YOLOv8-seg-CP: a lightweight instance segmentation algorithm for chip pad based on improved YOLOv8-seg model

Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 27716 - 18
Hlavní autoři: Zhang, Zongjian, Zou, Yanli, Tan, Yufei, Zhou, Chiyang
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 12.11.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production.
AbstractList Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production.
Abstract Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production.
Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production.
Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production.Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production.
ArticleNumber 27716
Author Zhang, Zongjian
Zhou, Chiyang
Tan, Yufei
Zou, Yanli
Author_xml – sequence: 1
  givenname: Zongjian
  surname: Zhang
  fullname: Zhang, Zongjian
  organization: Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region
– sequence: 2
  givenname: Yanli
  surname: Zou
  fullname: Zou, Yanli
  email: zouyanli72@163.com
  organization: Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region
– sequence: 3
  givenname: Yufei
  surname: Tan
  fullname: Tan, Yufei
  organization: Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region
– sequence: 4
  givenname: Chiyang
  surname: Zhou
  fullname: Zhou, Chiyang
  organization: Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39532990$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvBnbHNB1YpCpZWWAxw4WbbjZL1K4mBnl_Lv6zQt_TjUB3vked9H4_G8Lo6GMLiieIvgRwSJ-JQoYlKUENOSC8ZFefWiOMGQshITjI8exMfFWUo7mBfDkiL5qjgmkhEsJTwput-b9eYgyuTacvXjM9Cg8-12-uvmHfghTXqwDuR074ZJTz4MQHdtiH7a9qAJEditH8Goa2B0cjXIed-PMRxyfM8Gfahd96Z42eguubPb87T4dfH15-p7ud58u1ydr0vLKJpKijgkDhpSUcZRXQkjYG0aaBDUmtAa06Zyja0sxkI0GteQIigphtxpAStHTovLhVsHvVNj9L2O_1TQXt1chNgqHSdvO6csrKSBDa0bIak20ghGiDS8ypwGC55ZXxbWuDe9q23uQtTdI-jjzOC3qg0HhRBjXPIqEz7cEmL4s3dpUr1P1nWdHlzYJ0VQfgbCHM7S90-ku7CPQ-7VrOKU4orNqncPS_pfy92vZoFYBDaGlKJrlPXL3-UKfacQVPMMqWWGVJ4hdTND6ipb8RPrHf1ZE1lMKYuH1sX7sp9xXQOpM9iw
CitedBy_id crossref_primary_10_1080_27525783_2025_2551315
crossref_primary_10_1007_s00170_025_15383_4
crossref_primary_10_3390_agriculture15151622
crossref_primary_10_1038_s41598_025_15894_w
crossref_primary_10_1007_s10346_025_02586_9
crossref_primary_10_3390_computers14070284
crossref_primary_10_3390_diagnostics15141752
Cites_doi 10.3390/rs15204974
10.1016/j.imavis.2022.104401
10.3390/electronics12030667
10.1007/s40684-021-00343-6
10.1109/TMECH.2013.2260555
10.1016/j.aei.2021.101255
10.1016/j.eswa.2023.121352
10.1109/TSM.2021.3118922
10.1109/TII.2019.2930078
10.1109/TPAMI.2019.2956516
10.1109/TIE.2021.3082072
10.1109/ACCESS.2022.3166512
10.1016/j.measurement.2023.112492
10.1109/TCPMT.2019.2952393
10.3390/electronics12143060
10.1016/j.engappai.2023.106442
10.3389/fmars.2023.1113669
10.3390/electronics7030039
10.1016/j.compind.2022.103720
10.1109/ICASSP49357.2023.10096516
10.1109/CVPR52729.2023.00995
10.1109/TIP.2024.3354108
10.1109/CVPR42600.2020.01392
10.1109/IV55152.2023.10186819
10.1109/CVPR46437.2021.01350
10.1109/ICCV.2017.74
10.1109/CVPR.2016.91
10.1109/EDAPS58880.2023.10468383
10.1109/LGRS.2024.3370299
10.1007/978-3-030-58452-8_17
10.1007/978-3-030-58523-5_38
10.1109/TKDE.2024.3374773
10.1109/CVPR52733.2024.00539
10.1109/CVPR52733.2024.02617
10.1109/CVPR52729.2023.01157
10.1109/WACV48630.2021.00318
10.1109/ICCV.2019.00925
10.1007/978-3-031-72751-1_1
10.1109/CVPR46437.2021.00540
10.1007/978-3-030-01234-2_1
10.1109/ISAPM.2000.869261
10.1109/ICCV51070.2023.01540
10.1109/CVPR.2018.00745
10.1080/19392699.2024.2331545
10.1016/j.compbiomed.2024.108784
10.1109/CVPR52729.2023.00721
10.1109/CVPR52729.2023.01548
10.1109/ICCV.2017.322
10.1109/CVPR52688.2022.01166
10.1109/CVPR52733.2024.00544
10.1109/CVPR42600.2020.00165
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-78578-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central (subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database (subscription)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_c069b0f4df894ab9b85339b7606ef287
PMC11557976
39532990
10_1038_s41598_024_78578_x
Genre Journal Article
GrantInformation_xml – fundername: Innovation Project of Guangxi Graduate Education
  grantid: YCSW2024230
– fundername: Guangxi Innovation Driven Development Project Guike AA21077015
– fundername: National Natural Science Foundation of China Grants 12162005
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
3V.
88A
ACSMW
AJTQC
M0L
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-41703e0b364571d68b80dbf0b10aa34d24f6efc6c2288fa2d041094207ea806e3
IEDL.DBID M2P
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001354064300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:52:20 EDT 2025
Tue Nov 04 02:05:20 EST 2025
Thu Sep 04 18:28:02 EDT 2025
Tue Oct 07 08:23:22 EDT 2025
Wed Feb 19 02:02:44 EST 2025
Sat Nov 29 05:24:46 EST 2025
Tue Nov 18 21:43:58 EST 2025
Mon Jul 21 06:09:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords YOLOv8-seg
Deep learning
Chip pad
Machine vision
Artificial intelligence
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-41703e0b364571d68b80dbf0b10aa34d24f6efc6c2288fa2d041094207ea806e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3127442656?pq-origsite=%requestingapplication%
PMID 39532990
PQID 3127442656
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_c069b0f4df894ab9b85339b7606ef287
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11557976
proquest_miscellaneous_3128812706
proquest_journals_3127442656
pubmed_primary_39532990
crossref_citationtrail_10_1038_s41598_024_78578_x
crossref_primary_10_1038_s41598_024_78578_x
springer_journals_10_1038_s41598_024_78578_x
PublicationCentury 2000
PublicationDate 2024-11-12
PublicationDateYYYYMMDD 2024-11-12
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Lau, Po, Rehman (CR63) 2024; 236
Shinde, Pai, Adiga (CR24) 2022; 10
Wang (CR25) 2023; 12
Zeng, Ouyang, Liu, Leng, Fu (CR22) 2022; 34
Glučina, Anđelić, Lorencin, Car (CR26) 2023; 12
Wu (CR3) 2019; 16
CR39
CR38
CR37
CR36
CR35
CR34
CR32
CR31
CR30
CR2
CR7
Tian, Shen, Chen, He (CR33) 2020; 44
CR49
CR48
Chen, Tsai (CR8) 2021; 47
CR47
CR46
CR45
CR44
CR43
CR42
CR40
Liu, Yang, Yang, Gao (CR5) 2021; 69
CR19
Ren, Fang, Yan, Wu (CR4) 2022; 9
CR17
CR16
CR59
CR57
CR12
CR56
CR55
CR54
CR53
CR52
CR51
CR50
Wang, Zhang, Kong, Li, Shen (CR18) 2020; 33
Wang (CR6) 2013; 19
Kim (CR1) 2018; 7
Gu, Bai, Kong (CR10) 2022; 120
Wu, Gao, Xu (CR15) 2019; 10
CR29
Nag, Makwana, Mittal, Mohan (CR9) 2022; 142
CR28
Zou, Zeng (CR23) 2023; 208
CR21
CR20
CR64
Wan (CR41) 2023; 123
CR62
CR61
CR60
Cai, Vasconcelos (CR13) 2019; 43
Minaee (CR11) 2021; 44
Zhang, Chen, Yan, Wang, Hu (CR58) 2023; 15
Chiu, Chen (CR14) 2021; 34
Yasir (CR27) 2023; 10
78578_CR38
78578_CR39
78578_CR2
78578_CR36
78578_CR37
78578_CR34
78578_CR7
78578_CR35
78578_CR32
H Wu (78578_CR15) 2019; 10
78578_CR30
78578_CR31
KW Lau (78578_CR63) 2024; 236
W Gu (78578_CR10) 2022; 120
S Minaee (78578_CR11) 2021; 44
J Wang (78578_CR25) 2023; 12
MC Chiu (78578_CR14) 2021; 34
M Yasir (78578_CR27) 2023; 10
J Zhang (78578_CR58) 2023; 15
78578_CR29
Z Ren (78578_CR4) 2022; 9
Z Wu (78578_CR3) 2019; 16
78578_CR28
X Wang (78578_CR18) 2020; 33
PP Shinde (78578_CR24) 2022; 10
78578_CR21
78578_CR20
78578_CR64
J Kim (78578_CR1) 2018; 7
78578_CR61
78578_CR62
78578_CR60
S Nag (78578_CR9) 2022; 142
Z Cai (78578_CR13) 2019; 43
78578_CR19
78578_CR16
78578_CR17
Y Zou (78578_CR23) 2023; 208
78578_CR59
78578_CR12
78578_CR56
78578_CR57
78578_CR54
78578_CR55
78578_CR52
78578_CR53
78578_CR50
78578_CR51
SH Chen (78578_CR8) 2021; 47
78578_CR49
F Wang (78578_CR6) 2013; 19
78578_CR47
78578_CR48
78578_CR45
78578_CR46
78578_CR43
78578_CR44
78578_CR42
78578_CR40
W Liu (78578_CR5) 2021; 69
J Zeng (78578_CR22) 2022; 34
Z Tian (78578_CR33) 2020; 44
D Wan (78578_CR41) 2023; 123
M Glučina (78578_CR26) 2023; 12
References_xml – ident: CR45
– volume: 15
  start-page: 4974
  issue: 20
  year: 2023
  ident: CR58
  article-title: Faster and Lightweight: An improved YOLOv5 object detector for remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs15204974
– ident: CR49
– ident: CR39
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 120
  start-page: 104401
  year: 2022
  ident: CR10
  article-title: A review on 2D instance segmentation based on deep neural networks
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2022.104401
– volume: 12
  start-page: 667
  issue: 3
  year: 2023
  ident: CR26
  article-title: Detection and classification of printed circuit boards using YOLO algorithm
  publication-title: Electronics
  doi: 10.3390/electronics12030667
– ident: CR35
– ident: CR29
– ident: CR54
– ident: CR61
– ident: CR42
– ident: CR21
– volume: 9
  start-page: 661
  issue: 2
  year: 2022
  end-page: 691
  ident: CR4
  article-title: State of the art in defect detection based on machine vision
  publication-title: Int. J. Precis. Eng. Manuf. Green Technol.
  doi: 10.1007/s40684-021-00343-6
– ident: CR46
– ident: CR19
– volume: 19
  start-page: 916
  issue: 3
  year: 2013
  end-page: 923
  ident: CR6
  article-title: An improved adaptive genetic algorithm for image segmentation and vision alignment used in microelectronic bonding
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2013.2260555
– volume: 47
  start-page: 101255
  year: 2021
  ident: CR8
  article-title: SMD LED chips defect detection using a YOLOv3-dense model
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101255
– volume: 236
  start-page: 121352
  year: 2024
  ident: CR63
  article-title: Large separable kernel attention: Rethinking the large kernel attention design in cnn
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121352
– ident: CR50
– volume: 34
  start-page: 455
  issue: 4
  year: 2021
  end-page: 463
  ident: CR14
  article-title: Applying data augmentation and mask R-CNN-based instance segmentation method for mixed-type wafer maps defect patterns classification
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2021.3118922
– ident: CR57
– ident: CR32
– ident: CR60
– ident: CR36
– volume: 33
  start-page: 17721
  year: 2020
  end-page: 17732
  ident: CR18
  article-title: Solov2: Dynamic and fast instance segmentation
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: CR64
– volume: 16
  start-page: 1776
  issue: 3
  year: 2019
  end-page: 1787
  ident: CR3
  article-title: A novel self-feedback intelligent vision measure for fast and accurate alignment in flip-chip packaging
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2019.2930078
– ident: CR43
– ident: CR47
– volume: 43
  start-page: 1483
  issue: 5
  year: 2019
  end-page: 1498
  ident: CR13
  article-title: Cascade R-CNN: High quality object detection and instance segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2956516
– ident: CR2
– ident: CR37
– ident: CR53
– volume: 69
  start-page: 5247
  issue: 5
  year: 2021
  end-page: 5256
  ident: CR5
  article-title: A novel industrial chip parameters identification method based on cascaded region segmentation for surface-mount equipment
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2021.3082072
– ident: CR30
– volume: 10
  start-page: 39969
  year: 2022
  end-page: 39974
  ident: CR24
  article-title: Wafer defect localization and classification using deep learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166512
– volume: 44
  start-page: 3523
  issue: 7
  year: 2021
  end-page: 3542
  ident: CR11
  article-title: Image segmentation using deep learning: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: CR56
– volume: 208
  start-page: 112492
  year: 2023
  ident: CR23
  article-title: Light-weight segmentation network based on SOLOv2 for weld seam feature extraction
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112492
– volume: 10
  start-page: 525
  issue: 3
  year: 2019
  end-page: 530
  ident: CR15
  article-title: Solder joint recognition using mask R-CNN method
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
  doi: 10.1109/TCPMT.2019.2952393
– ident: CR40
– volume: 12
  start-page: 3060
  issue: 14
  year: 2023
  ident: CR25
  article-title: YOLO-Xray: A bubble defect detection algorithm for chip X-ray images based on improved YOLOv5
  publication-title: Electronics
  doi: 10.3390/electronics12143060
– volume: 34
  start-page: 9419
  issue: 10
  year: 2022
  end-page: 9427
  ident: CR22
  article-title: Multi-scale YOLACT for instance segmentation
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– ident: CR44
– volume: 123
  start-page: 106442
  year: 2023
  ident: CR41
  article-title: Mixed local channel attention for object detection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106442
– ident: CR48
– volume: 10
  start-page: 1113669
  year: 2023
  ident: CR27
  article-title: Instance segmentation ship detection based on improved Yolov7 using complex background SAR images
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2023.1113669
– volume: 44
  start-page: 1922
  issue: 4
  year: 2020
  end-page: 1933
  ident: CR33
  article-title: FCOS: A simple and strong anchor-free object detector
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7
  start-page: 39
  issue: 3
  year: 2018
  ident: CR1
  article-title: New wafer alignment process using multiple vision method for industrial manufacturing
  publication-title: Electronics
  doi: 10.3390/electronics7030039
– ident: CR38
– ident: CR52
– ident: CR17
– ident: CR31
– volume: 142
  start-page: 103720
  year: 2022
  ident: CR9
  article-title: WaferSegClassNet-A light-weight network for classification and segmentation of semiconductor wafer defects
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2022.103720
– ident: CR34
– ident: CR55
– ident: CR7
– ident: CR59
– ident: CR28
– ident: CR62
– ident: CR20
– volume: 44
  start-page: 3523
  issue: 7
  year: 2021
  ident: 78578_CR11
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 78578_CR42
  doi: 10.1109/ICASSP49357.2023.10096516
– volume: 69
  start-page: 5247
  issue: 5
  year: 2021
  ident: 78578_CR5
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2021.3082072
– volume: 10
  start-page: 39969
  year: 2022
  ident: 78578_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166512
– volume: 10
  start-page: 525
  issue: 3
  year: 2019
  ident: 78578_CR15
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
  doi: 10.1109/TCPMT.2019.2952393
– volume: 236
  start-page: 121352
  year: 2024
  ident: 78578_CR63
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121352
– ident: 78578_CR38
  doi: 10.1109/CVPR52729.2023.00995
– ident: 78578_CR37
– volume: 142
  start-page: 103720
  year: 2022
  ident: 78578_CR9
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2022.103720
– volume: 123
  start-page: 106442
  year: 2023
  ident: 78578_CR41
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106442
– ident: 78578_CR43
  doi: 10.1109/TIP.2024.3354108
– ident: 78578_CR62
  doi: 10.1109/CVPR42600.2020.01392
– volume: 7
  start-page: 39
  issue: 3
  year: 2018
  ident: 78578_CR1
  publication-title: Electronics
  doi: 10.3390/electronics7030039
– ident: 78578_CR28
  doi: 10.1109/IV55152.2023.10186819
– ident: 78578_CR35
  doi: 10.1109/CVPR46437.2021.01350
– volume: 208
  start-page: 112492
  year: 2023
  ident: 78578_CR23
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112492
– volume: 15
  start-page: 4974
  issue: 20
  year: 2023
  ident: 78578_CR58
  publication-title: Remote Sens.
  doi: 10.3390/rs15204974
– ident: 78578_CR50
  doi: 10.1109/ICCV.2017.74
– ident: 78578_CR19
  doi: 10.1109/CVPR.2016.91
– ident: 78578_CR7
  doi: 10.1109/EDAPS58880.2023.10468383
– volume: 120
  start-page: 104401
  year: 2022
  ident: 78578_CR10
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2022.104401
– ident: 78578_CR57
– ident: 78578_CR44
  doi: 10.1109/LGRS.2024.3370299
– ident: 78578_CR46
  doi: 10.1007/978-3-030-58452-8_17
– ident: 78578_CR53
– ident: 78578_CR17
  doi: 10.1007/978-3-030-58523-5_38
– ident: 78578_CR56
  doi: 10.1109/TKDE.2024.3374773
– volume: 47
  start-page: 101255
  year: 2021
  ident: 78578_CR8
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101255
– ident: 78578_CR36
– volume: 10
  start-page: 1113669
  year: 2023
  ident: 78578_CR27
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2023.1113669
– ident: 78578_CR54
  doi: 10.1109/CVPR52733.2024.00539
– ident: 78578_CR55
  doi: 10.1109/CVPR52733.2024.02617
– ident: 78578_CR52
  doi: 10.1109/CVPR52729.2023.01157
– ident: 78578_CR60
  doi: 10.1109/WACV48630.2021.00318
– ident: 78578_CR16
  doi: 10.1109/ICCV.2019.00925
– volume: 12
  start-page: 667
  issue: 3
  year: 2023
  ident: 78578_CR26
  publication-title: Electronics
  doi: 10.3390/electronics12030667
– ident: 78578_CR49
  doi: 10.1007/978-3-031-72751-1_1
– ident: 78578_CR47
  doi: 10.1109/CVPR46437.2021.00540
– ident: 78578_CR39
  doi: 10.1007/978-3-030-01234-2_1
– volume: 34
  start-page: 455
  issue: 4
  year: 2021
  ident: 78578_CR14
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2021.3118922
– volume: 12
  start-page: 3060
  issue: 14
  year: 2023
  ident: 78578_CR25
  publication-title: Electronics
  doi: 10.3390/electronics12143060
– ident: 78578_CR31
– ident: 78578_CR2
  doi: 10.1109/ISAPM.2000.869261
– ident: 78578_CR61
  doi: 10.1109/ICCV51070.2023.01540
– ident: 78578_CR34
  doi: 10.1109/CVPR.2018.00745
– ident: 78578_CR29
  doi: 10.1080/19392699.2024.2331545
– volume: 44
  start-page: 1922
  issue: 4
  year: 2020
  ident: 78578_CR33
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 19
  start-page: 916
  issue: 3
  year: 2013
  ident: 78578_CR6
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2013.2260555
– volume: 33
  start-page: 17721
  year: 2020
  ident: 78578_CR18
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 16
  start-page: 1776
  issue: 3
  year: 2019
  ident: 78578_CR3
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2019.2930078
– volume: 34
  start-page: 9419
  issue: 10
  year: 2022
  ident: 78578_CR22
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– ident: 78578_CR40
  doi: 10.1016/j.compbiomed.2024.108784
– ident: 78578_CR21
  doi: 10.1109/CVPR52729.2023.00721
– ident: 78578_CR48
  doi: 10.1109/CVPR52729.2023.01548
– volume: 43
  start-page: 1483
  issue: 5
  year: 2019
  ident: 78578_CR13
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2956516
– ident: 78578_CR30
– ident: 78578_CR59
– ident: 78578_CR12
  doi: 10.1109/ICCV.2017.322
– ident: 78578_CR64
  doi: 10.1109/CVPR52688.2022.01166
– volume: 9
  start-page: 661
  issue: 2
  year: 2022
  ident: 78578_CR4
  publication-title: Int. J. Precis. Eng. Manuf. Green Technol.
  doi: 10.1007/s40684-021-00343-6
– ident: 78578_CR20
– ident: 78578_CR32
  doi: 10.1109/CVPR52733.2024.00544
– ident: 78578_CR45
– ident: 78578_CR51
  doi: 10.1109/CVPR42600.2020.00165
SSID ssj0000529419
Score 2.482329
Snippet Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of...
Abstract Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27716
SubjectTerms 639/166
639/4077
639/705
639/766
Accuracy
Algorithms
Artificial intelligence
Chip pad
Computer applications
Deep learning
Humanities and Social Sciences
Industrial applications
Machine vision
multidisciplinary
Science
Science (multidisciplinary)
YOLOv8-seg
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuCMorUJCRuIFVx_bGNjeoqHpAbQ8glZNlJ3Y30ja72t2W8u8ZO9ltl1K4cIsyk8iah-ezx54BeBsc045HRmWsApWlVNQrr6hyTosq4hqax9xsQh0e6pMTc3yt1Vc6E9aXB-4Ft1uzyngWZRO1kc4bj_FFGK8QeIeIcD_NvkyZa4upvqo3N7I0wy0ZJvTuAiNVuk3GJVUazZRebkSiXLD_Tyjz5mHJ3zKmORDtP4QHA4IkH_uRP4I7oduGe31PyZ-PYfL96MvRhaaLcEr3jj8QRyZp_f0jb4GSNqPBOhAknw3XjjriJqfTebscnxGEsKQetzMycw1JEa4hSG_zzgM-X_2b5BY6T-Db_uevewd0aKlA65Esl6gM9PDAfEo-qrKptNes8ZH5kjknZMOTymJd1ZxrHR1vmCxxAYgSDk6jxMVT2OqmXXgOxKFAmWtiDCJIZXBqqLSIQoha-Ap_XEC5Eq-th3rjqe3FxOa8t9C2V4lFldisEntZwLv1N7O-2sZfuT8lra05U6Xs_ALtxw72Y_9lPwXsrHRuB_ddWFGmwokcsW4Bb9ZkdLyUTXFdmJ5nHq1T3h55nvUmsh6JMCOR4nwBesN4Noa6SenacS7ujQh9pBAjFvB-ZWdX47pdFi_-hyxewn2eHCSdcuQ7sLWcn4dXcLe-WLaL-evsYb8AG4UnpQ
  priority: 102
  providerName: Directory of Open Access Journals
Title YOLOv8-seg-CP: a lightweight instance segmentation algorithm for chip pad based on improved YOLOv8-seg model
URI https://link.springer.com/article/10.1038/s41598-024-78578-x
https://www.ncbi.nlm.nih.gov/pubmed/39532990
https://www.proquest.com/docview/3127442656
https://www.proquest.com/docview/3128812706
https://pubmed.ncbi.nlm.nih.gov/PMC11557976
https://doaj.org/article/c069b0f4df894ab9b85339b7606ef287
Volume 14
WOSCitedRecordID wos001354064300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYChIvfA8CozISb2DNsd3Y4QWxaRNIrIsQSN1TZCd2G6lLS9uN8d9zdtJU5WMvvFhV7CROf3fn-7DvEHptNVWaOUqESywRsZDESCOJ1FrxxIENzVwoNiGHQzUapVnrcFu22yrXMjEI6nJWeB_5AY99LjsG6sf7-Xfiq0b56GpbQmMH9UCzif2WrlOWdT4WH8UScdqelaFcHSxhvfJnypggUgGxkuut9Sik7f-brvnnlsnf4qZhOTq5_78f8gDdaxVR_KGhnIfolq0foTtNacqfj9H0_Ozz2ZUiSzsmR9k7rPHUm_E_gicVV0GpLCyG7ov29FKN9XQML1pNLjBowriYVHM81yX2C2WJob8KDgz4vXk2DpV4nqBvJ8dfjz6StjIDKQYiXgGmICgsNT6GKeMyUUbR0jhqYqo1FyXzyLsiKRhTymlWUhGDHcmotFrRxPI9tFvPavsMYQ2IUF06Z7kVMgUJkyjuOOcFNwk8OELxGp-8aNOW--oZ0zyEz7nKG0xzwDQPmObXEXrT3TNvknbcOPrQw96N9Am3w4XZYpy3_JsXNEkNdaJ0KhXapAbUHJ4aCfafdWB1Rmh_jXbeSoFlvoE6Qq-6buBfH5TRtZ1dhjFK-fA_jHna0Fg3E54OuFcXIqS2qG9rqts9dTUJOcKBHQYSVM0IvV0T6mZe__4vnt_8GS_QXeZ5x2-DZPtod7W4tC_R7eJqVS0XfbQjRzK0qo96h8fD7Es_-Dj6gS19K6HtZZ9Os_NfPrE8yw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKAZULb8pCASPBCax6bWfXi4QQFKpWDWkORWpPxt61k0jpJiTp60_xGxl7dxOFR289cFutHWu8-WY8L88g9MpqKjVzlAiXWCJikRKTmpSkWkueOLChmQvNJtJORx4eZt0V9LO5C-PTKhuZGAR1Mcq9j3yTx76WHQP148P4B_Fdo3x0tWmhUcFiz16cgck2fb_7Gf7f14xtfznY2iF1VwGSt0Q8A3oA5JYaH39L4yKRRtLCOGpiqjUXBfNUuzzJGZPSaVZQEYMNxGhqtaSJ5bDuNXRd-MpiPlWQdec-HR81E3FW382hXG5O4Xz0d9iYIKkE5iDnS-dfaBPwN932zxTN3-K04fjbvvO_fbi76HataOOPFWfcQyu2vI9uVq03Lx6g4dF-e_9Ukqntka3uO6zx0LspzoKnGA-C0pxbDMPH9e2sEuthDzY26x9j0PRx3h-M8VgX2CsCBYbxQXDQwPNibRw6DT1E365kq4_Qajkq7WOENSCA6sI5y61IM5CgieSOc55zk8DCEYobPKi8Lsvuu4MMVUgP4FJVGFKAIRUwpM4j9Gb-m3FVlOTS2Z88zOYzfUHx8GI06alaPqmcJpmhThROZkKbzIAaxzOTgn1rHVjVEdpo0KVqKTdVC2hF6OV8GOSTDzrp0o5OwhwpfXoDzFmvMD2nhGct7tWhCMkltC-RujxSDvqhBjoYMq0UVOkIvW0YY0HXv7_Fk8u38QKt7Rx8bav2bmfvKbrFPN_6lE-2gVZnkxP7DN3IT2eD6eR5YHyMvl81w_wCa4eQ3Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD8CCxgJThDVsd3EQUIIdqmodunmANLuKTiJ3VbqpqXtvv4av46xk7Qqj73tgVsUO5btfDOel2cAXmpFpWKG-sKE2heBiPwsyiI_Ukry0KAOzYwrNhH1-_LgIE424GdzF8aGVTY80THqYpJbG3mbBzaXHUPxo23qsIhkp_t--sO3FaSsp7Upp1FBZFefn6L6Nn_X28F__Yqx7qev25_9usKAn3dEsMC5IeA1zawvLgqKUGaSFpmhWUCV4qJgdgUmD3PGpDSKFVQEqA8xGmklaag5jnsFNlEkF6wFm0nvS3K4tPBYH5oI4vqmDuWyPcfT0t5oY8KPJJKKf7Z2GrqiAX-TdP8M2PzNa-sOw-6t_3kbb8PNWgQnHyqauQMburwL16qinOf3YHy4v7d_Iv25HvjbyVuiyNgaME6dDZmMnDida4LNR_W9rZKo8QAXthgeEdQBSD4cTclUFcSKCAXB9pEz3eDzamziahDdh2-XstQH0ConpX4ERCEaqCqM0VyLKEbeGkpuOOc5z0Ic2IOgwUaa1wnbbd2QceoCB7hMKzyliKfU4Sk98-D18ptpla7kwt4fLeSWPW2qcfdiMhukNedKcxrGGTWiMDIWKoszFPB4nEWo-WqD-rYHWw3S0pr_zdMVzDx4sWxGzmXdUarUk2PXR0ob-IB9Hlb4Xs6Exx1uBSUP5Bry16a63lKOhi47Oqo4nQiFbA_eNESymte_9-Lxxct4DteRTtK9Xn_3CdxgloRtLCjbgtZidqyfwtX8ZDGaz57VXIDA98ummF9-U5sm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv8-seg-CP%3A+a+lightweight+instance+segmentation+algorithm+for+chip+pad+based+on+improved+YOLOv8-seg+model&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Zongjian&rft.au=Zou%2C+Yanli&rft.au=Tan%2C+Yufei&rft.au=Zhou%2C+Chiyang&rft.date=2024-11-12&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=27716&rft_id=info:doi/10.1038%2Fs41598-024-78578-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon