Three layered sparse dictionary learning algorithm for enhancing the subject wise segregation of brain networks

Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of ano...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 19070 - 18
Hlavní autoři: Khalid, Muhammad Usman, Nauman, Malik Muhammad, Akram, Sheeraz, Ali, Kamran
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 17.08.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject’s data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be 26 % higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique.
AbstractList Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject's data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be 26 % higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique.Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject's data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be 26 % higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique.
Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject’s data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be 26% higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique.
Abstract Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject’s data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be $$26\%$$ 26 % higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique.
Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject’s data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be $$26\%$$ 26% higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique.
Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject's data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique.
Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic resonance imaging (fMRI) data analysis. However, ICA to higher and DL to lower extent may suffer from performance degradation by the presence of anomalous observations in the recovered time courses (TCs) and high overlaps among spatial maps (SMs). This paper addressed both problems using a novel three-layered sparse DL (TLSDL) algorithm that incorporated prior information in the dictionary update process and recovered full-rank outlier-free TCs from highly corrupted measurements. The associated sequential DL model involved factorizing each subject’s data into a multi-subject (MS) dictionary and MS sparse code while imposing a low-rank and a sparse matrix decomposition restriction on the dictionary matrix. It is derived by solving three layers of feature extraction and component estimation. The first and second layers captured brain regions with low and moderate spatial overlaps, respectively. The third layer that segregated regions with significant spatial overlaps solved a sequence of vector decomposition problems using the proximal alternating linearized minimization (PALM) method and solved a decomposition restriction using the alternating directions method (ALM). It learned outlier-free dynamics that integrate spatiotemporal diversities across brains and external information. It differs from existing DL methods owing to its unique optimization model, which incorporates prior knowledge, subject-wise/multi-subject representation matrices, and outlier handling. The TLSDL algorithm was compared with existing dictionary learning algorithms using experimental and synthetic fMRI datasets to verify its performance. Overall, the mean correlation value was found to be 26 % higher for the TLSDL than for the state-of-the-art subject-wise sequential DL (swsDL) technique.
ArticleNumber 19070
Author Khalid, Muhammad Usman
Ali, Kamran
Nauman, Malik Muhammad
Akram, Sheeraz
Author_xml – sequence: 1
  givenname: Muhammad Usman
  surname: Khalid
  fullname: Khalid, Muhammad Usman
  organization: College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University
– sequence: 2
  givenname: Malik Muhammad
  surname: Nauman
  fullname: Nauman, Malik Muhammad
  organization: Faculty of Integrated Technologies, Universiti Brunei Darussalam
– sequence: 3
  givenname: Sheeraz
  surname: Akram
  fullname: Akram, Sheeraz
  organization: College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University
– sequence: 4
  givenname: Kamran
  surname: Ali
  fullname: Ali, Kamran
  email: kamran.ali@ubd.edu.bn
  organization: Faculty of Integrated Technologies, Universiti Brunei Darussalam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39154133$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARLaU_wAJZYsMm4FeceIVQxaNSJTZlbflxk3jI2IOdtOrf45mU0nZRL2zr-pzj-zivq6MQA1TVW4I_Esy6T5mTRnY1prwWUvC2pi-qE4p5U1NG6dGD-3F1lvMGl9VQyYl8VR0zSRpOGDup4tWYANCkbyGBQ3mnUwbkvJ19DDrdogl0Cj4MSE9DTH4et6iPCUEYdbD7-DwCyovZgJ3RjS_kDEOCQe8FUOyRSdoHFGC-iel3flO97PWU4ezuPK1-fft6df6jvvz5_eL8y2VtS2JzzQmRkggqiems7mTbYuMoUGdYqcDJ3nSGiZ7ZsjNj-pZZZhosesolUGHZaXWx6rqoN2qX_LYUo6L26hCIaVA6zd5OoKxr24YxZ_tecOlwx10rBMaCAuGCtEXr86q1W8wWnIUwJz09En38EvyohnitSGkxLtJF4cOdQop_Fsiz2vpsYZp0gLhkxbDkmAtMRYG-fwLdxCWF0qs9ismGc8YL6t3DlO5z-TfYAqArwKaYc4L-HkKw2htIrQZSxUDqYCBFC6l7QrJ-PgyylOWn56lspebyTxgg_U_7GdZfZWbapg
CitedBy_id crossref_primary_10_1016_j_knosys_2025_114234
crossref_primary_10_1038_s41598_025_16456_w
crossref_primary_10_1038_s41598_025_97651_7
crossref_primary_10_1109_ACCESS_2025_3608581
Cites_doi 10.1371/journal.pone.0094211
10.1109/TMI.2016.2631001
10.1016/j.dsp.2018.09.007
10.1006/nimg.2002.1067
10.1016/j.neuroimage.2004.12.031
10.1006/nimg.1998.0369
10.1002/hbm.24078
10.1016/j.neuroimage.2012.02.018
10.1002/hbm.25090
10.1073/pnas.0905267106
10.1109/TMI.2015.2418734
10.1109/TMI.2017.2699225
10.1109/TETCI.2021.3136587
10.1007/s10107-013-0701-9
10.1073/pnas.95.3.803
10.1016/j.neuroimage.2011.11.088
10.1007/978-3-642-22092-0_46
10.1109/TBME.2018.2806958
10.1016/j.jneumeth.2019.03.014
10.1198/016214506000000735
10.1016/j.neuroimage.2004.12.012
10.1016/j.sigpro.2018.07.018
10.1016/S0893-6080(00)00026-5
10.1109/TSP.2006.881199
10.1109/ACCESS.2023.3277543
10.1016/j.jfranklin.2017.07.003
10.1038/s41598-023-47420-1
10.1109/TMI.2021.3122226
10.1109/ACCESS.2020.2994276
10.1073/pnas.0903525106
10.1126/science.1174521
10.1016/j.neuroimage.2013.05.033
10.1109/ACCESS.2022.3194651
10.1002/hbm.1048
10.1109/ISBI.2016.7493501
10.1109/MLSP.2012.6349756
10.1109/ICASSP.2019.8683210
10.1109/ICASSP.2015.7178103
10.1109/ICASSP.2004.1327153
10.1109/DICTA.2012.6411709
10.1109/ICIP.2016.7532777
10.1109/EMBC.2012.6347406
10.1109/ISBI.2015.7163965
10.1016/j.jsb.2012.10.010
10.48550/arXiv.0912.3599
10.1109/ISBI.2014.6867805
10.1109/MLSP55214.2022.9943383
10.1515/9781400882250
10.1109/TMI.2010.2097275
10.1109/CVPR.2013.60
10.1109/ISBI.2013.6556468
10.1109/EMBC.2015.7319342
10.1111/j.2517-6161.1977.tb01603.x
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-69647-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_cd77533dcff649d084d7660062e14617
PMC11330533
39154133
10_1038_s41598_024_69647_2
Genre Journal Article
GrantInformation_xml – fundername: Universiti Brunei Darussalam
  grantid: UBD/RSCH/1.3/FICBF(b)/2022/019
  funderid: http://dx.doi.org/10.13039/100009100
– fundername: Universiti Brunei Darussalam
  grantid: UBD/RSCH/1.3/FICBF(b)/2022/019
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-4119916291b8ca89770bd2e2db3419d9fb8b36f3cb363bbf73c3b506f249e26c3
IEDL.DBID M2P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001292901700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:45:00 EDT 2025
Tue Nov 04 02:05:40 EST 2025
Wed Oct 01 14:54:31 EDT 2025
Tue Oct 07 08:08:15 EDT 2025
Mon Jul 21 05:50:20 EDT 2025
Sat Nov 29 05:24:00 EST 2025
Tue Nov 18 20:44:41 EST 2025
Fri Feb 21 02:38:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-4119916291b8ca89770bd2e2db3419d9fb8b36f3cb363bbf73c3b506f249e26c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3093954434?pq-origsite=%requestingapplication%
PMID 39154133
PQID 3093954434
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_cd77533dcff649d084d7660062e14617
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11330533
proquest_miscellaneous_3094046026
proquest_journals_3093954434
pubmed_primary_39154133
crossref_primary_10_1038_s41598_024_69647_2
crossref_citationtrail_10_1038_s41598_024_69647_2
springer_journals_10_1038_s41598_024_69647_2
PublicationCentury 2000
PublicationDate 2024-08-17
PublicationDateYYYYMMDD 2024-08-17
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Friman, Borga, Lundberg, Knutsson (CR13) 2002; 16
Smith (CR53) 2009; 106
Hyvärinen, Oja (CR6) 2000; 13
Vanasse (CR48) 2018; 39
Han (CR26) 2022; 41
Iqbal, Seghouane (CR23) 2018; 83
CR35
Daubechies (CR32) 2009; 106
CR34
CR33
CR2
Zou (CR50) 2006; 101
CR4
Zhuang, Yang, Cordes (CR7) 2020; 41
CR5
CR9
CR47
CR46
CR45
CR44
CR42
Erhardt, Allen, Wei, Eichele, Calhoun (CR54) 2011; 59
CR41
CR40
Zhao (CR36) 2015; 34
Seghouane, Iqbal (CR58) 2018; 153
Calhoun, Adali, Stevens, Kiehl, Pekar (CR30) 2005; 25
Boukouvalas, Levin-Schwartz, Calhoun, Adalı (CR57) 2018; 355
Aguirre, Zarahn, D’esposito (CR3) 1998; 8
Khalid, Khawaja, Nauman (CR28) 2023; 11
Morante, Kopsinis, Theodoridis, Protopapas (CR38) 2020; 8
CR17
CR16
CR15
Van Essen (CR55) 2012; 62
CR59
CR14
Calhoun, Adali, Pearlson, Pekar (CR20) 2001; 14
CR11
CR10
CR52
Khalid (CR25) 2022; 10
Lin, Wu, Liu, Lv, Yang (CR18) 2017; 36
McKeown (CR12) 1998; 95
Seghouane, Iqbal (CR43) 2017; 36
Bolte, Sabach, Teboulle (CR51) 2014; 146
Khalid, Nauman (CR19) 2023; 13
Wang, Xia, Jin, Yao, Long (CR31) 2014; 9
CR27
Varoquaux, Gramfort, Pedregosa, Michel, Thirion (CR21) 2011; 22
Liu (CR39) 2023; 7
Long, Liu, Gao, Chen, Yao (CR37) 2019; 323
CR22
Aharon, Elad, Bruckstein (CR8) 2006; 54
Hu (CR29) 2005; 25
Friston (CR1) 2009; 326
Fan, Li (CR49) 2001; 96
Barch (CR56) 2013; 80
Iqbal, Seghouane, Adali (CR24) 2018; 65
I Daubechies (69647_CR32) 2009; 106
VD Calhoun (69647_CR30) 2005; 25
69647_CR42
69647_CR41
69647_CR40
69647_CR47
69647_CR46
69647_CR45
M Aharon (69647_CR8) 2006; 54
69647_CR44
A-K Seghouane (69647_CR58) 2018; 153
H Zou (69647_CR50) 2006; 101
X Zhuang (69647_CR7) 2020; 41
69647_CR9
D Hu (69647_CR29) 2005; 25
MU Khalid (69647_CR28) 2023; 11
SM Smith (69647_CR53) 2009; 106
MU Khalid (69647_CR25) 2022; 10
A-K Seghouane (69647_CR43) 2017; 36
VD Calhoun (69647_CR20) 2001; 14
69647_CR35
69647_CR34
S Zhao (69647_CR36) 2015; 34
69647_CR33
Z Long (69647_CR37) 2019; 323
Z Wang (69647_CR31) 2014; 9
Z Boukouvalas (69647_CR57) 2018; 355
O Friman (69647_CR13) 2002; 16
A Iqbal (69647_CR24) 2018; 65
69647_CR22
TJ Vanasse (69647_CR48) 2018; 39
DC Van Essen (69647_CR55) 2012; 62
W Lin (69647_CR18) 2017; 36
M Morante (69647_CR38) 2020; 8
KJ Friston (69647_CR1) 2009; 326
69647_CR27
J Bolte (69647_CR51) 2014; 146
G Varoquaux (69647_CR21) 2011; 22
A Iqbal (69647_CR23) 2018; 83
A Hyvärinen (69647_CR6) 2000; 13
DM Barch (69647_CR56) 2013; 80
Y Han (69647_CR26) 2022; 41
69647_CR10
69647_CR52
69647_CR2
69647_CR14
69647_CR11
69647_CR17
69647_CR4
69647_CR16
69647_CR5
69647_CR15
69647_CR59
GK Aguirre (69647_CR3) 1998; 8
E Erhardt (69647_CR54) 2011; 59
H Liu (69647_CR39) 2023; 7
MJ McKeown (69647_CR12) 1998; 95
J Fan (69647_CR49) 2001; 96
MU Khalid (69647_CR19) 2023; 13
References_xml – volume: 9
  start-page: e94211
  year: 2014
  ident: CR31
  article-title: Temporally and spatially constrained ICA of fMRI data analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094211
– ident: CR45
– ident: CR22
– volume: 36
  start-page: 745
  year: 2017
  end-page: 756
  ident: CR18
  article-title: A CCA and ICA-based mixture model for identifying major depression disorder
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2631001
– volume: 83
  start-page: 249
  year: 2018
  end-page: 260
  ident: CR23
  article-title: A dictionary learning algorithm for multi-subject fMRI analysis based on a hybrid concatenation scheme
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2018.09.007
– volume: 16
  start-page: 454
  year: 2002
  end-page: 464
  ident: CR13
  article-title: Exploratory fMRI analysis by autocorrelation maximization
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1067
– volume: 25
  start-page: 746
  year: 2005
  end-page: 755
  ident: CR29
  article-title: Unified SPM-ICA for fMRI analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.031
– ident: CR4
– volume: 8
  start-page: 360
  year: 1998
  end-page: 369
  ident: CR3
  article-title: The variability of human, BOLD hemodynamic responses
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0369
– ident: CR16
– volume: 39
  start-page: 3308
  year: 2018
  end-page: 3325
  ident: CR48
  article-title: BrainMap VBM: An environment for structural meta-analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24078
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: CR55
  article-title: The human connectome project: A data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 41
  start-page: 3807
  year: 2020
  end-page: 3833
  ident: CR7
  article-title: A technical review of canonical correlation analysis for neuroscience applications
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.25090
– ident: CR35
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: CR53
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0905267106
– volume: 34
  start-page: 2036
  year: 2015
  end-page: 2045
  ident: CR36
  article-title: Supervised dictionary learning for inferring concurrent brain networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2418734
– ident: CR42
– volume: 36
  start-page: 1796
  year: 2017
  end-page: 1807
  ident: CR43
  article-title: Basis expansion approaches for regularized sequential dictionary learning algorithms with enforced sparsity for fMRI data analysis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2699225
– volume: 7
  start-page: 308
  year: 2023
  end-page: 318
  ident: CR39
  article-title: ADCoC: Adaptive distribution modeling based collaborative clustering for disentangling disease heterogeneity from neuroimaging data
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2021.3136587
– ident: CR46
– volume: 146
  start-page: 459
  year: 2014
  end-page: 494
  ident: CR51
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math. Prog.
  doi: 10.1007/s10107-013-0701-9
– volume: 95
  start-page: 803
  year: 1998
  end-page: 810
  ident: CR12
  article-title: Spatially independent activity patterns in functional MRI data during the stroop color-naming task
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.3.803
– ident: CR15
– volume: 59
  start-page: 4160
  year: 2011
  end-page: 7
  ident: CR54
  article-title: SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.088
– ident: CR11
– volume: 22
  start-page: 562
  year: 2011
  end-page: 573
  ident: CR21
  article-title: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity
  publication-title: Inf. Process Med. Imaging
  doi: 10.1007/978-3-642-22092-0_46
– ident: CR9
– volume: 65
  start-page: 2519
  year: 2018
  end-page: 2528
  ident: CR24
  article-title: Shared and subject-specific dictionary learning (ShSSDL) algorithm for multisubject fMRI data analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2806958
– volume: 323
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR37
  article-title: A semi-blind online dictionary learning approach for fMRI data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.03.014
– ident: CR5
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: CR50
  article-title: The adaptive Lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 25
  start-page: 527
  year: 2005
  end-page: 538
  ident: CR30
  article-title: Semi-blind ICA of fMRI: A method for utilizing hypothesis-derived time courses in a spatial ICA analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.012
– volume: 96
  start-page: 3085904
  issue: 1348–1360
  year: 2001
  ident: CR49
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– volume: 153
  start-page: 300
  year: 2018
  end-page: 310
  ident: CR58
  article-title: Consistent adaptive sequential dictionary learning
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.07.018
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: CR6
  article-title: Independent component analysis: Algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– ident: CR47
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: CR8
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– ident: CR14
– ident: CR2
– volume: 11
  start-page: 50364
  year: 2023
  end-page: 50381
  ident: CR28
  article-title: Efficient blind source separation method for fMRI using autoencoder and spatiotemporal sparsity constraints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3277543
– ident: CR10
– ident: CR33
– volume: 355
  start-page: 1873
  year: 2018
  end-page: 1887
  ident: CR57
  article-title: Sparsity and independence: Balancing two objectives in optimization for source separation with application to fMRI analysis
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2017.07.003
– volume: 13
  start-page: 20201
  year: 2023
  ident: CR19
  article-title: A novel subject-wise dictionary learning approach using multi-subject fMRI spatial and temporal components
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-47420-1
– ident: CR40
– ident: CR27
– volume: 41
  start-page: 667
  year: 2022
  end-page: 679
  ident: CR26
  article-title: Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial sparsity constraint
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2021.3122226
– ident: CR44
– ident: CR52
– ident: CR17
– volume: 8
  start-page: 90052
  year: 2020
  end-page: 90068
  ident: CR38
  article-title: Information assisted dictionary learning for fMRI data analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994276
– volume: 106
  start-page: 10415
  year: 2009
  end-page: 10422
  ident: CR32
  article-title: Independent component analysis for brain fMRI does not select for independence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0903525106
– volume: 326
  start-page: 399
  year: 2009
  end-page: 403
  ident: CR1
  article-title: Modalities, modes, and models in functional neuroimaging
  publication-title: Science
  doi: 10.1126/science.1174521
– ident: CR34
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: CR56
  article-title: Function in the human connectome: Task-fMRI and individual differences in behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: CR59
– ident: CR41
– volume: 10
  start-page: 83379
  year: 2022
  end-page: 83397
  ident: CR25
  article-title: Sparse group bases for multisubject fMRI data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3194651
– volume: 14
  start-page: 140
  year: 2001
  end-page: 151
  ident: CR20
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1048
– ident: 69647_CR22
  doi: 10.1109/ISBI.2016.7493501
– ident: 69647_CR41
– volume: 9
  start-page: e94211
  year: 2014
  ident: 69647_CR31
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094211
– volume: 14
  start-page: 140
  year: 2001
  ident: 69647_CR20
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1048
– ident: 69647_CR34
  doi: 10.1109/MLSP.2012.6349756
– volume: 36
  start-page: 1796
  year: 2017
  ident: 69647_CR43
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2699225
– volume: 146
  start-page: 459
  year: 2014
  ident: 69647_CR51
  publication-title: Math. Prog.
  doi: 10.1007/s10107-013-0701-9
– volume: 101
  start-page: 1418
  year: 2006
  ident: 69647_CR50
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– ident: 69647_CR42
  doi: 10.1109/ICASSP.2019.8683210
– volume: 106
  start-page: 13040
  year: 2009
  ident: 69647_CR53
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0905267106
– volume: 11
  start-page: 50364
  year: 2023
  ident: 69647_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3277543
– volume: 355
  start-page: 1873
  year: 2018
  ident: 69647_CR57
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2017.07.003
– volume: 25
  start-page: 746
  year: 2005
  ident: 69647_CR29
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.031
– volume: 10
  start-page: 83379
  year: 2022
  ident: 69647_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3194651
– ident: 69647_CR10
  doi: 10.1109/ICASSP.2015.7178103
– volume: 96
  start-page: 3085904
  issue: 1348–1360
  year: 2001
  ident: 69647_CR49
  publication-title: J. Am. Stat. Assoc.
– ident: 69647_CR5
  doi: 10.1109/ICASSP.2004.1327153
– ident: 69647_CR14
  doi: 10.1109/DICTA.2012.6411709
– volume: 8
  start-page: 360
  year: 1998
  ident: 69647_CR3
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0369
– ident: 69647_CR35
  doi: 10.1109/ICIP.2016.7532777
– ident: 69647_CR16
  doi: 10.1109/EMBC.2012.6347406
– volume: 25
  start-page: 527
  year: 2005
  ident: 69647_CR30
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.012
– ident: 69647_CR11
  doi: 10.1109/ISBI.2015.7163965
– ident: 69647_CR59
– volume: 54
  start-page: 4311
  year: 2006
  ident: 69647_CR8
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 41
  start-page: 3807
  year: 2020
  ident: 69647_CR7
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.25090
– volume: 41
  start-page: 667
  year: 2022
  ident: 69647_CR26
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2021.3122226
– volume: 153
  start-page: 300
  year: 2018
  ident: 69647_CR58
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.07.018
– volume: 7
  start-page: 308
  year: 2023
  ident: 69647_CR39
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2021.3136587
– volume: 62
  start-page: 2222
  year: 2012
  ident: 69647_CR55
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– ident: 69647_CR46
  doi: 10.1016/j.jsb.2012.10.010
– volume: 39
  start-page: 3308
  year: 2018
  ident: 69647_CR48
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24078
– volume: 34
  start-page: 2036
  year: 2015
  ident: 69647_CR36
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2418734
– volume: 8
  start-page: 90052
  year: 2020
  ident: 69647_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994276
– volume: 323
  start-page: 1
  year: 2019
  ident: 69647_CR37
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.03.014
– ident: 69647_CR52
  doi: 10.48550/arXiv.0912.3599
– ident: 69647_CR9
  doi: 10.1109/ISBI.2014.6867805
– volume: 59
  start-page: 4160
  year: 2011
  ident: 69647_CR54
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.088
– volume: 95
  start-page: 803
  year: 1998
  ident: 69647_CR12
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.3.803
– volume: 80
  start-page: 169
  year: 2013
  ident: 69647_CR56
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: 69647_CR27
– volume: 13
  start-page: 20201
  year: 2023
  ident: 69647_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-47420-1
– ident: 69647_CR2
  doi: 10.1109/MLSP55214.2022.9943383
– volume: 13
  start-page: 411
  year: 2000
  ident: 69647_CR6
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 83
  start-page: 249
  year: 2018
  ident: 69647_CR23
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2018.09.007
– ident: 69647_CR45
  doi: 10.1515/9781400882250
– ident: 69647_CR33
  doi: 10.1109/TMI.2010.2097275
– ident: 69647_CR40
  doi: 10.1109/CVPR.2013.60
– ident: 69647_CR15
  doi: 10.1109/ISBI.2013.6556468
– volume: 65
  start-page: 2519
  year: 2018
  ident: 69647_CR24
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2806958
– ident: 69647_CR17
  doi: 10.1109/EMBC.2015.7319342
– volume: 36
  start-page: 745
  year: 2017
  ident: 69647_CR18
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2631001
– ident: 69647_CR47
– ident: 69647_CR44
  doi: 10.1111/j.2517-6161.1977.tb01603.x
– ident: 69647_CR4
– volume: 106
  start-page: 10415
  year: 2009
  ident: 69647_CR32
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0903525106
– volume: 22
  start-page: 562
  year: 2011
  ident: 69647_CR21
  publication-title: Inf. Process Med. Imaging
  doi: 10.1007/978-3-642-22092-0_46
– volume: 326
  start-page: 399
  year: 2009
  ident: 69647_CR1
  publication-title: Science
  doi: 10.1126/science.1174521
– volume: 16
  start-page: 454
  year: 2002
  ident: 69647_CR13
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1067
SSID ssj0000529419
Score 2.455987
Snippet Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional magnetic...
Abstract Independent component analysis (ICA) and dictionary learning (DL) are the most successful blind source separation (BSS) methods for functional...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19070
SubjectTerms 631/114
631/114/116
631/114/1564
631/114/2415
639/705
Algorithms
Brain - diagnostic imaging
Brain - physiology
Brain Mapping - methods
Decomposition
Dictionaries
Functional magnetic resonance imaging
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Information processing
Learning
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
multidisciplinary
Nerve Net - diagnostic imaging
Nerve Net - physiology
Neuroimaging
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQCSQaxJvAgYxEB9EltuNHCYgTBTpRHOg6y8_dSEtySnZB--_xONnllmdDk8KxJWse8Tgz830IvZCRCxGCKp1yTZki8FhK61gpGhulYcq5zBLx-YM4O5MXF-rjFaovqAmb4IEnwZ04L1JETb2LkTPlK8m84Bxa_wJQUuc-8kqoK5epCdWbKFaruUumovJkTCcVdJMRVnLovizJwUmUAft_F2X-Wiz5U8Y0H0Snt9GtOYLEr6ed30HXQncX3Zg4Jbf3UH-etBPwymyBhROnD8YwBuzb3L9ghi2eeSIW2KwW_dCul19wClxx6JYAvZHGU0iIx42FHzT4W5sWjyFdyhdZhbiP2AKrBO6m-vHxPvp0-u787ftyZlUoXcPqdclqqHbiRNVWOiNT_FdZTwLxFqDdvIpWWsojdelJrY2COmqbisd0UQuEO_oAHXV9Fx4hDIJvhDKBh8hI7WUlhfNGRM-DMqwpUL2TsHYz5DgwX6x0Tn1TqSet6KQVnbWiSYFe7tdcToAbf539BhS3nwlg2XkgmZCeTUj_y4QKdLxTu549eNSQIVYADsgK9Hz_OvkeJFRMF_pNnsMgsUx4gR5OVrLfCQDvpwCBFkge2M_BVg_fdO0y43vXaRm0SBfo1c7Ufuzrz7J4_D9k8QTdJOAjuTbpGB2th014iq67r-t2HJ5lJ_sOMx8pZw
  priority: 102
  providerName: Directory of Open Access Journals
Title Three layered sparse dictionary learning algorithm for enhancing the subject wise segregation of brain networks
URI https://link.springer.com/article/10.1038/s41598-024-69647-2
https://www.ncbi.nlm.nih.gov/pubmed/39154133
https://www.proquest.com/docview/3093954434
https://www.proquest.com/docview/3094046026
https://pubmed.ncbi.nlm.nih.gov/PMC11330533
https://doaj.org/article/cd77533dcff649d084d7660062e14617
Volume 14
WOSCitedRecordID wos001292901700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iK0i8jOtYYFRG4g2iJY5rO0-IoU0gsapCA5WnKL61lUoymhbUf4-Pk3Yql73w4ofErpyeY_v4XL4P4KV0XAhr81jnehB7C9zFUmkWi4FysmS51oEl4stHMRzK8TgfdQ63pkur3OyJYaM2tUYf-QlG7HIEa2Nvrr7HyBqF0dWOQmMPet6ySTGl64KOtj4WjGKxNO9qZZJMnjT-vMKaMspijjWYMd05jwJs_99szT9TJn-Lm4bj6Pze_37IfTjoDFHyttWcB3DLVg_hTktNuX4E9aUXsiXzco1knsTvO4vGEjMLZRDlYk06uokJKecT__PL6Tfi7V9iqykiePjn3rIkzUqhn4f8nPnBjfV3-0nQBFI7opCcglRtGnrzGD6fn12-ex935AyxHrB0GbMUk6Y4zVMldSm9GZkoQy01ChHiTO6UVBl3mfZtppQTmc7UIOHO3_cs5To7hP2qruwREJoIDBaWllvHaGpkIoU2pXCG27xkgwjSjYgK3SGXI4HGvAgR9EwWrVgLL9YiiLWgEbzajrlqcTtu7H2Kkt_2RMzt8KBeTIpuCRfaCH-3y4x2jrPcJJIZwTkWoVokRxcRHG8EXnQbQVNcSzuCF9vXfgljXKasbL0KfRjGpymP4EmrZtuZIH6_tzOyCOSOAu5MdfdNNZsGmPDUD8NK6wheb3T1el7__i-e3vwZz-AuxeWDqMDiGPaXi5V9Drf1j-WsWfRhT4xFaGUfeqdnw9GnfnBz9MPKxFb4tjf6cDH6-gtUvj96
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAcGFfQkUMBKcIGrieGzngBBb1arDqIeCenPjbWakISnJDNX8KX4jfk4y1bD01gOXHBI7spPvPT_7LR9CL4RjnFubxzrXg9hb4C4WStOYD5QTBc21DiwRX4d8NBJHR_nBBvrZ58JAWGWvE4OiNpWGM_Jt8NjlUKyNvj35HgNrFHhXewqNFhb7dnnqt2zNm72P_v--JGTn0-GH3bhjFYj1gKbzmKYQ7cNIniqhC-Htn0QZYolRUNrM5E4JlTGXaX_NlHI805kaJMz5jYolTGf-vZfQZQqVxSBUkBysznTAa-bf0eXmJJnYbvz6CDlshMYMcj5jsrb-BZqAv9m2f4Zo_uanDcvfzs3_7cPdQjc6Qxu_ayXjNtqw5R10taXeXN5F1aEHscWzYglkpdjr1bqx2ExDmkdRL3FHpzHGxWzspzOffMPevse2nECFEn_fW864WSg4x8KnU9-5sePajgPSceWwAvINXLZh9s099OVCZnsfbZZVaR8iTBIOztDCMusoSY1IBNem4M4wmxd0EKG0h4TUXWV2IAiZyRAhkAnZwkh6GMkAI0ki9GrV56StS3Ju6_eAtFVLqCkeblT1WHYqSmrD_d41M9o5RnOTCGo4Y5Bka4H8nUdoqweY7BRdI8_QFaHnq8deRYHfqShttQhtKPjfCYvQgxbWq5EAP4G3o7IIiTXArw11_Uk5nYQy6KnvBpnkEXrdy8bZuP79LR6dP41n6Nru4eehHO6N9h-j6wREFyog8y20Oa8X9gm6on_Mp039NMg-RscXLTO_AMOtlI4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKSAu7IuhwCDBCazYY2dmfEAIKBVRS5RDQe3JeLYkUrCLnVDlr_HrmOclVVh664GLD_aMNWN_782becsH8FxYxrkxia8SNfCdBW59IVXs84G0IosTpWqWiC8HfDQSR0fJeAt-drkwGFbZ6cRaUetC4Rl5Hz12CRZri_u2DYsY7-69OfnuI4MUelo7Oo0GIvtmdeq2b9Xr4a771y8o3ftw-P6j3zIM-GoQhws_DjHyh9EklEJlwtlCgdTUUC2xzJlOrBQyYjZS7hpJaXmkIjkImHWbFkOZitx7L8G2M8lj2oPt8fDT-Hh9woM-NPeWNlMniES_cqslZrTR2GeYAerTjdWwJg34m6X7Z8Dmb17bejHcu_E_f8abcL01wcnbRmZuwZbJb8OVhpRzdQeKQwdvQ-bZCmlMidO4ZWWIntUJIFm5Ii3RxoRk84mbzmL6jTjLn5h8irVL3H1nU5NqKfGEi5zOXOfKTEozqWWAFJZIpOUgeROAX92Fzxcy23vQy4vcPABCA45u0swwY2MaahEIrnTGrWYmyeKBB2EHj1S1NduROmSe1rEDkUgbSKUOUmkNqZR68HLd56SpWHJu63eIunVLrDZe3yjKSdoqr1Rp7na1kVbWsjjRgYg1ZwzTbw3SwnMPdjqwpa0KrNIzpHnwbP3YKS_0SGW5KZZ1mxg985R5cL-B-HokyFzgLKzIA7EB_o2hbj7JZ9O6QHroumGOuQevOjk5G9e_v8XD86fxFK46UUkPhqP9R3CNohRjaWS-A71FuTSP4bL6sZhV5ZNWERD4etFC8wsCTZ7X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+layered+sparse+dictionary+learning+algorithm+for+enhancing+the+subject+wise+segregation+of+brain+networks&rft.jtitle=Scientific+reports&rft.au=Khalid%2C+Muhammad+Usman&rft.au=Nauman%2C+Malik+Muhammad&rft.au=Akram%2C+Sheeraz&rft.au=Ali%2C+Kamran&rft.date=2024-08-17&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-69647-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_69647_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon