Seg2Link: an efficient and versatile solution for semi-automatic cell segmentation in 3D image stacks

Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of high-precision 3D cell image stacks. To examine cell morphology and connectivity in organs such as the brain, scientists need to conduct cell segmentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 13; H. 1; S. 7109 - 13
Hauptverfasser: Wen, Chentao, Matsumoto, Mami, Sawada, Masato, Sawamoto, Kazunobu, Kimura, Koutarou D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 22.05.2023
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of high-precision 3D cell image stacks. To examine cell morphology and connectivity in organs such as the brain, scientists need to conduct cell segmentation, which extracts individual cell regions of different shapes and sizes from a 3D image. This is challenging due to the indistinct images often encountered in real biomedical research: in many cases, automatic segmentation methods inevitably contain numerous mistakes in the segmentation results, even when using advanced deep learning methods. To analyze 3D cell images effectively, a semi-automated software solution is needed that combines powerful deep learning techniques with the ability to perform post-processing, generate accurate segmentations, and incorporate manual corrections. To address this gap, we developed Seg2Link, which takes deep learning predictions as inputs and use watershed 2D + cross-slice linking to generate more accurate automatic segmentations than previous methods. Additionally, it provides various manual correction tools essential for correcting mistakes in 3D segmentation results. Moreover, our software has been optimized for efficiently processing large 3D images in diverse organisms. Thus, Seg2Link offers an practical solution for scientists to study cell morphology and connectivity in 3D image stacks.
AbstractList Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of high-precision 3D cell image stacks. To examine cell morphology and connectivity in organs such as the brain, scientists need to conduct cell segmentation, which extracts individual cell regions of different shapes and sizes from a 3D image. This is challenging due to the indistinct images often encountered in real biomedical research: in many cases, automatic segmentation methods inevitably contain numerous mistakes in the segmentation results, even when using advanced deep learning methods. To analyze 3D cell images effectively, a semi-automated software solution is needed that combines powerful deep learning techniques with the ability to perform post-processing, generate accurate segmentations, and incorporate manual corrections. To address this gap, we developed Seg2Link, which takes deep learning predictions as inputs and use watershed 2D + cross-slice linking to generate more accurate automatic segmentations than previous methods. Additionally, it provides various manual correction tools essential for correcting mistakes in 3D segmentation results. Moreover, our software has been optimized for efficiently processing large 3D images in diverse organisms. Thus, Seg2Link offers an practical solution for scientists to study cell morphology and connectivity in 3D image stacks.Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of high-precision 3D cell image stacks. To examine cell morphology and connectivity in organs such as the brain, scientists need to conduct cell segmentation, which extracts individual cell regions of different shapes and sizes from a 3D image. This is challenging due to the indistinct images often encountered in real biomedical research: in many cases, automatic segmentation methods inevitably contain numerous mistakes in the segmentation results, even when using advanced deep learning methods. To analyze 3D cell images effectively, a semi-automated software solution is needed that combines powerful deep learning techniques with the ability to perform post-processing, generate accurate segmentations, and incorporate manual corrections. To address this gap, we developed Seg2Link, which takes deep learning predictions as inputs and use watershed 2D + cross-slice linking to generate more accurate automatic segmentations than previous methods. Additionally, it provides various manual correction tools essential for correcting mistakes in 3D segmentation results. Moreover, our software has been optimized for efficiently processing large 3D images in diverse organisms. Thus, Seg2Link offers an practical solution for scientists to study cell morphology and connectivity in 3D image stacks.
Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of high-precision 3D cell image stacks. To examine cell morphology and connectivity in organs such as the brain, scientists need to conduct cell segmentation, which extracts individual cell regions of different shapes and sizes from a 3D image. This is challenging due to the indistinct images often encountered in real biomedical research: in many cases, automatic segmentation methods inevitably contain numerous mistakes in the segmentation results, even when using advanced deep learning methods. To analyze 3D cell images effectively, a semi-automated software solution is needed that combines powerful deep learning techniques with the ability to perform post-processing, generate accurate segmentations, and incorporate manual corrections. To address this gap, we developed Seg2Link, which takes deep learning predictions as inputs and use watershed 2D + cross-slice linking to generate more accurate automatic segmentations than previous methods. Additionally, it provides various manual correction tools essential for correcting mistakes in 3D segmentation results. Moreover, our software has been optimized for efficiently processing large 3D images in diverse organisms. Thus, Seg2Link offers an practical solution for scientists to study cell morphology and connectivity in 3D image stacks.
Abstract Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of high-precision 3D cell image stacks. To examine cell morphology and connectivity in organs such as the brain, scientists need to conduct cell segmentation, which extracts individual cell regions of different shapes and sizes from a 3D image. This is challenging due to the indistinct images often encountered in real biomedical research: in many cases, automatic segmentation methods inevitably contain numerous mistakes in the segmentation results, even when using advanced deep learning methods. To analyze 3D cell images effectively, a semi-automated software solution is needed that combines powerful deep learning techniques with the ability to perform post-processing, generate accurate segmentations, and incorporate manual corrections. To address this gap, we developed Seg2Link, which takes deep learning predictions as inputs and use watershed 2D + cross-slice linking to generate more accurate automatic segmentations than previous methods. Additionally, it provides various manual correction tools essential for correcting mistakes in 3D segmentation results. Moreover, our software has been optimized for efficiently processing large 3D images in diverse organisms. Thus, Seg2Link offers an practical solution for scientists to study cell morphology and connectivity in 3D image stacks.
ArticleNumber 7109
Author Sawamoto, Kazunobu
Sawada, Masato
Kimura, Koutarou D.
Wen, Chentao
Matsumoto, Mami
Author_xml – sequence: 1
  givenname: Chentao
  surname: Wen
  fullname: Wen, Chentao
  email: chentao.wen@riken.jp
  organization: Graduate School of Science, Nagoya City University, RIKEN Center for Biosystems Dynamics Research
– sequence: 2
  givenname: Mami
  surname: Matsumoto
  fullname: Matsumoto, Mami
  organization: Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Division of Neural Development and Regeneration, National Institute for Physiological Sciences
– sequence: 3
  givenname: Masato
  surname: Sawada
  fullname: Sawada, Masato
  organization: Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Division of Neural Development and Regeneration, National Institute for Physiological Sciences
– sequence: 4
  givenname: Kazunobu
  surname: Sawamoto
  fullname: Sawamoto, Kazunobu
  organization: Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Division of Neural Development and Regeneration, National Institute for Physiological Sciences
– sequence: 5
  givenname: Koutarou D.
  surname: Kimura
  fullname: Kimura, Koutarou D.
  organization: Graduate School of Science, Nagoya City University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37217545$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAQtVARLZf-AAsUiQ2bgJ-JwwZV5VXpSiyAtTVxJsG3iV3spBJ_j-9NKW0XtWT5dc6ZM-N5To588EjIS0bfMir0uySZanRJuSiF5IKX1RNywqlUZT7wozv7Y3Ka0o7moXgjWfOMHIuas1pJdULwOw586_zl-wJ8gX3vrEM_50NXXGNMMLsRixTGZXbBF32IRcLJlbDMYcqPtrA4jvlumDINDiDnC_GxcBMMmTmDvUwvyNMexoSnN-uG_Pz86cf513L77cvF-dm2tEqyuZRMVgi6BbA9a1hdaaq1ajmzVCgODVWyahrbQYVt3SraN4xD1UDPkNa9YGJDLlbdLsDOXMXsIf4xAZw5XIQ4GIjZ9IimYygY9kgrKWVLdUvrToDUkKtKQYqs9WHVulraCTub04sw3hO9_-LdLzOEa8Mop4LluSFvbhRi-L1gms3k0r5c4DEsyXDNdE6J6n2w1w-gu7BEn2u1R9W8bqTap_fqrqVbL_--MwP4CrAxpBSxv4UwavZtY9a2MbltzKFtTJVJ-gHJuvUnc1pufJwqVmrKcfyA8b_tR1h_ARVD1U4
CitedBy_id crossref_primary_10_3390_app14083391
crossref_primary_10_1016_j_compbiomed_2025_109972
crossref_primary_10_1038_s44321_024_00073_7
crossref_primary_10_3390_app14072809
crossref_primary_10_1016_j_bspc_2024_106464
Cites_doi 10.1038/nmeth.2083
10.1016/j.conb.2018.04.030
10.1038/nature17192
10.1038/s41592-018-0049-4
10.1038/nature22356
10.1093/bioinformatics/btw413
10.1038/nn.3837
10.1038/s41592-019-0582-9
10.1038/nn.2868
10.1038/s41592-022-01507-1
10.1523/JNEUROSCI.1503-19.2019
10.1038/nn.4290
10.1038/s41540-020-00152-8
10.1016/j.cell.2018.06.019
10.1038/s41592-018-0261-2
10.7554/eLife.25916
10.3389/fmolb.2020.00033
10.1007/978-3-662-03939-7_6
10.1371/journal.pbio.1000502
10.1038/nmeth.1366
10.5121/mlaij.2016.3103
10.1016/j.neuron.2015.09.003
10.1109/TVCG.2014.2346371
10.3389/fncir.2018.00101
10.1038/s41598-019-55431-0
10.1146/annurev-neuro-070918-050357
10.1007/978-1-0716-0691-9_13
10.3389/fncir.2018.00088
10.7554/eLife.57443
10.1038/s41592-020-01018-x
10.1038/s41586-022-04488-5
10.1109/WACV45572.2020.9093435
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-34232-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database

CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_d1e31efe06444b08b07d3a48a5980a43
PMC10203120
37217545
10_1038_s41598_023_34232_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Special Postdoctoral Researchers Program in RIKEN
– fundername: Grant-in-Aid for Research at Nagoya City University
  grantid: 1921102; 1921102
– fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI
  grantid: 20H05700; 20H05700
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: 22gm1210007
– fundername: ;
– fundername: ;
  grantid: 22gm1210007
– fundername: ;
  grantid: 20H05700; 20H05700
– fundername: ;
  grantid: 1921102; 1921102
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-4146ea8baacf1917680885b21c0352a9054699cda6eb7b50f912a69af1e07f313
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001065312000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:34:14 EST 2025
Tue Nov 04 02:07:18 EST 2025
Thu Sep 04 18:35:36 EDT 2025
Tue Oct 07 09:16:53 EDT 2025
Thu Jan 02 22:51:56 EST 2025
Sat Nov 29 06:34:06 EST 2025
Tue Nov 18 21:24:12 EST 2025
Fri Feb 21 02:37:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-4146ea8baacf1917680885b21c0352a9054699cda6eb7b50f912a69af1e07f313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/d1e31efe06444b08b07d3a48a5980a43
PMID 37217545
PQID 2817279451
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_d1e31efe06444b08b07d3a48a5980a43
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10203120
proquest_miscellaneous_2818054083
proquest_journals_2817279451
pubmed_primary_37217545
crossref_primary_10_1038_s41598_023_34232_6
crossref_citationtrail_10_1038_s41598_023_34232_6
springer_journals_10_1038_s41598_023_34232_6
PublicationCentury 2000
PublicationDate 2023-05-22
PublicationDateYYYYMMDD 2023-05-22
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kornfeld, Denk (CR2) 2018; 50
Berg (CR29) 2019; 16
Januszewski (CR17) 2018; 15
Tokuoka (CR27) 2020; 6
Helmstaedter, Briggman, Denk (CR12) 2011; 14
CR15
Legland, Arganda-Carreras, Andrey (CR26) 2016; 32
Ershov (CR30) 2022; 19
Wanner, Genoud, Masudi, Siksou, Friedrich (CR6) 2016; 19
Cardona (CR11) 2010; 8
Minaee (CR18) 2022; 44
Parlakgül (CR4) 2022; 603
Urakubo, Bullmann, Kubota, Oba, Ishii (CR24) 2019; 9
Ljosa, Sokolnicki, Carpenter (CR33) 2012; 9
Lee (CR8) 2016; 532
Matsumoto (CR31) 2019; 39
Soille, Soille (CR34) 1999
Long, Peng, Liu, Kim, Myers (CR28) 2009; 6
CR25
Xu (CR3) 2017; 6
Jensen, Teng (CR32) 2020; 7
Falk (CR14) 2019; 16
Berning, Boergens, Helmstaedter (CR13) 2015; 87
Stringer, Wang, Michaelos, Pachitariu (CR16) 2021; 18
Hildebrand (CR7) 2017; 545
Zheng (CR5) 2018; 174
Berger, Seung, Lichtman (CR22) 2018; 12
Beucher, Meyer, Dougherty (CR19) 1993
Kornfeld, Svara, Wanner, Wacker, Hummel, Burgold, Schröder (CR10) 2020
Scheffer (CR20) 2020; 9
Haehn (CR21) 2014; 20
Zhao, Olbris, Yu, Plaza (CR23) 2018; 12
Hillman, Voleti, Li, Yu (CR1) 2019; 42
Lichtman, Pfister, Shavit (CR9) 2014; 17
Vijaymeena, Kavitha (CR35) 2016; 3
M Helmstaedter (34232_CR12) 2011; 14
J Kornfeld (34232_CR10) 2020
S Beucher (34232_CR19) 1993
CS Xu (34232_CR3) 2017; 6
JW Lichtman (34232_CR9) 2014; 17
AA Wanner (34232_CR6) 2016; 19
V Ljosa (34232_CR33) 2012; 9
34232_CR25
F Long (34232_CR28) 2009; 6
M Berning (34232_CR13) 2015; 87
G Parlakgül (34232_CR4) 2022; 603
M Matsumoto (34232_CR31) 2019; 39
C Stringer (34232_CR16) 2021; 18
W-CA Lee (34232_CR8) 2016; 532
H Urakubo (34232_CR24) 2019; 9
S Minaee (34232_CR18) 2022; 44
T Falk (34232_CR14) 2019; 16
P Soille (34232_CR34) 1999
D Haehn (34232_CR21) 2014; 20
T Zhao (34232_CR23) 2018; 12
C Jensen (34232_CR32) 2020; 7
M Januszewski (34232_CR17) 2018; 15
Z Zheng (34232_CR5) 2018; 174
DGC Hildebrand (34232_CR7) 2017; 545
34232_CR15
Y Tokuoka (34232_CR27) 2020; 6
MK Vijaymeena (34232_CR35) 2016; 3
D Ershov (34232_CR30) 2022; 19
EMC Hillman (34232_CR1) 2019; 42
LK Scheffer (34232_CR20) 2020; 9
J Kornfeld (34232_CR2) 2018; 50
D Legland (34232_CR26) 2016; 32
S Berg (34232_CR29) 2019; 16
DR Berger (34232_CR22) 2018; 12
A Cardona (34232_CR11) 2010; 8
References_xml – volume: 9
  start-page: 637
  year: 2012
  end-page: 637
  ident: CR33
  article-title: Annotated high-throughput microscopy image sets for validation
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2083
– volume: 50
  start-page: 261
  year: 2018
  end-page: 267
  ident: CR2
  article-title: Progress and remaining challenges in high-throughput volume electron microscopy
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.04.030
– volume: 532
  start-page: 370
  year: 2016
  end-page: 374
  ident: CR8
  article-title: Anatomy and function of an excitatory network in the visual cortex
  publication-title: Nature
  doi: 10.1038/nature17192
– volume: 15
  start-page: 605
  year: 2018
  end-page: 610
  ident: CR17
  article-title: High-precision automated reconstruction of neurons with flood-filling networks
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0049-4
– volume: 545
  start-page: 345
  year: 2017
  end-page: 349
  ident: CR7
  article-title: Whole-brain serial-section electron microscopy in larval zebrafish
  publication-title: Nature
  doi: 10.1038/nature22356
– volume: 32
  start-page: 3532
  year: 2016
  end-page: 3534
  ident: CR26
  article-title: MorphoLibJ: Integrated library and plugins for mathematical morphology with ImageJ
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw413
– volume: 17
  start-page: 1448
  year: 2014
  end-page: 1454
  ident: CR9
  article-title: The big data challenges of connectomics
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3837
– volume: 16
  start-page: 1226
  year: 2019
  end-page: 1232
  ident: CR29
  article-title: ilastik: Interactive machine learning for (bio)image analysis
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0582-9
– volume: 14
  start-page: 1081
  year: 2011
  end-page: 1088
  ident: CR12
  article-title: High-accuracy neurite reconstruction for high-throughput neuroanatomy
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2868
– volume: 19
  start-page: 829
  year: 2022
  end-page: 832
  ident: CR30
  article-title: TrackMate 7: Integrating state-of-the-art segmentation algorithms into tracking pipelines
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01507-1
– volume: 39
  start-page: 9967
  year: 2019
  end-page: 9988
  ident: CR31
  article-title: Dynamic changes in ultrastructure of the primary cilium in migrating neuroblasts in the postnatal brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1503-19.2019
– volume: 19
  start-page: 816
  year: 2016
  end-page: 825
  ident: CR6
  article-title: Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4290
– volume: 6
  start-page: 32
  year: 2020
  ident: CR27
  article-title: 3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis
  publication-title: NPJ. Syst. Biol. Appl.
  doi: 10.1038/s41540-020-00152-8
– volume: 174
  start-page: 730
  year: 2018
  end-page: 743.e22
  ident: CR5
  article-title: A complete electron microscopy volume of the brain of adult melanogaster
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.019
– ident: CR25
– volume: 16
  start-page: 67
  year: 2019
  end-page: 70
  ident: CR14
  article-title: U-Net: Deep learning for cell counting, detection, and morphometry
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0261-2
– volume: 6
  start-page: e25916
  year: 2017
  ident: CR3
  article-title: Enhanced FIB-SEM systems for large-volume 3D imaging
  publication-title: Elife
  doi: 10.7554/eLife.25916
– volume: 7
  start-page: 33
  year: 2020
  ident: CR32
  article-title: Is it time to start transitioning from 2d to 3d cell culture?
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2020.00033
– start-page: 155
  year: 1999
  end-page: 183
  ident: CR34
  article-title: Geodesic transformations
  publication-title: Morphological Image Analysis
  doi: 10.1007/978-3-662-03939-7_6
– start-page: 433
  year: 1993
  end-page: 481
  ident: CR19
  article-title: The morphological approach to segmentation: the watershed transformation
  publication-title: Mathematical Morphology in Image Processing
– volume: 8
  year: 2010
  ident: CR11
  article-title: An integrated micro- and macroarchitectural analysis of the brain by computer-assisted serial section electron microscopy
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000502
– volume: 6
  start-page: 667
  year: 2009
  end-page: 672
  ident: CR28
  article-title: A 3d digital atlas of and its application to single-cell analyses
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1366
– volume: 3
  start-page: 19
  year: 2016
  end-page: 28
  ident: CR35
  article-title: A survey on similarity measures in text mining
  publication-title: MLAIJ
  doi: 10.5121/mlaij.2016.3103
– volume: 87
  start-page: 1193
  year: 2015
  end-page: 1206
  ident: CR13
  article-title: SegEM: Efficient image analysis for high-resolution connectomics
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.003
– ident: CR15
– volume: 20
  start-page: 2466
  year: 2014
  end-page: 2475
  ident: CR21
  article-title: Design and evaluation of interactive proofreading tools for connectomics
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2014.2346371
– volume: 12
  start-page: 101
  year: 2018
  ident: CR23
  article-title: NeuTu: Software for collaborative, large-scale, segmentation-based connectome reconstruction
  publication-title: Front. Neural Circuits
  doi: 10.3389/fncir.2018.00101
– volume: 9
  start-page: 19413
  year: 2019
  ident: CR24
  article-title: UNI-EM: An environment for deep neural network-based automated segmentation of neuronal electron microscopic images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55431-0
– volume: 42
  start-page: 295
  year: 2019
  end-page: 313
  ident: CR1
  article-title: Light-sheet microscopy in neuroscience
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-070918-050357
– start-page: 245
  year: 2020
  end-page: 262
  ident: CR10
  article-title: Image Processing for Volume Electron Microscopy
  publication-title: Volume Microscopy
  doi: 10.1007/978-1-0716-0691-9_13
– volume: 12
  start-page: 88
  year: 2018
  ident: CR22
  article-title: VAST (volume annotation and segmentation tool): Efficient manual and semi-automatic labeling of large 3d image stacks
  publication-title: Front. Neural Circuits
  doi: 10.3389/fncir.2018.00088
– volume: 44
  start-page: 3523
  year: 2022
  end-page: 3542
  ident: CR18
  article-title: Image segmentation using deep learning: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: e57443
  year: 2020
  ident: CR20
  article-title: A connectome and analysis of the adult central brain
  publication-title: Elife
  doi: 10.7554/eLife.57443
– volume: 18
  start-page: 100
  year: 2021
  end-page: 106
  ident: CR16
  article-title: Cellpose: A generalist algorithm for cellular segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01018-x
– volume: 603
  start-page: 736
  year: 2022
  end-page: 742
  ident: CR4
  article-title: Regulation of liver subcellular architecture controls metabolic homeostasis
  publication-title: Nature
  doi: 10.1038/s41586-022-04488-5
– start-page: 245
  volume-title: Volume Microscopy
  year: 2020
  ident: 34232_CR10
  doi: 10.1007/978-1-0716-0691-9_13
– ident: 34232_CR25
– volume: 39
  start-page: 9967
  year: 2019
  ident: 34232_CR31
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1503-19.2019
– volume: 532
  start-page: 370
  year: 2016
  ident: 34232_CR8
  publication-title: Nature
  doi: 10.1038/nature17192
– volume: 32
  start-page: 3532
  year: 2016
  ident: 34232_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw413
– volume: 42
  start-page: 295
  year: 2019
  ident: 34232_CR1
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-070918-050357
– volume: 12
  start-page: 101
  year: 2018
  ident: 34232_CR23
  publication-title: Front. Neural Circuits
  doi: 10.3389/fncir.2018.00101
– volume: 18
  start-page: 100
  year: 2021
  ident: 34232_CR16
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01018-x
– volume: 50
  start-page: 261
  year: 2018
  ident: 34232_CR2
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.04.030
– volume: 17
  start-page: 1448
  year: 2014
  ident: 34232_CR9
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3837
– volume: 6
  start-page: 32
  year: 2020
  ident: 34232_CR27
  publication-title: NPJ. Syst. Biol. Appl.
  doi: 10.1038/s41540-020-00152-8
– volume: 16
  start-page: 1226
  year: 2019
  ident: 34232_CR29
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0582-9
– start-page: 433
  volume-title: Mathematical Morphology in Image Processing
  year: 1993
  ident: 34232_CR19
– volume: 6
  start-page: 667
  year: 2009
  ident: 34232_CR28
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1366
– ident: 34232_CR15
  doi: 10.1109/WACV45572.2020.9093435
– volume: 7
  start-page: 33
  year: 2020
  ident: 34232_CR32
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2020.00033
– volume: 6
  start-page: e25916
  year: 2017
  ident: 34232_CR3
  publication-title: Elife
  doi: 10.7554/eLife.25916
– volume: 174
  start-page: 730
  year: 2018
  ident: 34232_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.019
– volume: 9
  start-page: e57443
  year: 2020
  ident: 34232_CR20
  publication-title: Elife
  doi: 10.7554/eLife.57443
– volume: 603
  start-page: 736
  year: 2022
  ident: 34232_CR4
  publication-title: Nature
  doi: 10.1038/s41586-022-04488-5
– volume: 8
  year: 2010
  ident: 34232_CR11
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000502
– volume: 44
  start-page: 3523
  year: 2022
  ident: 34232_CR18
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 19
  start-page: 829
  year: 2022
  ident: 34232_CR30
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01507-1
– volume: 9
  start-page: 19413
  year: 2019
  ident: 34232_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55431-0
– volume: 3
  start-page: 19
  year: 2016
  ident: 34232_CR35
  publication-title: MLAIJ
  doi: 10.5121/mlaij.2016.3103
– volume: 12
  start-page: 88
  year: 2018
  ident: 34232_CR22
  publication-title: Front. Neural Circuits
  doi: 10.3389/fncir.2018.00088
– volume: 545
  start-page: 345
  year: 2017
  ident: 34232_CR7
  publication-title: Nature
  doi: 10.1038/nature22356
– volume: 87
  start-page: 1193
  year: 2015
  ident: 34232_CR13
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.003
– volume: 9
  start-page: 637
  year: 2012
  ident: 34232_CR33
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2083
– volume: 19
  start-page: 816
  year: 2016
  ident: 34232_CR6
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4290
– volume: 14
  start-page: 1081
  year: 2011
  ident: 34232_CR12
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2868
– volume: 16
  start-page: 67
  year: 2019
  ident: 34232_CR14
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0261-2
– volume: 15
  start-page: 605
  year: 2018
  ident: 34232_CR17
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0049-4
– start-page: 155
  volume-title: Morphological Image Analysis
  year: 1999
  ident: 34232_CR34
  doi: 10.1007/978-3-662-03939-7_6
– volume: 20
  start-page: 2466
  year: 2014
  ident: 34232_CR21
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2014.2346371
SSID ssj0000529419
Score 2.4539692
Snippet Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of...
Abstract Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7109
SubjectTerms 631/114/1564
631/378/3920
Cell morphology
Cytology
Deep learning
Electron microscopy
Humanities and Social Sciences
Image processing
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Medical research
Microscopy
Microscopy, Electron
Morphology
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Scientists
Segmentation
Software
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFNzRQkJG4QVS_kthcEK-KU4UESHuznMTZRnSTdrOLxL9nxnFSLY9eOG7ijZx8M57PHns-Ql6AFUjWKJF6iE2pQmmTEngAzFKc9IzVpclHsYni-FgvFuZzXHAb4rbKaUwMA3XdV7hGfig0hlqjMv7m7DxF1SjMrkYJjavkGspmo50Xi2JeY8EsluImnpVhUh8OEK_wTJmQKZa-E2m-E49C2f6_cc0_t0z-ljcN4ejo9v--yB1yKxJR-na0nLvkiu_ukRujNOXP-8R_8UuBE9XX1HXUh0IT0Cn4UVPcyQGAnno6GS4F6ksHv2pTt930oQosxZQAXFuu4ummjrYdlR9ou4IhjAIprb4PD8i3o49f339KoyRDWmWKbwBMlXunS-eqBmd6KNyhs1LwCuuqOgMEMDemql3uywJAbwwXLjeu4Z4VjeTyIdnr-s7vE1pxmTNfmIwJr-pSukY56VyWF6rkdV0nhE_A2CrWK0fZjFMb8uZS2xFMC2DaAKbNE_Jy_s_ZWK3j0tbvEO-5JVbaDhf69dJGx7U195L7xgN1U6pkumRFLZ3SDh7GnJIJOZhgttH9B3uBcUKez7fBcfHTu87329BGI1_W8IhHo3HNPZEwLy-A2yZE75jdTld373TtSSgOzjG1zAVLyKvJQi_69e9v8fjy13hCbgp0GpalQhyQvc1665-S69WPTTusnwWv-wV1FzHp
  priority: 102
  providerName: ProQuest
Title Seg2Link: an efficient and versatile solution for semi-automatic cell segmentation in 3D image stacks
URI https://link.springer.com/article/10.1038/s41598-023-34232-6
https://www.ncbi.nlm.nih.gov/pubmed/37217545
https://www.proquest.com/docview/2817279451
https://www.proquest.com/docview/2818054083
https://pubmed.ncbi.nlm.nih.gov/PMC10203120
https://doaj.org/article/d1e31efe06444b08b07d3a48a5980a43
Volume 13
WOSCitedRecordID wos001065312000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BC1IviDeBsjISN4jqV2KbG4VWcOgq4iEtJ8tJnBLRzVbNLhL_nrGTXbo8L1wsxXYsa2ac-Sa2vwF4ilYgaCN56tE3pTKkNikRB2CU4oSntC5NPiSbUNOpns1McSnVVzgTNtADD4I7qJkXzDceXaeUJdUlVbVwUrvMaOpk5PmkylwKpgZWb24kM-MtGSr0QY-eKtwm4yINpHc8zbc8USTs_x3K_PWw5E87ptERHd-EGyOCJC-Hmd-CK767DdeHnJLf7oB_7095iDBfENcRHxkicEx8qEk4goGaOPNkbXEEMSvp_bxN3Wq5iPStJPzLx7rT-XgtqSNtR8Rr0s7x20MQTVZf-rvw8fjow6s36ZhLIa0yyZaoBZl7p0vnqiaEaCHjhs5KzqpAiOoMIrfcmKp2uS8VaqsxjLvcuIZ5qhrBxD3Y6RadfwCkYiKnXpmMci_rUrhGOuFclitZsrquE2BrudpqJBoP-S7ObNzwFtoOurCoCxt1YfMEnm3eOR9oNv7a-zCoa9MzUGTHCjQcOxqO_ZfhJLC_VrYd121vuQ6AzsiMJfBk04wrLojedX6xin10ALoah7g_2MZmJgIDaoWgNAG9ZTVbU91u6drPkdWbhT1hxmkCz9cG9mNef5bFw_8hi0ewx8PKoFnK-T7sLC9W_jFcq74u2_5iAlfVTMVST2D38GhavJvE5YblCS9CqbDcLd6eFJ--A0JFKoA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFAQv3IehwCLBE1jdyxcSQkCpGrWNIlGk8rSs7XWIaJwSJ6D-KX4jMz5ShaNvfeAx9mY1Xn9zeXbnA3iKKFC80NJ36Jt8TdQmKcYBmKVY5TjP0yRsyCaiwSA-PEyGa_CzOwtD2yo7m1gb6nya0TfyTRmTq010IF4ff_OJNYqqqx2FRgOLXXfyA1O26lV_C9_vMym33x-82_FbVgE_C7SYozw6dDZOrc0KSlaIeyIOUikyag1qE4xhwiTJchu6NEK5i0RIGya2EI5HhRIK570A6xrBznuwPuzvDz8tv-pQ3UyLpD2dw1W8WaGHpFNsUvnUbE_64YoHrIkC_hbd_rlJ87dKbe0At6_9b0t3Ha62oTZ70-jGDVhz5U241JBvntwC98GNJKXiL5ktmatbaeAi4I-c0V4VhOyRY51qMgzuWeUmY98u5tO6zy2jogdeG03a81slG5dMbbHxBI00w7A7-1rdho_n8ox3oFdOS3cPWCZUyF2UBFw6nafKFtoqa4Mw0qnI89wD0QHBZG1HdiIGOTL1zgAVmwY8BsFjavCY0IPny_8cN_1Izhz9lvC1HEm9xOsL09nItKbJ5MIp4QqHwanWKY9THuXK6tjiZNxq5cFGByvTGrjKnGLKgyfL22iaaOlt6aaLekxMGUGMU9xtwLyUREWYC2P07kG8AvMVUVfvlOMvdftzQcVzIbkHLzqNOJXr32tx_-zHeAyXdw7298xef7D7AK5IUlge-FJuQG8-W7iHcDH7Ph9Xs0etzjP4fN668gsMU47b
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFBAv3IehwCLBE7Wyl-01EkKUtKIqiiIOqW9mba9DROOUOAH1r_HrmPGRKhx96wOP3l2vdtffXJ7ZGYCniALFCy19h7LJ11TaJEU9AK0UqxzneRqHTbGJaDg0h4fxaAN-dndhKKyy44k1o85nGf0j70tDojbWgegXbVjEaLD36vibTxWkyNPaldNoIHLgTn6g-Va93B_gt34m5d7uxzdv_bbCgJ8FWixwbTp01qTWZgUZLlSHwgSpFBmlCbUx6jNhHGe5DV0a4R6KWEgbxrYQjkeFEgrnvQCbkcJ3e7C5szscvV_94SEfmhZxe1OHK9OvUFrSjTapfEq8J_1wTRrWRQP-pun-GbD5m9e2FoZ71_7nY7wOV1sVnL1uaOYGbLjyJlxqinKe3AL3wY0lmegvmC2Zq1Ns4IHgQ84ohgWhfORYR7IMlX5WuenEt8vFrM5_y8gZgm3jaXuvq2STkqkBm0yReTNUx7Ov1W34dC57vAO9cla6e8AyoULuojjg0uk8VbbQVlkbhJFORZ7nHogOFEnWZmqngiFHSR0xoEzSAClBICU1kJLQg-erd46bPCVnjt4hrK1GUo7xumE2Hycty0py4ZRwhUOlVeuUm5RHubLaWJyMW6082OoglrSMr0pO8eXBk1U3siw6elu62bIeY8hSMDjF3QbYq5WoCG1k1Oo9MGuQX1vqek85-VKnRRfkVBeSe7DdUcfpuv59FvfP3sZjuIwEkrzbHx48gCuSaJcHvpRb0FvMl-4hXMy-LybV_FFL_gw-nzep_AJWOZd1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seg2Link%3A+an+efficient+and+versatile+solution+for+semi-automatic+cell+segmentation+in+3D+image+stacks&rft.jtitle=Scientific+reports&rft.au=Wen%2C+Chentao&rft.au=Matsumoto%2C+Mami&rft.au=Sawada%2C+Masato&rft.au=Sawamoto%2C+Kazunobu&rft.date=2023-05-22&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-34232-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_34232_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon