Three layered sparse dictionary learning algorithm for enhancing the subject wise segregation of brain networks
Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of ano...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 14; číslo 1; s. 19070 - 18 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
17.08.2024
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject’s data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be
26
%
higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique. |
|---|---|
| AbstractList | Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject's data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be 26 % higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique.Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject's data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be 26 % higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique. Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject’s data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be 26% higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique. Abstract Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject’s data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be $$26\%$$ 26 % higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique. Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject’s data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be $$26\%$$ 26% higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique. Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject's data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique. Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject’s data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be 26 % higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique. |
| ArticleNumber | 19070 |
| Author | Khalid, Muhammad Usman Ali, Kamran Nauman, Malik Muhammad Akram, Sheeraz |
| Author_xml | – sequence: 1 givenname: Muhammad Usman surname: Khalid fullname: Khalid, Muhammad Usman organization: College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University – sequence: 2 givenname: Malik Muhammad surname: Nauman fullname: Nauman, Malik Muhammad organization: Faculty of Integrated Technologies, Universiti Brunei Darussalam – sequence: 3 givenname: Sheeraz surname: Akram fullname: Akram, Sheeraz organization: College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University – sequence: 4 givenname: Kamran surname: Ali fullname: Ali, Kamran email: kamran.ali@ubd.edu.bn organization: Faculty of Integrated Technologies, Universiti Brunei Darussalam |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39154133$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1DAUjVARLaU_wAJZYsMm4FeceIVQxaNSJTZlbflxk3jI2IOdtOrf45mU0nZRL2zr-pzj-zivq6MQA1TVW4I_Esy6T5mTRnY1prwWUvC2pi-qE4p5U1NG6dGD-3F1lvMGl9VQyYl8VR0zSRpOGDup4tWYANCkbyGBQ3mnUwbkvJ19DDrdogl0Cj4MSE9DTH4et6iPCUEYdbD7-DwCyovZgJ3RjS_kDEOCQe8FUOyRSdoHFGC-iel3flO97PWU4ezuPK1-fft6df6jvvz5_eL8y2VtS2JzzQmRkggqiems7mTbYuMoUGdYqcDJ3nSGiZ7ZsjNj-pZZZhosesolUGHZaXWx6rqoN2qX_LYUo6L26hCIaVA6zd5OoKxr24YxZ_tecOlwx10rBMaCAuGCtEXr86q1W8wWnIUwJz09En38EvyohnitSGkxLtJF4cOdQop_Fsiz2vpsYZp0gLhkxbDkmAtMRYG-fwLdxCWF0qs9ismGc8YL6t3DlO5z-TfYAqArwKaYc4L-HkKw2htIrQZSxUDqYCBFC6l7QrJ-PgyylOWn56lspebyTxgg_U_7GdZfZWbapg |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2025_114234 crossref_primary_10_1038_s41598_025_16456_w crossref_primary_10_1038_s41598_025_97651_7 crossref_primary_10_1109_ACCESS_2025_3608581 |
| Cites_doi | 10.1371/journal.pone.0094211 10.1109/TMI.2016.2631001 10.1016/j.dsp.2018.09.007 10.1006/nimg.2002.1067 10.1016/j.neuroimage.2004.12.031 10.1006/nimg.1998.0369 10.1002/hbm.24078 10.1016/j.neuroimage.2012.02.018 10.1002/hbm.25090 10.1073/pnas.0905267106 10.1109/TMI.2015.2418734 10.1109/TMI.2017.2699225 10.1109/TETCI.2021.3136587 10.1007/s10107-013-0701-9 10.1073/pnas.95.3.803 10.1016/j.neuroimage.2011.11.088 10.1007/978-3-642-22092-0_46 10.1109/TBME.2018.2806958 10.1016/j.jneumeth.2019.03.014 10.1198/016214506000000735 10.1016/j.neuroimage.2004.12.012 10.1016/j.sigpro.2018.07.018 10.1016/S0893-6080(00)00026-5 10.1109/TSP.2006.881199 10.1109/ACCESS.2023.3277543 10.1016/j.jfranklin.2017.07.003 10.1038/s41598-023-47420-1 10.1109/TMI.2021.3122226 10.1109/ACCESS.2020.2994276 10.1073/pnas.0903525106 10.1126/science.1174521 10.1016/j.neuroimage.2013.05.033 10.1109/ACCESS.2022.3194651 10.1002/hbm.1048 10.1109/ISBI.2016.7493501 10.1109/MLSP.2012.6349756 10.1109/ICASSP.2019.8683210 10.1109/ICASSP.2015.7178103 10.1109/ICASSP.2004.1327153 10.1109/DICTA.2012.6411709 10.1109/ICIP.2016.7532777 10.1109/EMBC.2012.6347406 10.1109/ISBI.2015.7163965 10.1016/j.jsb.2012.10.010 10.48550/arXiv.0912.3599 10.1109/ISBI.2014.6867805 10.1109/MLSP55214.2022.9943383 10.1515/9781400882250 10.1109/TMI.2010.2097275 10.1109/CVPR.2013.60 10.1109/ISBI.2013.6556468 10.1109/EMBC.2015.7319342 10.1111/j.2517-6161.1977.tb01603.x |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-69647-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_cd77533dcff649d084d7660062e14617 PMC11330533 39154133 10_1038_s41598_024_69647_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Universiti Brunei Darussalam grantid: UBD/RSCH/1.3/FICBF(b)/2022/019 funderid: http://dx.doi.org/10.13039/100009100 – fundername: Universiti Brunei Darussalam grantid: UBD/RSCH/1.3/FICBF(b)/2022/019 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-4119916291b8ca89770bd2e2db3419d9fb8b36f3cb363bbf73c3b506f249e26c3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001292901700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 18:45:00 EDT 2025 Tue Nov 04 02:05:40 EST 2025 Wed Oct 01 14:54:31 EDT 2025 Tue Oct 07 08:08:15 EDT 2025 Mon Jul 21 05:50:20 EDT 2025 Sat Nov 29 05:24:00 EST 2025 Tue Nov 18 20:44:41 EST 2025 Fri Feb 21 02:38:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-4119916291b8ca89770bd2e2db3419d9fb8b36f3cb363bbf73c3b506f249e26c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3093954434?pq-origsite=%requestingapplication% |
| PMID | 39154133 |
| PQID | 3093954434 |
| PQPubID | 2041939 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cd77533dcff649d084d7660062e14617 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11330533 proquest_miscellaneous_3094046026 proquest_journals_3093954434 pubmed_primary_39154133 crossref_primary_10_1038_s41598_024_69647_2 crossref_citationtrail_10_1038_s41598_024_69647_2 springer_journals_10_1038_s41598_024_69647_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-17 |
| PublicationDateYYYYMMDD | 2024-08-17 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Friman, Borga, Lundberg, Knutsson (CR13) 2002; 16 Smith (CR53) 2009; 106 Hyvärinen, Oja (CR6) 2000; 13 Vanasse (CR48) 2018; 39 Han (CR26) 2022; 41 Iqbal, Seghouane (CR23) 2018; 83 CR35 Daubechies (CR32) 2009; 106 CR34 CR33 CR2 Zou (CR50) 2006; 101 CR4 Zhuang, Yang, Cordes (CR7) 2020; 41 CR5 CR9 CR47 CR46 CR45 CR44 CR42 Erhardt, Allen, Wei, Eichele, Calhoun (CR54) 2011; 59 CR41 CR40 Zhao (CR36) 2015; 34 Seghouane, Iqbal (CR58) 2018; 153 Calhoun, Adali, Stevens, Kiehl, Pekar (CR30) 2005; 25 Boukouvalas, Levin-Schwartz, Calhoun, Adalı (CR57) 2018; 355 Aguirre, Zarahn, D’esposito (CR3) 1998; 8 Khalid, Khawaja, Nauman (CR28) 2023; 11 Morante, Kopsinis, Theodoridis, Protopapas (CR38) 2020; 8 CR17 CR16 CR15 Van Essen (CR55) 2012; 62 CR59 CR14 Calhoun, Adali, Pearlson, Pekar (CR20) 2001; 14 CR11 CR10 CR52 Khalid (CR25) 2022; 10 Lin, Wu, Liu, Lv, Yang (CR18) 2017; 36 McKeown (CR12) 1998; 95 Seghouane, Iqbal (CR43) 2017; 36 Bolte, Sabach, Teboulle (CR51) 2014; 146 Khalid, Nauman (CR19) 2023; 13 Wang, Xia, Jin, Yao, Long (CR31) 2014; 9 CR27 Varoquaux, Gramfort, Pedregosa, Michel, Thirion (CR21) 2011; 22 Liu (CR39) 2023; 7 Long, Liu, Gao, Chen, Yao (CR37) 2019; 323 CR22 Aharon, Elad, Bruckstein (CR8) 2006; 54 Hu (CR29) 2005; 25 Friston (CR1) 2009; 326 Fan, Li (CR49) 2001; 96 Barch (CR56) 2013; 80 Iqbal, Seghouane, Adali (CR24) 2018; 65 I Daubechies (69647_CR32) 2009; 106 VD Calhoun (69647_CR30) 2005; 25 69647_CR42 69647_CR41 69647_CR40 69647_CR47 69647_CR46 69647_CR45 M Aharon (69647_CR8) 2006; 54 69647_CR44 A-K Seghouane (69647_CR58) 2018; 153 H Zou (69647_CR50) 2006; 101 X Zhuang (69647_CR7) 2020; 41 69647_CR9 D Hu (69647_CR29) 2005; 25 MU Khalid (69647_CR28) 2023; 11 SM Smith (69647_CR53) 2009; 106 MU Khalid (69647_CR25) 2022; 10 A-K Seghouane (69647_CR43) 2017; 36 VD Calhoun (69647_CR20) 2001; 14 69647_CR35 69647_CR34 S Zhao (69647_CR36) 2015; 34 69647_CR33 Z Long (69647_CR37) 2019; 323 Z Wang (69647_CR31) 2014; 9 Z Boukouvalas (69647_CR57) 2018; 355 O Friman (69647_CR13) 2002; 16 A Iqbal (69647_CR24) 2018; 65 69647_CR22 TJ Vanasse (69647_CR48) 2018; 39 DC Van Essen (69647_CR55) 2012; 62 W Lin (69647_CR18) 2017; 36 M Morante (69647_CR38) 2020; 8 KJ Friston (69647_CR1) 2009; 326 69647_CR27 J Bolte (69647_CR51) 2014; 146 G Varoquaux (69647_CR21) 2011; 22 A Iqbal (69647_CR23) 2018; 83 A Hyvärinen (69647_CR6) 2000; 13 DM Barch (69647_CR56) 2013; 80 Y Han (69647_CR26) 2022; 41 69647_CR10 69647_CR52 69647_CR2 69647_CR14 69647_CR11 69647_CR17 69647_CR4 69647_CR16 69647_CR5 69647_CR15 69647_CR59 GK Aguirre (69647_CR3) 1998; 8 E Erhardt (69647_CR54) 2011; 59 H Liu (69647_CR39) 2023; 7 MJ McKeown (69647_CR12) 1998; 95 J Fan (69647_CR49) 2001; 96 MU Khalid (69647_CR19) 2023; 13 |
| References_xml | – volume: 9 start-page: e94211 year: 2014 ident: CR31 article-title: Temporally and spatially constrained ICA of fMRI data analysis publication-title: PLoS One doi: 10.1371/journal.pone.0094211 – ident: CR45 – ident: CR22 – volume: 36 start-page: 745 year: 2017 end-page: 756 ident: CR18 article-title: A CCA and ICA-based mixture model for identifying major depression disorder publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2631001 – volume: 83 start-page: 249 year: 2018 end-page: 260 ident: CR23 article-title: A dictionary learning algorithm for multi-subject fMRI analysis based on a hybrid concatenation scheme publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2018.09.007 – volume: 16 start-page: 454 year: 2002 end-page: 464 ident: CR13 article-title: Exploratory fMRI analysis by autocorrelation maximization publication-title: Neuroimage doi: 10.1006/nimg.2002.1067 – volume: 25 start-page: 746 year: 2005 end-page: 755 ident: CR29 article-title: Unified SPM-ICA for fMRI analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.031 – ident: CR4 – volume: 8 start-page: 360 year: 1998 end-page: 369 ident: CR3 article-title: The variability of human, BOLD hemodynamic responses publication-title: Neuroimage doi: 10.1006/nimg.1998.0369 – ident: CR16 – volume: 39 start-page: 3308 year: 2018 end-page: 3325 ident: CR48 article-title: BrainMap VBM: An environment for structural meta-analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24078 – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: CR55 article-title: The human connectome project: A data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 41 start-page: 3807 year: 2020 end-page: 3833 ident: CR7 article-title: A technical review of canonical correlation analysis for neuroscience applications publication-title: Human Brain Mapp. doi: 10.1002/hbm.25090 – ident: CR35 – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: CR53 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0905267106 – volume: 34 start-page: 2036 year: 2015 end-page: 2045 ident: CR36 article-title: Supervised dictionary learning for inferring concurrent brain networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2418734 – ident: CR42 – volume: 36 start-page: 1796 year: 2017 end-page: 1807 ident: CR43 article-title: Basis expansion approaches for regularized sequential dictionary learning algorithms with enforced sparsity for fMRI data analysis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2699225 – volume: 7 start-page: 308 year: 2023 end-page: 318 ident: CR39 article-title: ADCoC: Adaptive distribution modeling based collaborative clustering for disentangling disease heterogeneity from neuroimaging data publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2021.3136587 – ident: CR46 – volume: 146 start-page: 459 year: 2014 end-page: 494 ident: CR51 article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems publication-title: Math. Prog. doi: 10.1007/s10107-013-0701-9 – volume: 95 start-page: 803 year: 1998 end-page: 810 ident: CR12 article-title: Spatially independent activity patterns in functional MRI data during the stroop color-naming task publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.3.803 – ident: CR15 – volume: 59 start-page: 4160 year: 2011 end-page: 7 ident: CR54 article-title: SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.088 – ident: CR11 – volume: 22 start-page: 562 year: 2011 end-page: 573 ident: CR21 article-title: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity publication-title: Inf. Process Med. Imaging doi: 10.1007/978-3-642-22092-0_46 – ident: CR9 – volume: 65 start-page: 2519 year: 2018 end-page: 2528 ident: CR24 article-title: Shared and subject-specific dictionary learning (ShSSDL) algorithm for multisubject fMRI data analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2806958 – volume: 323 start-page: 1 year: 2019 end-page: 12 ident: CR37 article-title: A semi-blind online dictionary learning approach for fMRI data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.03.014 – ident: CR5 – volume: 101 start-page: 1418 year: 2006 end-page: 1429 ident: CR50 article-title: The adaptive Lasso and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 – volume: 25 start-page: 527 year: 2005 end-page: 538 ident: CR30 article-title: Semi-blind ICA of fMRI: A method for utilizing hypothesis-derived time courses in a spatial ICA analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.012 – volume: 96 start-page: 3085904 issue: 1348–1360 year: 2001 ident: CR49 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. – volume: 153 start-page: 300 year: 2018 end-page: 310 ident: CR58 article-title: Consistent adaptive sequential dictionary learning publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.07.018 – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: CR6 article-title: Independent component analysis: Algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – ident: CR47 – volume: 54 start-page: 4311 year: 2006 end-page: 4322 ident: CR8 article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – ident: CR14 – ident: CR2 – volume: 11 start-page: 50364 year: 2023 end-page: 50381 ident: CR28 article-title: Efficient blind source separation method for fMRI using autoencoder and spatiotemporal sparsity constraints publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3277543 – ident: CR10 – ident: CR33 – volume: 355 start-page: 1873 year: 2018 end-page: 1887 ident: CR57 article-title: Sparsity and independence: Balancing two objectives in optimization for source separation with application to fMRI analysis publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2017.07.003 – volume: 13 start-page: 20201 year: 2023 ident: CR19 article-title: A novel subject-wise dictionary learning approach using multi-subject fMRI spatial and temporal components publication-title: Sci. Rep. doi: 10.1038/s41598-023-47420-1 – ident: CR40 – ident: CR27 – volume: 41 start-page: 667 year: 2022 end-page: 679 ident: CR26 article-title: Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial sparsity constraint publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2021.3122226 – ident: CR44 – ident: CR52 – ident: CR17 – volume: 8 start-page: 90052 year: 2020 end-page: 90068 ident: CR38 article-title: Information assisted dictionary learning for fMRI data analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994276 – volume: 106 start-page: 10415 year: 2009 end-page: 10422 ident: CR32 article-title: Independent component analysis for brain fMRI does not select for independence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0903525106 – volume: 326 start-page: 399 year: 2009 end-page: 403 ident: CR1 article-title: Modalities, modes, and models in functional neuroimaging publication-title: Science doi: 10.1126/science.1174521 – ident: CR34 – volume: 80 start-page: 169 year: 2013 end-page: 189 ident: CR56 article-title: Function in the human connectome: Task-fMRI and individual differences in behavior publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.033 – ident: CR59 – ident: CR41 – volume: 10 start-page: 83379 year: 2022 end-page: 83397 ident: CR25 article-title: Sparse group bases for multisubject fMRI data publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3194651 – volume: 14 start-page: 140 year: 2001 end-page: 151 ident: CR20 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – ident: 69647_CR22 doi: 10.1109/ISBI.2016.7493501 – ident: 69647_CR41 – volume: 9 start-page: e94211 year: 2014 ident: 69647_CR31 publication-title: PLoS One doi: 10.1371/journal.pone.0094211 – volume: 14 start-page: 140 year: 2001 ident: 69647_CR20 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – ident: 69647_CR34 doi: 10.1109/MLSP.2012.6349756 – volume: 36 start-page: 1796 year: 2017 ident: 69647_CR43 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2699225 – volume: 146 start-page: 459 year: 2014 ident: 69647_CR51 publication-title: Math. Prog. doi: 10.1007/s10107-013-0701-9 – volume: 101 start-page: 1418 year: 2006 ident: 69647_CR50 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 – ident: 69647_CR42 doi: 10.1109/ICASSP.2019.8683210 – volume: 106 start-page: 13040 year: 2009 ident: 69647_CR53 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0905267106 – volume: 11 start-page: 50364 year: 2023 ident: 69647_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3277543 – volume: 355 start-page: 1873 year: 2018 ident: 69647_CR57 publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2017.07.003 – volume: 25 start-page: 746 year: 2005 ident: 69647_CR29 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.031 – volume: 10 start-page: 83379 year: 2022 ident: 69647_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3194651 – ident: 69647_CR10 doi: 10.1109/ICASSP.2015.7178103 – volume: 96 start-page: 3085904 issue: 1348–1360 year: 2001 ident: 69647_CR49 publication-title: J. Am. Stat. Assoc. – ident: 69647_CR5 doi: 10.1109/ICASSP.2004.1327153 – ident: 69647_CR14 doi: 10.1109/DICTA.2012.6411709 – volume: 8 start-page: 360 year: 1998 ident: 69647_CR3 publication-title: Neuroimage doi: 10.1006/nimg.1998.0369 – ident: 69647_CR35 doi: 10.1109/ICIP.2016.7532777 – ident: 69647_CR16 doi: 10.1109/EMBC.2012.6347406 – volume: 25 start-page: 527 year: 2005 ident: 69647_CR30 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.012 – ident: 69647_CR11 doi: 10.1109/ISBI.2015.7163965 – ident: 69647_CR59 – volume: 54 start-page: 4311 year: 2006 ident: 69647_CR8 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – volume: 41 start-page: 3807 year: 2020 ident: 69647_CR7 publication-title: Human Brain Mapp. doi: 10.1002/hbm.25090 – volume: 41 start-page: 667 year: 2022 ident: 69647_CR26 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2021.3122226 – volume: 153 start-page: 300 year: 2018 ident: 69647_CR58 publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.07.018 – volume: 7 start-page: 308 year: 2023 ident: 69647_CR39 publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2021.3136587 – volume: 62 start-page: 2222 year: 2012 ident: 69647_CR55 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – ident: 69647_CR46 doi: 10.1016/j.jsb.2012.10.010 – volume: 39 start-page: 3308 year: 2018 ident: 69647_CR48 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24078 – volume: 34 start-page: 2036 year: 2015 ident: 69647_CR36 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2418734 – volume: 8 start-page: 90052 year: 2020 ident: 69647_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994276 – volume: 323 start-page: 1 year: 2019 ident: 69647_CR37 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.03.014 – ident: 69647_CR52 doi: 10.48550/arXiv.0912.3599 – ident: 69647_CR9 doi: 10.1109/ISBI.2014.6867805 – volume: 59 start-page: 4160 year: 2011 ident: 69647_CR54 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.088 – volume: 95 start-page: 803 year: 1998 ident: 69647_CR12 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.3.803 – volume: 80 start-page: 169 year: 2013 ident: 69647_CR56 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.033 – ident: 69647_CR27 – volume: 13 start-page: 20201 year: 2023 ident: 69647_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-023-47420-1 – ident: 69647_CR2 doi: 10.1109/MLSP55214.2022.9943383 – volume: 13 start-page: 411 year: 2000 ident: 69647_CR6 publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 83 start-page: 249 year: 2018 ident: 69647_CR23 publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2018.09.007 – ident: 69647_CR45 doi: 10.1515/9781400882250 – ident: 69647_CR33 doi: 10.1109/TMI.2010.2097275 – ident: 69647_CR40 doi: 10.1109/CVPR.2013.60 – ident: 69647_CR15 doi: 10.1109/ISBI.2013.6556468 – volume: 65 start-page: 2519 year: 2018 ident: 69647_CR24 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2806958 – ident: 69647_CR17 doi: 10.1109/EMBC.2015.7319342 – volume: 36 start-page: 745 year: 2017 ident: 69647_CR18 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2631001 – ident: 69647_CR47 – ident: 69647_CR44 doi: 10.1111/j.2517-6161.1977.tb01603.x – ident: 69647_CR4 – volume: 106 start-page: 10415 year: 2009 ident: 69647_CR32 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0903525106 – volume: 22 start-page: 562 year: 2011 ident: 69647_CR21 publication-title: Inf. Process Med. Imaging doi: 10.1007/978-3-642-22092-0_46 – volume: 326 start-page: 399 year: 2009 ident: 69647_CR1 publication-title: Science doi: 10.1126/science.1174521 – volume: 16 start-page: 454 year: 2002 ident: 69647_CR13 publication-title: Neuroimage doi: 10.1006/nimg.2002.1067 |
| SSID | ssj0000529419 |
| Score | 2.455987 |
| Snippet | Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic... Abstract Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 19070 |
| SubjectTerms | 631/114 631/114/116 631/114/1564 631/114/2415 639/705 Algorithms Brain - diagnostic imaging Brain - physiology Brain Mapping - methods Decomposition Dictionaries Functional magnetic resonance imaging Humanities and Social Sciences Humans Image Processing, Computer-Assisted - methods Information processing Learning Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods multidisciplinary Nerve Net - diagnostic imaging Nerve Net - physiology Neuroimaging Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQCSQaxJvAgYxEB9EltuNHCYgTBTpRHOg6y8_dSEtySnZB--_xONnllmdDk8KxJWse8Tgz830IvZCRCxGCKp1yTZki8FhK61gpGhulYcq5zBLx-YM4O5MXF-rjFaovqAmb4IEnwZ04L1JETb2LkTPlK8m84Bxa_wJQUuc-8kqoK5epCdWbKFaruUumovJkTCcVdJMRVnLovizJwUmUAft_F2X-Wiz5U8Y0H0Snt9GtOYLEr6ed30HXQncX3Zg4Jbf3UH-etBPwymyBhROnD8YwBuzb3L9ghi2eeSIW2KwW_dCul19wClxx6JYAvZHGU0iIx42FHzT4W5sWjyFdyhdZhbiP2AKrBO6m-vHxPvp0-u787ftyZlUoXcPqdclqqHbiRNVWOiNT_FdZTwLxFqDdvIpWWsojdelJrY2COmqbisd0UQuEO_oAHXV9Fx4hDIJvhDKBh8hI7WUlhfNGRM-DMqwpUL2TsHYz5DgwX6x0Tn1TqSet6KQVnbWiSYFe7tdcToAbf539BhS3nwlg2XkgmZCeTUj_y4QKdLxTu549eNSQIVYADsgK9Hz_OvkeJFRMF_pNnsMgsUx4gR5OVrLfCQDvpwCBFkge2M_BVg_fdO0y43vXaRm0SBfo1c7Ufuzrz7J4_D9k8QTdJOAjuTbpGB2th014iq67r-t2HJ5lJ_sOMx8pZw priority: 102 providerName: Directory of Open Access Journals |
| Title | Three layered sparse dictionary learning algorithm for enhancing the subject wise segregation of brain networks |
| URI | https://link.springer.com/article/10.1038/s41598-024-69647-2 https://www.ncbi.nlm.nih.gov/pubmed/39154133 https://www.proquest.com/docview/3093954434 https://www.proquest.com/docview/3094046026 https://pubmed.ncbi.nlm.nih.gov/PMC11330533 https://doaj.org/article/cd77533dcff649d084d7660062e14617 |
| Volume | 14 |
| WOSCitedRecordID | wos001292901700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iK0i8jOtYYFRG4g2iJY5rO0-IoU0gsapCA5WnKL61lUoymhbUf4-Pk3Yql73w4ofErpyeY_v4XL4P4KV0XAhr81jnehB7C9zFUmkWi4FysmS51oEl4stHMRzK8TgfdQ63pkur3OyJYaM2tUYf-QlG7HIEa2Nvrr7HyBqF0dWOQmMPet6ySTGl64KOtj4WjGKxNO9qZZJMnjT-vMKaMspijjWYMd05jwJs_99szT9TJn-Lm4bj6Pze_37IfTjoDFHyttWcB3DLVg_hTktNuX4E9aUXsiXzco1knsTvO4vGEjMLZRDlYk06uokJKecT__PL6Tfi7V9iqykiePjn3rIkzUqhn4f8nPnBjfV3-0nQBFI7opCcglRtGnrzGD6fn12-ex935AyxHrB0GbMUk6Y4zVMldSm9GZkoQy01ChHiTO6UVBl3mfZtppQTmc7UIOHO3_cs5To7hP2qruwREJoIDBaWllvHaGpkIoU2pXCG27xkgwjSjYgK3SGXI4HGvAgR9EwWrVgLL9YiiLWgEbzajrlqcTtu7H2Kkt_2RMzt8KBeTIpuCRfaCH-3y4x2jrPcJJIZwTkWoVokRxcRHG8EXnQbQVNcSzuCF9vXfgljXKasbL0KfRjGpymP4EmrZtuZIH6_tzOyCOSOAu5MdfdNNZsGmPDUD8NK6wheb3T1el7__i-e3vwZz-AuxeWDqMDiGPaXi5V9Drf1j-WsWfRhT4xFaGUfeqdnw9GnfnBz9MPKxFb4tjf6cDH6-gtUvj96 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAcGFfQkUMBKcIGrieGzngBBb1arDqIeCenPjbWakISnJDNX8KX4jfk4y1bD01gOXHBI7spPvPT_7LR9CL4RjnFubxzrXg9hb4C4WStOYD5QTBc21DiwRX4d8NBJHR_nBBvrZ58JAWGWvE4OiNpWGM_Jt8NjlUKyNvj35HgNrFHhXewqNFhb7dnnqt2zNm72P_v--JGTn0-GH3bhjFYj1gKbzmKYQ7cNIniqhC-Htn0QZYolRUNrM5E4JlTGXaX_NlHI805kaJMz5jYolTGf-vZfQZQqVxSBUkBysznTAa-bf0eXmJJnYbvz6CDlshMYMcj5jsrb-BZqAv9m2f4Zo_uanDcvfzs3_7cPdQjc6Qxu_ayXjNtqw5R10taXeXN5F1aEHscWzYglkpdjr1bqx2ExDmkdRL3FHpzHGxWzspzOffMPevse2nECFEn_fW864WSg4x8KnU9-5sePajgPSceWwAvINXLZh9s099OVCZnsfbZZVaR8iTBIOztDCMusoSY1IBNem4M4wmxd0EKG0h4TUXWV2IAiZyRAhkAnZwkh6GMkAI0ki9GrV56StS3Ju6_eAtFVLqCkeblT1WHYqSmrD_d41M9o5RnOTCGo4Y5Bka4H8nUdoqweY7BRdI8_QFaHnq8deRYHfqShttQhtKPjfCYvQgxbWq5EAP4G3o7IIiTXArw11_Uk5nYQy6KnvBpnkEXrdy8bZuP79LR6dP41n6Nru4eehHO6N9h-j6wREFyog8y20Oa8X9gm6on_Mp039NMg-RscXLTO_AMOtlI4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKSAu7IuhwCDBCazYY2dmfEAIKBVRS5RDQe3JeLYkUrCLnVDlr_HrmOclVVh664GLD_aMNWN_782becsH8FxYxrkxia8SNfCdBW59IVXs84G0IosTpWqWiC8HfDQSR0fJeAt-drkwGFbZ6cRaUetC4Rl5Hz12CRZri_u2DYsY7-69OfnuI4MUelo7Oo0GIvtmdeq2b9Xr4a771y8o3ftw-P6j3zIM-GoQhws_DjHyh9EklEJlwtlCgdTUUC2xzJlOrBQyYjZS7hpJaXmkIjkImHWbFkOZitx7L8G2M8lj2oPt8fDT-Hh9woM-NPeWNlMniES_cqslZrTR2GeYAerTjdWwJg34m6X7Z8Dmb17bejHcu_E_f8abcL01wcnbRmZuwZbJb8OVhpRzdQeKQwdvQ-bZCmlMidO4ZWWIntUJIFm5Ii3RxoRk84mbzmL6jTjLn5h8irVL3H1nU5NqKfGEi5zOXOfKTEozqWWAFJZIpOUgeROAX92Fzxcy23vQy4vcPABCA45u0swwY2MaahEIrnTGrWYmyeKBB2EHj1S1NduROmSe1rEDkUgbSKUOUmkNqZR68HLd56SpWHJu63eIunVLrDZe3yjKSdoqr1Rp7na1kVbWsjjRgYg1ZwzTbw3SwnMPdjqwpa0KrNIzpHnwbP3YKS_0SGW5KZZ1mxg985R5cL-B-HokyFzgLKzIA7EB_o2hbj7JZ9O6QHroumGOuQevOjk5G9e_v8XD86fxFK46UUkPhqP9R3CNohRjaWS-A71FuTSP4bL6sZhV5ZNWERD4etFC8wsCTZ7X |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+layered+sparse+dictionary+learning+algorithm+for+enhancing+the+subject+wise+segregation+of+brain+networks&rft.jtitle=Scientific+reports&rft.au=Khalid%2C+Muhammad+Usman&rft.au=Nauman%2C+Malik+Muhammad&rft.au=Akram%2C+Sheeraz&rft.au=Ali%2C+Kamran&rft.date=2024-08-17&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-69647-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_69647_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |