMLiieIvgRwSJ-JQoYlKUENOSC8ZFefWiOMGQshITjI8exMfFWUo7mBfDkiL5qjgmkhEsJTwput-b9eYgyuTacvXjM9Cg8-12-uvmHfghTXqwDuR074ZJTz4MQHdtiH7a9qAJEditH8Goa2B0cjXIed-PMRxyfM8Gfahd96Z42eguubPb87T4dfH15-p7ud58u1ydr0vLKJpKijgkDhpSUcZRXQkjYG0aaBDUmtAa06Zyja0sxkI0GteQIigphtxpAStHTovLhVsHvVNj9L2O_1TQXt1chNgqHSdvO6csrKSBDa0bIak20ghGiDS8ypwGC55ZXxbWuDe9q23uQtTdI-jjzOC3qg0HhRBjXPIqEz7cEmL4s3dpUr1P1nWdHlzYJ0VQfgbCHM7S90-ku7CPQ-7VrOKU4orNqncPS_pfy92vZoFYBDaGlKJrlPXL3-UKfacQVPMMqWWGVJ4hdTND6ipb8RPrHf1ZE1lMKYuH1sX7sp9xXQOpM9iw |
| CitedBy_id | crossref_primary_10_1080_27525783_2025_2551315 crossref_primary_10_1007_s00170_025_15383_4 crossref_primary_10_3390_agriculture15151622 crossref_primary_10_1038_s41598_025_15894_w crossref_primary_10_1007_s10346_025_02586_9 crossref_primary_10_3390_computers14070284 crossref_primary_10_3390_diagnostics15141752 |
| Cites_doi | 10.3390/rs15204974 10.1016/j.imavis.2022.104401 10.3390/electronics12030667 10.1007/s40684-021-00343-6 10.1109/TMECH.2013.2260555 10.1016/j.aei.2021.101255 10.1016/j.eswa.2023.121352 10.1109/TSM.2021.3118922 10.1109/TII.2019.2930078 10.1109/TPAMI.2019.2956516 10.1109/TIE.2021.3082072 10.1109/ACCESS.2022.3166512 10.1016/j.measurement.2023.112492 10.1109/TCPMT.2019.2952393 10.3390/electronics12143060 10.1016/j.engappai.2023.106442 10.3389/fmars.2023.1113669 10.3390/electronics7030039 10.1016/j.compind.2022.103720 10.1109/ICASSP49357.2023.10096516 10.1109/CVPR52729.2023.00995 10.1109/TIP.2024.3354108 10.1109/CVPR42600.2020.01392 10.1109/IV55152.2023.10186819 10.1109/CVPR46437.2021.01350 10.1109/ICCV.2017.74 10.1109/CVPR.2016.91 10.1109/EDAPS58880.2023.10468383 10.1109/LGRS.2024.3370299 10.1007/978-3-030-58452-8_17 10.1007/978-3-030-58523-5_38 10.1109/TKDE.2024.3374773 10.1109/CVPR52733.2024.00539 10.1109/CVPR52733.2024.02617 10.1109/CVPR52729.2023.01157 10.1109/WACV48630.2021.00318 10.1109/ICCV.2019.00925 10.1007/978-3-031-72751-1_1 10.1109/CVPR46437.2021.00540 10.1007/978-3-030-01234-2_1 10.1109/ISAPM.2000.869261 10.1109/ICCV51070.2023.01540 10.1109/CVPR.2018.00745 10.1080/19392699.2024.2331545 10.1016/j.compbiomed.2024.108784 10.1109/CVPR52729.2023.00721 10.1109/CVPR52729.2023.01548 10.1109/ICCV.2017.322 10.1109/CVPR52688.2022.01166 10.1109/CVPR52733.2024.00544 10.1109/CVPR42600.2020.00165 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-78578-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central (subscription) Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database (subscription) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_c069b0f4df894ab9b85339b7606ef287 PMC11557976 39532990 10_1038_s41598_024_78578_x |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Innovation Project of Guangxi Graduate Education grantid: YCSW2024230 – fundername: Guangxi Innovation Driven Development Project Guike AA21077015 – fundername: National Natural Science Foundation of China Grants 12162005 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION 3V. 88A ACSMW AJTQC M0L NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-41703e0b364571d68b80dbf0b10aa34d24f6efc6c2288fa2d041094207ea806e3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001354064300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:52:20 EDT 2025 Tue Nov 04 02:05:20 EST 2025 Thu Sep 04 18:28:02 EDT 2025 Tue Oct 07 08:23:22 EDT 2025 Wed Feb 19 02:02:44 EST 2025 Sat Nov 29 05:24:46 EST 2025 Tue Nov 18 21:43:58 EST 2025 Mon Jul 21 06:09:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | YOLOv8-seg Deep learning Chip pad Machine vision Artificial intelligence |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-41703e0b364571d68b80dbf0b10aa34d24f6efc6c2288fa2d041094207ea806e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3127442656?pq-origsite=%requestingapplication% |
| PMID | 39532990 |
| PQID | 3127442656 |
| PQPubID | 2041939 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c069b0f4df894ab9b85339b7606ef287 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11557976 proquest_miscellaneous_3128812706 proquest_journals_3127442656 pubmed_primary_39532990 crossref_citationtrail_10_1038_s41598_024_78578_x crossref_primary_10_1038_s41598_024_78578_x springer_journals_10_1038_s41598_024_78578_x |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-12 |
| PublicationDateYYYYMMDD | 2024-11-12 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Lau, Po, Rehman (CR63) 2024; 236 Shinde, Pai, Adiga (CR24) 2022; 10 Wang (CR25) 2023; 12 Zeng, Ouyang, Liu, Leng, Fu (CR22) 2022; 34 Glučina, Anđelić, Lorencin, Car (CR26) 2023; 12 Wu (CR3) 2019; 16 CR39 CR38 CR37 CR36 CR35 CR34 CR32 CR31 CR30 CR2 CR7 Tian, Shen, Chen, He (CR33) 2020; 44 CR49 CR48 Chen, Tsai (CR8) 2021; 47 CR47 CR46 CR45 CR44 CR43 CR42 CR40 Liu, Yang, Yang, Gao (CR5) 2021; 69 CR19 Ren, Fang, Yan, Wu (CR4) 2022; 9 CR17 CR16 CR59 CR57 CR12 CR56 CR55 CR54 CR53 CR52 CR51 CR50 Wang, Zhang, Kong, Li, Shen (CR18) 2020; 33 Wang (CR6) 2013; 19 Kim (CR1) 2018; 7 Gu, Bai, Kong (CR10) 2022; 120 Wu, Gao, Xu (CR15) 2019; 10 CR29 Nag, Makwana, Mittal, Mohan (CR9) 2022; 142 CR28 Zou, Zeng (CR23) 2023; 208 CR21 CR20 CR64 Wan (CR41) 2023; 123 CR62 CR61 CR60 Cai, Vasconcelos (CR13) 2019; 43 Minaee (CR11) 2021; 44 Zhang, Chen, Yan, Wang, Hu (CR58) 2023; 15 Chiu, Chen (CR14) 2021; 34 Yasir (CR27) 2023; 10 78578_CR38 78578_CR39 78578_CR2 78578_CR36 78578_CR37 78578_CR34 78578_CR7 78578_CR35 78578_CR32 H Wu (78578_CR15) 2019; 10 78578_CR30 78578_CR31 KW Lau (78578_CR63) 2024; 236 W Gu (78578_CR10) 2022; 120 S Minaee (78578_CR11) 2021; 44 J Wang (78578_CR25) 2023; 12 MC Chiu (78578_CR14) 2021; 34 M Yasir (78578_CR27) 2023; 10 J Zhang (78578_CR58) 2023; 15 78578_CR29 Z Ren (78578_CR4) 2022; 9 Z Wu (78578_CR3) 2019; 16 78578_CR28 X Wang (78578_CR18) 2020; 33 PP Shinde (78578_CR24) 2022; 10 78578_CR21 78578_CR20 78578_CR64 J Kim (78578_CR1) 2018; 7 78578_CR61 78578_CR62 78578_CR60 S Nag (78578_CR9) 2022; 142 Z Cai (78578_CR13) 2019; 43 78578_CR19 78578_CR16 78578_CR17 Y Zou (78578_CR23) 2023; 208 78578_CR59 78578_CR12 78578_CR56 78578_CR57 78578_CR54 78578_CR55 78578_CR52 78578_CR53 78578_CR50 78578_CR51 SH Chen (78578_CR8) 2021; 47 78578_CR49 F Wang (78578_CR6) 2013; 19 78578_CR47 78578_CR48 78578_CR45 78578_CR46 78578_CR43 78578_CR44 78578_CR42 78578_CR40 W Liu (78578_CR5) 2021; 69 J Zeng (78578_CR22) 2022; 34 Z Tian (78578_CR33) 2020; 44 D Wan (78578_CR41) 2023; 123 M Glučina (78578_CR26) 2023; 12 |
| References_xml | – ident: CR45 – volume: 15 start-page: 4974 issue: 20 year: 2023 ident: CR58 article-title: Faster and Lightweight: An improved YOLOv5 object detector for remote sensing images publication-title: Remote Sens. doi: 10.3390/rs15204974 – ident: CR49 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 120 start-page: 104401 year: 2022 ident: CR10 article-title: A review on 2D instance segmentation based on deep neural networks publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2022.104401 – volume: 12 start-page: 667 issue: 3 year: 2023 ident: CR26 article-title: Detection and classification of printed circuit boards using YOLO algorithm publication-title: Electronics doi: 10.3390/electronics12030667 – ident: CR35 – ident: CR29 – ident: CR54 – ident: CR61 – ident: CR42 – ident: CR21 – volume: 9 start-page: 661 issue: 2 year: 2022 end-page: 691 ident: CR4 article-title: State of the art in defect detection based on machine vision publication-title: Int. J. Precis. Eng. Manuf. Green Technol. doi: 10.1007/s40684-021-00343-6 – ident: CR46 – ident: CR19 – volume: 19 start-page: 916 issue: 3 year: 2013 end-page: 923 ident: CR6 article-title: An improved adaptive genetic algorithm for image segmentation and vision alignment used in microelectronic bonding publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2013.2260555 – volume: 47 start-page: 101255 year: 2021 ident: CR8 article-title: SMD LED chips defect detection using a YOLOv3-dense model publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101255 – volume: 236 start-page: 121352 year: 2024 ident: CR63 article-title: Large separable kernel attention: Rethinking the large kernel attention design in cnn publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121352 – ident: CR50 – volume: 34 start-page: 455 issue: 4 year: 2021 end-page: 463 ident: CR14 article-title: Applying data augmentation and mask R-CNN-based instance segmentation method for mixed-type wafer maps defect patterns classification publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2021.3118922 – ident: CR57 – ident: CR32 – ident: CR60 – ident: CR36 – volume: 33 start-page: 17721 year: 2020 end-page: 17732 ident: CR18 article-title: Solov2: Dynamic and fast instance segmentation publication-title: Adv. Neural. Inf. Process. Syst. – ident: CR64 – volume: 16 start-page: 1776 issue: 3 year: 2019 end-page: 1787 ident: CR3 article-title: A novel self-feedback intelligent vision measure for fast and accurate alignment in flip-chip packaging publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2019.2930078 – ident: CR43 – ident: CR47 – volume: 43 start-page: 1483 issue: 5 year: 2019 end-page: 1498 ident: CR13 article-title: Cascade R-CNN: High quality object detection and instance segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2956516 – ident: CR2 – ident: CR37 – ident: CR53 – volume: 69 start-page: 5247 issue: 5 year: 2021 end-page: 5256 ident: CR5 article-title: A novel industrial chip parameters identification method based on cascaded region segmentation for surface-mount equipment publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/TIE.2021.3082072 – ident: CR30 – volume: 10 start-page: 39969 year: 2022 end-page: 39974 ident: CR24 article-title: Wafer defect localization and classification using deep learning techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3166512 – volume: 44 start-page: 3523 issue: 7 year: 2021 end-page: 3542 ident: CR11 article-title: Image segmentation using deep learning: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: CR56 – volume: 208 start-page: 112492 year: 2023 ident: CR23 article-title: Light-weight segmentation network based on SOLOv2 for weld seam feature extraction publication-title: Measurement doi: 10.1016/j.measurement.2023.112492 – volume: 10 start-page: 525 issue: 3 year: 2019 end-page: 530 ident: CR15 article-title: Solder joint recognition using mask R-CNN method publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. doi: 10.1109/TCPMT.2019.2952393 – ident: CR40 – volume: 12 start-page: 3060 issue: 14 year: 2023 ident: CR25 article-title: YOLO-Xray: A bubble defect detection algorithm for chip X-ray images based on improved YOLOv5 publication-title: Electronics doi: 10.3390/electronics12143060 – volume: 34 start-page: 9419 issue: 10 year: 2022 end-page: 9427 ident: CR22 article-title: Multi-scale YOLACT for instance segmentation publication-title: J. King Saud Univ. Comput. Inf. Sci. – ident: CR44 – volume: 123 start-page: 106442 year: 2023 ident: CR41 article-title: Mixed local channel attention for object detection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106442 – ident: CR48 – volume: 10 start-page: 1113669 year: 2023 ident: CR27 article-title: Instance segmentation ship detection based on improved Yolov7 using complex background SAR images publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2023.1113669 – volume: 44 start-page: 1922 issue: 4 year: 2020 end-page: 1933 ident: CR33 article-title: FCOS: A simple and strong anchor-free object detector publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 7 start-page: 39 issue: 3 year: 2018 ident: CR1 article-title: New wafer alignment process using multiple vision method for industrial manufacturing publication-title: Electronics doi: 10.3390/electronics7030039 – ident: CR38 – ident: CR52 – ident: CR17 – ident: CR31 – volume: 142 start-page: 103720 year: 2022 ident: CR9 article-title: WaferSegClassNet-A light-weight network for classification and segmentation of semiconductor wafer defects publication-title: Comput. Ind. doi: 10.1016/j.compind.2022.103720 – ident: CR34 – ident: CR55 – ident: CR7 – ident: CR59 – ident: CR28 – ident: CR62 – ident: CR20 – volume: 44 start-page: 3523 issue: 7 year: 2021 ident: 78578_CR11 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 78578_CR42 doi: 10.1109/ICASSP49357.2023.10096516 – volume: 69 start-page: 5247 issue: 5 year: 2021 ident: 78578_CR5 publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/TIE.2021.3082072 – volume: 10 start-page: 39969 year: 2022 ident: 78578_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3166512 – volume: 10 start-page: 525 issue: 3 year: 2019 ident: 78578_CR15 publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. doi: 10.1109/TCPMT.2019.2952393 – volume: 236 start-page: 121352 year: 2024 ident: 78578_CR63 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121352 – ident: 78578_CR38 doi: 10.1109/CVPR52729.2023.00995 – ident: 78578_CR37 – volume: 142 start-page: 103720 year: 2022 ident: 78578_CR9 publication-title: Comput. Ind. doi: 10.1016/j.compind.2022.103720 – volume: 123 start-page: 106442 year: 2023 ident: 78578_CR41 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106442 – ident: 78578_CR43 doi: 10.1109/TIP.2024.3354108 – ident: 78578_CR62 doi: 10.1109/CVPR42600.2020.01392 – volume: 7 start-page: 39 issue: 3 year: 2018 ident: 78578_CR1 publication-title: Electronics doi: 10.3390/electronics7030039 – ident: 78578_CR28 doi: 10.1109/IV55152.2023.10186819 – ident: 78578_CR35 doi: 10.1109/CVPR46437.2021.01350 – volume: 208 start-page: 112492 year: 2023 ident: 78578_CR23 publication-title: Measurement doi: 10.1016/j.measurement.2023.112492 – volume: 15 start-page: 4974 issue: 20 year: 2023 ident: 78578_CR58 publication-title: Remote Sens. doi: 10.3390/rs15204974 – ident: 78578_CR50 doi: 10.1109/ICCV.2017.74 – ident: 78578_CR19 doi: 10.1109/CVPR.2016.91 – ident: 78578_CR7 doi: 10.1109/EDAPS58880.2023.10468383 – volume: 120 start-page: 104401 year: 2022 ident: 78578_CR10 publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2022.104401 – ident: 78578_CR57 – ident: 78578_CR44 doi: 10.1109/LGRS.2024.3370299 – ident: 78578_CR46 doi: 10.1007/978-3-030-58452-8_17 – ident: 78578_CR53 – ident: 78578_CR17 doi: 10.1007/978-3-030-58523-5_38 – ident: 78578_CR56 doi: 10.1109/TKDE.2024.3374773 – volume: 47 start-page: 101255 year: 2021 ident: 78578_CR8 publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101255 – ident: 78578_CR36 – volume: 10 start-page: 1113669 year: 2023 ident: 78578_CR27 publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2023.1113669 – ident: 78578_CR54 doi: 10.1109/CVPR52733.2024.00539 – ident: 78578_CR55 doi: 10.1109/CVPR52733.2024.02617 – ident: 78578_CR52 doi: 10.1109/CVPR52729.2023.01157 – ident: 78578_CR60 doi: 10.1109/WACV48630.2021.00318 – ident: 78578_CR16 doi: 10.1109/ICCV.2019.00925 – volume: 12 start-page: 667 issue: 3 year: 2023 ident: 78578_CR26 publication-title: Electronics doi: 10.3390/electronics12030667 – ident: 78578_CR49 doi: 10.1007/978-3-031-72751-1_1 – ident: 78578_CR47 doi: 10.1109/CVPR46437.2021.00540 – ident: 78578_CR39 doi: 10.1007/978-3-030-01234-2_1 – volume: 34 start-page: 455 issue: 4 year: 2021 ident: 78578_CR14 publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2021.3118922 – volume: 12 start-page: 3060 issue: 14 year: 2023 ident: 78578_CR25 publication-title: Electronics doi: 10.3390/electronics12143060 – ident: 78578_CR31 – ident: 78578_CR2 doi: 10.1109/ISAPM.2000.869261 – ident: 78578_CR61 doi: 10.1109/ICCV51070.2023.01540 – ident: 78578_CR34 doi: 10.1109/CVPR.2018.00745 – ident: 78578_CR29 doi: 10.1080/19392699.2024.2331545 – volume: 44 start-page: 1922 issue: 4 year: 2020 ident: 78578_CR33 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 19 start-page: 916 issue: 3 year: 2013 ident: 78578_CR6 publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2013.2260555 – volume: 33 start-page: 17721 year: 2020 ident: 78578_CR18 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 16 start-page: 1776 issue: 3 year: 2019 ident: 78578_CR3 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2019.2930078 – volume: 34 start-page: 9419 issue: 10 year: 2022 ident: 78578_CR22 publication-title: J. King Saud Univ. Comput. Inf. Sci. – ident: 78578_CR40 doi: 10.1016/j.compbiomed.2024.108784 – ident: 78578_CR21 doi: 10.1109/CVPR52729.2023.00721 – ident: 78578_CR48 doi: 10.1109/CVPR52729.2023.01548 – volume: 43 start-page: 1483 issue: 5 year: 2019 ident: 78578_CR13 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2956516 – ident: 78578_CR30 – ident: 78578_CR59 – ident: 78578_CR12 doi: 10.1109/ICCV.2017.322 – ident: 78578_CR64 doi: 10.1109/CVPR52688.2022.01166 – volume: 9 start-page: 661 issue: 2 year: 2022 ident: 78578_CR4 publication-title: Int. J. Precis. Eng. Manuf. Green Technol. doi: 10.1007/s40684-021-00343-6 – ident: 78578_CR20 – ident: 78578_CR32 doi: 10.1109/CVPR52733.2024.00544 – ident: 78578_CR45 – ident: 78578_CR51 doi: 10.1109/CVPR42600.2020.00165 |
| SSID | ssj0000529419 |
| Score | 2.482329 |
| Snippet | Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of... Abstract Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 27716 |
| SubjectTerms | 639/166 639/4077 639/705 639/766 Accuracy Algorithms Artificial intelligence Chip pad Computer applications Deep learning Humanities and Social Sciences Industrial applications Machine vision multidisciplinary Science Science (multidisciplinary) YOLOv8-seg |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuCMorUJCRuIFVx_bGNjeoqHpAbQ8glZNlJ3Y30ja72t2W8u8ZO9ltl1K4cIsyk8iah-ezx54BeBsc045HRmWsApWlVNQrr6hyTosq4hqax9xsQh0e6pMTc3yt1Vc6E9aXB-4Ft1uzyngWZRO1kc4bj_FFGK8QeIeIcD_NvkyZa4upvqo3N7I0wy0ZJvTuAiNVuk3GJVUazZRebkSiXLD_Tyjz5mHJ3zKmORDtP4QHA4IkH_uRP4I7oduGe31PyZ-PYfL96MvRhaaLcEr3jj8QRyZp_f0jb4GSNqPBOhAknw3XjjriJqfTebscnxGEsKQetzMycw1JEa4hSG_zzgM-X_2b5BY6T-Db_uevewd0aKlA65Esl6gM9PDAfEo-qrKptNes8ZH5kjknZMOTymJd1ZxrHR1vmCxxAYgSDk6jxMVT2OqmXXgOxKFAmWtiDCJIZXBqqLSIQoha-Ap_XEC5Eq-th3rjqe3FxOa8t9C2V4lFldisEntZwLv1N7O-2sZfuT8lra05U6Xs_ALtxw72Y_9lPwXsrHRuB_ddWFGmwokcsW4Bb9ZkdLyUTXFdmJ5nHq1T3h55nvUmsh6JMCOR4nwBesN4Noa6SenacS7ujQh9pBAjFvB-ZWdX47pdFi_-hyxewn2eHCSdcuQ7sLWcn4dXcLe-WLaL-evsYb8AG4UnpQ priority: 102 providerName: Directory of Open Access Journals |
| Title | YOLOv8-seg-CP: a lightweight instance segmentation algorithm for chip pad based on improved YOLOv8-seg model |
| URI | https://link.springer.com/article/10.1038/s41598-024-78578-x https://www.ncbi.nlm.nih.gov/pubmed/39532990 https://www.proquest.com/docview/3127442656 https://www.proquest.com/docview/3128812706 https://pubmed.ncbi.nlm.nih.gov/PMC11557976 https://doaj.org/article/c069b0f4df894ab9b85339b7606ef287 |
| Volume | 14 |
| WOSCitedRecordID | wos001354064300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYChIvfA8CozISb2DNsd3Y4QWxaRNIrIsQSN1TZCd2G6lLS9uN8d9zdtJU5WMvvFhV7CROf3fn-7DvEHptNVWaOUqESywRsZDESCOJ1FrxxIENzVwoNiGHQzUapVnrcFu22yrXMjEI6nJWeB_5AY99LjsG6sf7-Xfiq0b56GpbQmMH9UCzif2WrlOWdT4WH8UScdqelaFcHSxhvfJnypggUgGxkuut9Sik7f-brvnnlsnf4qZhOTq5_78f8gDdaxVR_KGhnIfolq0foTtNacqfj9H0_Ozz2ZUiSzsmR9k7rPHUm_E_gicVV0GpLCyG7ov29FKN9XQML1pNLjBowriYVHM81yX2C2WJob8KDgz4vXk2DpV4nqBvJ8dfjz6StjIDKQYiXgGmICgsNT6GKeMyUUbR0jhqYqo1FyXzyLsiKRhTymlWUhGDHcmotFrRxPI9tFvPavsMYQ2IUF06Z7kVMgUJkyjuOOcFNwk8OELxGp-8aNOW--oZ0zyEz7nKG0xzwDQPmObXEXrT3TNvknbcOPrQw96N9Am3w4XZYpy3_JsXNEkNdaJ0KhXapAbUHJ4aCfafdWB1Rmh_jXbeSoFlvoE6Qq-6buBfH5TRtZ1dhjFK-fA_jHna0Fg3E54OuFcXIqS2qG9rqts9dTUJOcKBHQYSVM0IvV0T6mZe__4vnt_8GS_QXeZ5x2-DZPtod7W4tC_R7eJqVS0XfbQjRzK0qo96h8fD7Es_-Dj6gS19K6HtZZ9Os_NfPrE8yw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKAZULb8pCASPBCax6bWfXi4QQFKpWDWkORWpPxt61k0jpJiTp60_xGxl7dxOFR289cFutHWu8-WY8L88g9MpqKjVzlAiXWCJikRKTmpSkWkueOLChmQvNJtJORx4eZt0V9LO5C-PTKhuZGAR1Mcq9j3yTx76WHQP148P4B_Fdo3x0tWmhUcFiz16cgck2fb_7Gf7f14xtfznY2iF1VwGSt0Q8A3oA5JYaH39L4yKRRtLCOGpiqjUXBfNUuzzJGZPSaVZQEYMNxGhqtaSJ5bDuNXRd-MpiPlWQdec-HR81E3FW382hXG5O4Xz0d9iYIKkE5iDnS-dfaBPwN932zxTN3-K04fjbvvO_fbi76HataOOPFWfcQyu2vI9uVq03Lx6g4dF-e_9Ukqntka3uO6zx0LspzoKnGA-C0pxbDMPH9e2sEuthDzY26x9j0PRx3h-M8VgX2CsCBYbxQXDQwPNibRw6DT1E365kq4_Qajkq7WOENSCA6sI5y61IM5CgieSOc55zk8DCEYobPKi8Lsvuu4MMVUgP4FJVGFKAIRUwpM4j9Gb-m3FVlOTS2Z88zOYzfUHx8GI06alaPqmcJpmhThROZkKbzIAaxzOTgn1rHVjVEdpo0KVqKTdVC2hF6OV8GOSTDzrp0o5OwhwpfXoDzFmvMD2nhGct7tWhCMkltC-RujxSDvqhBjoYMq0UVOkIvW0YY0HXv7_Fk8u38QKt7Rx8bav2bmfvKbrFPN_6lE-2gVZnkxP7DN3IT2eD6eR5YHyMvl81w_wCa4eQ3Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD8CCxgJThDVsd3EQUIIdqmodunmANLuKTiJ3VbqpqXtvv4av46xk7Qqj73tgVsUO5btfDOel2cAXmpFpWKG-sKE2heBiPwsyiI_Ukry0KAOzYwrNhH1-_LgIE424GdzF8aGVTY80THqYpJbG3mbBzaXHUPxo23qsIhkp_t--sO3FaSsp7Upp1FBZFefn6L6Nn_X28F__Yqx7qev25_9usKAn3dEsMC5IeA1zawvLgqKUGaSFpmhWUCV4qJgdgUmD3PGpDSKFVQEqA8xGmklaag5jnsFNlEkF6wFm0nvS3K4tPBYH5oI4vqmDuWyPcfT0t5oY8KPJJKKf7Z2GrqiAX-TdP8M2PzNa-sOw-6t_3kbb8PNWgQnHyqauQMburwL16qinOf3YHy4v7d_Iv25HvjbyVuiyNgaME6dDZmMnDida4LNR_W9rZKo8QAXthgeEdQBSD4cTclUFcSKCAXB9pEz3eDzamziahDdh2-XstQH0ConpX4ERCEaqCqM0VyLKEbeGkpuOOc5z0Ic2IOgwUaa1wnbbd2QceoCB7hMKzyliKfU4Sk98-D18ptpla7kwt4fLeSWPW2qcfdiMhukNedKcxrGGTWiMDIWKoszFPB4nEWo-WqD-rYHWw3S0pr_zdMVzDx4sWxGzmXdUarUk2PXR0ob-IB9Hlb4Xs6Exx1uBSUP5Bry16a63lKOhi47Oqo4nQiFbA_eNESymte_9-Lxxct4DteRTtK9Xn_3CdxgloRtLCjbgtZidqyfwtX8ZDGaz57VXIDA98ummF9-U5sm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv8-seg-CP%3A+a+lightweight+instance+segmentation+algorithm+for+chip+pad+based+on+improved+YOLOv8-seg+model&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Zongjian&rft.au=Zou%2C+Yanli&rft.au=Tan%2C+Yufei&rft.au=Zhou%2C+Chiyang&rft.date=2024-11-12&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=27716&rft_id=info:doi/10.1038%2Fs41598-024-78578-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |