Enhanced cervical precancerous lesions detection and classification using Archimedes Optimization Algorithm with transfer learning

Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 14; číslo 1; s. 12076 - 14
Hlavní autori: Allogmani, Ayed S., Mohamed, Roushdy M., Al-shibly, Nasser M., Ragab, Mahmoud
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 27.05.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset.
AbstractList Abstract Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset.
Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset.
Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset.Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset.
ArticleNumber 12076
Author Al-shibly, Nasser M.
Ragab, Mahmoud
Mohamed, Roushdy M.
Allogmani, Ayed S.
Author_xml – sequence: 1
  givenname: Ayed S.
  surname: Allogmani
  fullname: Allogmani, Ayed S.
  organization: University of Jeddah, College of Science and Arts at Khulis, Department of Biology
– sequence: 2
  givenname: Roushdy M.
  surname: Mohamed
  fullname: Mohamed, Roushdy M.
  email: mroushdy@uj.edu.sa
  organization: University of Jeddah, College of Science and Arts at Khulis, Department of Biology
– sequence: 3
  givenname: Nasser M.
  surname: Al-shibly
  fullname: Al-shibly, Nasser M.
  organization: Physiotherapy Department, College of Applied Health Sciences, Jerash University
– sequence: 4
  givenname: Mahmoud
  surname: Ragab
  fullname: Ragab, Mahmoud
  email: mragab@kau.edu.sa
  organization: Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38802525$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_oH-CAInHhEvBnNjmhVVVKpUq9wNly7HHWq6y92ElbOPLLmd2U0vbQHBxr_LzvzNhzXByEGKAo3lHyiRLefM6CyrapCBNVzRYLXt29Ko4YEbJinLGDR_vD4jTnNcFPslbQ9k1xyJuGMMnkUfHnPKx0MGBLA-nGGz2U2wRmF0pxyuUA2ceQSwsjmBG3pQ7IDjpn7xDfh6bsQ18uk1n5DVjI5fV29Bv_ez5dDn1MflxtyltcyzHpkB0ktNYpoPBt8drpIcPp_f-k-PH1_PvZt-rq-uLybHlVGSnoWHHLoZWa2doaBjXB7jm4VmOfzNSad9Bp6hrpGNHadRYsdS1oYRhtqZGEnxSXs6-Neq22yW90-qWi9mofiKlXOo3eDKBqLjBZbWvOhJC87UQtMeuCSUu1A4teX2av7dRhywYCtjU8MX16EvxK9fFGUUo5oaJFh4_3Din-nCCPauOzgWHQAfDiFSc1orKREtEPz9B1nFLAu9pRpBaUsAap949Leqjl31sjwGbApJhzAveAUKJ2M6XmmVI4U2o_U-oORc0zkfHj_l2xLT-8LOWzNGOe0EP6X_YLqr9d4-TH
CitedBy_id crossref_primary_10_1038_s41598_025_97719_4
crossref_primary_10_1007_s12672_025_03102_0
crossref_primary_10_1016_j_bspc_2025_107620
crossref_primary_10_3390_bioengineering12090954
Cites_doi 10.1007/s00521-023-08757-w
10.1016/j.eswa.2023.119741
10.1007/s10489-022-04299-1
10.1038/s41746-022-00559-z
10.59543/ijmscs.v2i.8337
10.1002/ima.22952
10.3390/healthcare11010055
10.1016/j.bspc.2021.103158
10.1155/2022/4688327
10.3390/s23020570
10.1016/j.advengsoft.2022.103361
10.1109/ACCESS.2021.3087022
10.1016/j.eswa.2023.122099
10.1016/j.pdpdt.2023.103557
10.1007/s11390-021-0849-3
10.3389/fpubh.2021.788376
10.1002/ijc.33879
10.3390/cancers14051159
10.1080/00051144.2024.2316503
10.32604/cmc.2022.020713
10.1007/s13042-024-02110-w
10.1109/ACCESS.2024.3351883
10.1109/ICSSIT55814.2023.10060959
10.1007/s00521-024-09497-1
10.1109/ACCESS.2024.3350212
10.1109/JSTARS.2023.3339297
10.1016/j.knosys.2024.111482
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-62773-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_6343e96d63244539b465dc2725d1afed
PMC11130149
38802525
10_1038_s41598_024_62773_x
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-3d3e95a2d6dc2e605983ef9a2042c6a3beba1f85f20aafbded1f9ea4c2191c503
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001233645300092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:41:52 EDT 2025
Tue Nov 04 02:05:42 EST 2025
Fri Sep 05 09:01:47 EDT 2025
Tue Oct 07 07:53:57 EDT 2025
Wed Feb 19 02:07:10 EST 2025
Tue Nov 18 21:44:21 EST 2025
Sat Nov 29 02:13:09 EST 2025
Fri Feb 21 02:39:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Medical image
Human papillomavirus
Archimedes Optimization Algorithm
Transfer learning
Cervical cancer
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-3d3e95a2d6dc2e605983ef9a2042c6a3beba1f85f20aafbded1f9ea4c2191c503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/6343e96d63244539b465dc2725d1afed
PMID 38802525
PQID 3060641028
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_6343e96d63244539b465dc2725d1afed
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11130149
proquest_miscellaneous_3061135855
proquest_journals_3060641028
pubmed_primary_38802525
crossref_primary_10_1038_s41598_024_62773_x
crossref_citationtrail_10_1038_s41598_024_62773_x
springer_journals_10_1038_s41598_024_62773_x
PublicationCentury 2000
PublicationDate 2024-05-27
PublicationDateYYYYMMDD 2024-05-27
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Chen, Liu, Wen, Zuo, Liu, Feng, Pang, Xiao (CR9) 2021; 36
Lilhore, Poongodi, Kaur, Simaiya, Algarni, Elmannai, Vijayakumar, Tunze, Hamdi (CR2) 2022; 2022
Khanarsa, Kitsiranuwat (CR18) 2024; 18
Senthilkumar, Ramakrishnan, Frnda, Ramachandran, Gupta, Tiwari, Shorfuzzaman, Mohammed (CR21) 2021; 9
CR19
Karaman, Pacal, Basturk, Akay, Nalbantoglu, Coskun, Sahin, Karaboga (CR27) 2023; 221
Karaman, Karaboga, Pacal, Akay, Basturk, Nalbantoglu, Coskun, Sahin (CR28) 2023; 53
CR13
Mukhlif, Al-Khateeb, Mohammed (CR24) 2023; 23
A Mansouri, Ragab (CR4) 2022; 11
Pacal, Kılıcarslan (CR25) 2023; 35
CR11
CR33
Xue, Wang, Qin, Yan, Qu, Seery, Jiang, Qiao (CR3) 2022; 5
CR32
CR31
CR30
Mehmood, Rizwan, Ml, Abbas (CR7) 2021; 9
Mukhlif, Al-Khateeb, Mohammed (CR23) 2023; 4
Kanavati, Hirose, Ishii, Fukuda, Ichihara, Tsuneki (CR10) 2022; 14
Seyala, Abdullah (CR22) 2024; 2
Tekchandani, Verma, Londhe, Jain, Tiwari (CR14) 2022; 71
Bhargava, Gairola, Vyas, Bhan (CR6) 2017
Syed, Altahan, Ahammad, Rajesh, Kalangi, Smirani, Hossain, Rashed (CR8) 2023; 175
CR26
Agustin, James, Simon (CR29) 2024; 65
Desai, Befano, Xue, Kelly, Campos, Egemen, Gage, Rodriguez, Sahasrabuddhe, Levitz, Pearlman, Jeronimo, Antani, Schiffman, de Sanjosé (CR1) 2022; 150
CR20
He, Wang, Zeng, Liang, Duan, Yang, Pan, He, Huang, Guan (CR16) 2024; 34
Jeyshri, Kowsigan (CR15) 2023; 11
Masri, Mokayed (CR5) 2021; 2
Kang, Liu, Ma, Chen, Lv, Chen (CR17) 2023; 42
Pacal (CR12) 2024; 238
J Jeyshri (62773_CR15) 2023; 11
62773_CR20
I Pacal (62773_CR25) 2023; 35
P Khanarsa (62773_CR18) 2024; 18
F Kanavati (62773_CR10) 2022; 14
N Seyala (62773_CR22) 2024; 2
ANA Masri (62773_CR5) 2021; 2
UK Lilhore (62773_CR2) 2022; 2022
A Karaman (62773_CR27) 2023; 221
AA Mukhlif (62773_CR23) 2023; 4
62773_CR26
KT Desai (62773_CR1) 2022; 150
A Karaman (62773_CR28) 2023; 53
S Agustin (62773_CR29) 2024; 65
H Chen (62773_CR9) 2021; 36
H Tekchandani (62773_CR14) 2022; 71
62773_CR30
62773_CR31
62773_CR32
M Mehmood (62773_CR7) 2021; 9
62773_CR11
62773_CR33
I Syed (62773_CR8) 2023; 175
Q He (62773_CR16) 2024; 34
P Xue (62773_CR3) 2022; 5
AA Mukhlif (62773_CR24) 2023; 23
62773_CR19
62773_CR13
A Bhargava (62773_CR6) 2017
Z Kang (62773_CR17) 2023; 42
R A Mansouri (62773_CR4) 2022; 11
G Senthilkumar (62773_CR21) 2021; 9
I Pacal (62773_CR12) 2024; 238
References_xml – volume: 35
  start-page: 18813
  issue: 25
  year: 2023
  end-page: 18828
  ident: CR25
  article-title: Deep learning-based approaches for robust classification of cervical cancer
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08757-w
– volume: 221
  year: 2023
  ident: CR27
  article-title: Robust real-time polyp detection system design based on YOLO algorithms by optimizing activation functions and hyper-parameters with artificial bee colony (ABC)
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119741
– volume: 53
  start-page: 15603
  issue: 12
  year: 2023
  end-page: 15620
  ident: CR28
  article-title: Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CC) polyp detection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04299-1
– volume: 5
  start-page: 19
  issue: 1
  year: 2022
  ident: CR3
  article-title: Deep learning in image-based breast and cervical cancer detection: A systematic review and meta-analysis
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-022-00559-z
– volume: 2
  start-page: 85
  year: 2024
  end-page: 95
  ident: CR22
  article-title: Cluster analysis on longitudinal data of patients with kidney dialysis using a smoothing cubic B-spline model
  publication-title: Int. J. Math. Stat. Comput. Sci.
  doi: 10.59543/ijmscs.v2i.8337
– volume: 34
  issue: 1
  year: 2024
  ident: CR16
  article-title: Registration-enhanced multiple instance learning for cervical cancer whole slide image classification
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22952
– ident: CR30
– volume: 2
  start-page: 8
  issue: 2
  year: 2021
  end-page: 58
  ident: CR5
  article-title: An efficient machine learning-based cervical cancer detection and classification
  publication-title: J. Cybersecur. Inf. Manag.
– volume: 11
  start-page: 55
  issue: 1
  year: 2022
  ident: CR4
  article-title: Equilibrium optimization algorithm with ensemble learning based cervical precancerous lesion classification model
  publication-title: Healthcare
  doi: 10.3390/healthcare11010055
– volume: 71
  year: 2022
  ident: CR14
  article-title: Computer aided diagnosis system for cervical lymph nodes in CT images using deep learning
  publication-title: Biomedical Signal Process. Control
  doi: 10.1016/j.bspc.2021.103158
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR2
  article-title: Hybrid model for detection of cervical cancer using causal analysis and machine learning techniques
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2022/4688327
– volume: 23
  start-page: 570
  issue: 2
  year: 2023
  ident: CR24
  article-title: Incorporating a novel dual transfer learning approach for medical images
  publication-title: Sensors
  doi: 10.3390/s23020570
– ident: CR33
– volume: 175
  start-page: 103361
  year: 2023
  ident: CR8
  article-title: Skin disease detection using deep learning
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103361
– start-page: 1491
  year: 2017
  end-page: 1502
  ident: CR6
  article-title: Computer aided diagnosis of cervical cancer using HoG features and multi classifiers
  publication-title: Intelligent Communication, Control and Devices
– volume: 9
  start-page: 83876
  year: 2021
  end-page: 83886
  ident: CR21
  article-title: Incorporating artificial fish swarm in ensemble classification framework for recurrence prediction of cervical cancer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3087022
– volume: 238
  year: 2024
  ident: CR12
  article-title: Enhancing crop productivity and sustainability through disease identification in maize leaves: Exploiting a large dataset with an advanced vision transformer model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122099
– ident: CR19
– volume: 42
  year: 2023
  ident: CR17
  article-title: Early screening of cervical cancer based on tissue Raman spectroscopy combined with deep learning algorithms
  publication-title: Photodiagnosis Photodynamic Ther.
  doi: 10.1016/j.pdpdt.2023.103557
– volume: 18
  start-page: 101
  issue: 1
  year: 2024
  end-page: 111
  ident: CR18
  article-title: Deep learning-based ensemble approach for conventional pap smear image classification
  publication-title: ECTI Trans. Comput. Inf. Technol.
– ident: CR31
– ident: CR13
– ident: CR11
– ident: CR32
– volume: 4
  start-page: 167
  issue: 1
  year: 2023
  end-page: 180
  ident: CR23
  article-title: Classification of breast cancer images using new transfer learning techniques
  publication-title: Iraqi J. Comput. Sci. Math.
– volume: 36
  start-page: 347
  issue: 2
  year: 2021
  end-page: 360
  ident: CR9
  article-title: CytoBrain: Cervical cancer screening system based on deep learning technology
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-021-0849-3
– volume: 9
  start-page: 788376
  year: 2021
  ident: CR7
  article-title: Machine learning assisted cervical cancer detection
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2021.788376
– volume: 11
  start-page: 763
  issue: 2
  year: 2023
  end-page: 771
  ident: CR15
  article-title: Fusing expert knowledge and deep learning for accurate cervical cancer diagnosis in pap smear images: A multiscale U-Net with fuzzy automata
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– ident: CR26
– volume: 150
  start-page: 741
  issue: 5
  year: 2022
  end-page: 752
  ident: CR1
  article-title: The development of ‘automated visual evaluation’ for cervical cancer screening: The promise and challenges in adapting deep-learning for clinical testing
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.33879
– ident: CR20
– volume: 14
  start-page: 1159
  issue: 5
  year: 2022
  ident: CR10
  article-title: A deep learning model for cervical cancer screening on liquid-based cytology specimens in whole slide images
  publication-title: Cancers
  doi: 10.3390/cancers14051159
– volume: 65
  start-page: 726
  issue: 3
  year: 2024
  end-page: 737
  ident: CR29
  article-title: Residual U-Net approach for thyroid nodule detection and classification from thyroid ultrasound images
  publication-title: Automatika
  doi: 10.1080/00051144.2024.2316503
– volume: 2022
  start-page: 1
  year: 2022
  ident: 62773_CR2
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2022/4688327
– volume: 65
  start-page: 726
  issue: 3
  year: 2024
  ident: 62773_CR29
  publication-title: Automatika
  doi: 10.1080/00051144.2024.2316503
– volume: 2
  start-page: 8
  issue: 2
  year: 2021
  ident: 62773_CR5
  publication-title: J. Cybersecur. Inf. Manag.
– volume: 175
  start-page: 103361
  year: 2023
  ident: 62773_CR8
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103361
– volume: 9
  start-page: 788376
  year: 2021
  ident: 62773_CR7
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2021.788376
– volume: 71
  year: 2022
  ident: 62773_CR14
  publication-title: Biomedical Signal Process. Control
  doi: 10.1016/j.bspc.2021.103158
– ident: 62773_CR19
  doi: 10.32604/cmc.2022.020713
– volume: 34
  issue: 1
  year: 2024
  ident: 62773_CR16
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22952
– ident: 62773_CR11
  doi: 10.1007/s13042-024-02110-w
– volume: 18
  start-page: 101
  issue: 1
  year: 2024
  ident: 62773_CR18
  publication-title: ECTI Trans. Comput. Inf. Technol.
– volume: 5
  start-page: 19
  issue: 1
  year: 2022
  ident: 62773_CR3
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-022-00559-z
– volume: 36
  start-page: 347
  issue: 2
  year: 2021
  ident: 62773_CR9
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-021-0849-3
– ident: 62773_CR13
  doi: 10.1109/ACCESS.2024.3351883
– volume: 53
  start-page: 15603
  issue: 12
  year: 2023
  ident: 62773_CR28
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04299-1
– volume: 11
  start-page: 55
  issue: 1
  year: 2022
  ident: 62773_CR4
  publication-title: Healthcare
  doi: 10.3390/healthcare11010055
– volume: 238
  year: 2024
  ident: 62773_CR12
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122099
– volume: 23
  start-page: 570
  issue: 2
  year: 2023
  ident: 62773_CR24
  publication-title: Sensors
  doi: 10.3390/s23020570
– volume: 35
  start-page: 18813
  issue: 25
  year: 2023
  ident: 62773_CR25
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08757-w
– ident: 62773_CR20
  doi: 10.1109/ICSSIT55814.2023.10060959
– volume: 221
  year: 2023
  ident: 62773_CR27
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119741
– ident: 62773_CR31
  doi: 10.1007/s00521-024-09497-1
– ident: 62773_CR32
  doi: 10.1109/ACCESS.2024.3350212
– volume: 2
  start-page: 85
  year: 2024
  ident: 62773_CR22
  publication-title: Int. J. Math. Stat. Comput. Sci.
  doi: 10.59543/ijmscs.v2i.8337
– volume: 4
  start-page: 167
  issue: 1
  year: 2023
  ident: 62773_CR23
  publication-title: Iraqi J. Comput. Sci. Math.
– volume: 11
  start-page: 763
  issue: 2
  year: 2023
  ident: 62773_CR15
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– ident: 62773_CR33
– volume: 42
  year: 2023
  ident: 62773_CR17
  publication-title: Photodiagnosis Photodynamic Ther.
  doi: 10.1016/j.pdpdt.2023.103557
– ident: 62773_CR30
  doi: 10.1109/JSTARS.2023.3339297
– start-page: 1491
  volume-title: Intelligent Communication, Control and Devices
  year: 2017
  ident: 62773_CR6
– ident: 62773_CR26
  doi: 10.1016/j.knosys.2024.111482
– volume: 14
  start-page: 1159
  issue: 5
  year: 2022
  ident: 62773_CR10
  publication-title: Cancers
  doi: 10.3390/cancers14051159
– volume: 9
  start-page: 83876
  year: 2021
  ident: 62773_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3087022
– volume: 150
  start-page: 741
  issue: 5
  year: 2022
  ident: 62773_CR1
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.33879
SSID ssj0000529419
Score 2.454525
Snippet Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV)...
Abstract Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12076
SubjectTerms 639/705/117
639/705/258
Algorithms
Archimedes Optimization Algorithm
Cervical cancer
Classification
Early Detection of Cancer - methods
Female
Human papillomavirus
Humanities and Social Sciences
Humans
Lesions
Long short-term memory
Low income areas
Machine Learning
Medical image
multidisciplinary
Optimization algorithms
Precancerous Conditions - diagnosis
Science
Science (multidisciplinary)
Transfer learning
Uterine Cervical Neoplasms - diagnosis
Uterine Cervical Neoplasms - virology
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0IICEhfe0IWCjMQNosZ2nI1PqKBWHKD0AKg3y6_sVtpmlyStypUvZ8bxploevXC1J5InM54Zz5OQVy73qgbNnHFZefRWqcy6IDOAry2YEFbEurVvH6eHh9XxsTpKDrcupVWuZWIU1H7p0Ee-C6YtaE9Uh29X3zOcGoXR1TRC4zq5AZYNw5SuT_xo9LFgFKtgKtXK5KLa7UBfYU0ZL7KST6ciu9jQR7Ft_99szT9TJn-Lm0Z1dHD3fxG5R-4kQ5TuDZxzn1wLzQNyaxhN-eMh-bnfzGNyAHVRmgDoCoQjLrXLs44uArrZOupDH5O5GmoagEVbHJOPIr0pJtXPaGxuC0iFjn4GAXWaKj_p3mIG5-rnpxSdwbSPJnRoaRpkMXtEvh7sf3n_IUvzGjInC9ZnwougpOG-9I4HeCepSoRaGQ6CwZVG2GANqytZ89yY2vrgWa2CKRxITeZkLh6TrWbZhG1ClcutYjiNxlYFdlBUvrCeO-skvJytnBC2ppp2qZk5ztRY6BhUF5UeKK2B0jpSWl9MyOvxm9XQyuNK6HfIDCMktuGOC8t2ptOt1qUoAOXSY8_7Qgpli1IC7lMuPTN18BOys-YBnWRDpy8ZYEJejttwqzFUY5oAREQYxgQ85QDTJwPnjSfB9j1cctipNnhy46ibO83JPHYOB8WGT2g1IW_W7Ht5rn__i6dXo_GM3OZ4o3KsbtwhW317Fp6Tm-68P-naF_FK_gJgv0HN
  priority: 102
  providerName: ProQuest
Title Enhanced cervical precancerous lesions detection and classification using Archimedes Optimization Algorithm with transfer learning
URI https://link.springer.com/article/10.1038/s41598-024-62773-x
https://www.ncbi.nlm.nih.gov/pubmed/38802525
https://www.proquest.com/docview/3060641028
https://www.proquest.com/docview/3061135855
https://pubmed.ncbi.nlm.nih.gov/PMC11130149
https://doaj.org/article/6343e96d63244539b465dc2725d1afed
Volume 14
WOSCitedRecordID wos001233645300092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4k1KWRmJG0SN7TiJjy3aCiS6rBCg5RT5ld2VtmmVhKpc-eXMONmly_PCxYd4VvLOjOdhj78h5LlNnKrAM8dcFg5Pq1RsrJcx0FcGQggjwru1T2_zyaSYzdT0SqsvrAnr4YF7xh1kIhVeZQ5hxVMplEkz6SzPuXRMV96h9U1ydSWZ6lG9uUqZGl7JJKI4aMFT4WsynsYZz3MRX255ogDY_7so89diyZ9uTIMjOr5Dbg8RJD3sV36XXPP1PXKz7yn59T75Nq4X4Vaf2mAGgPQcrBp-aiDLpyuP52Mtdb4LVVg11TXQYhCNVUNBUBSr4ec0oNLCmnxL34FlOR2ebNLD1fysWXaLU4qnuLQLsa9v6NCBYv6AfDwef3j1Oh4aLcRWpqyLhQMWS81dBpz1kOCoQvhKaQ472mZaGG80qwpZ8UTryjjvWKW8Ti2YO2ZlIh6Snfqs9o8JVTYximEbGVOkCH2oXGoct8ZKSHmNjAhbM720Awo5NsNYleE2XBRlL6gSBFUGQZWXEXmx-c15j8HxV-ojlOWGEvGzwwfQqnLQqvJfWhWR_bUmlMOmbkvIriCAw4gsIs8207Ad8Y5F1x6EiDSMCcjB4J8-6hVnsxLE3eGSw0yxpVJbS92eqZeLAPkNHglzXxWRl2vt-7GuP_Ni73_w4gm5xXHbJPh4cZ_sdM0X_5TcsBfdsm1G5Ho-y8NYjMju0XgyfT8KexHGEz7FMYdxd_rmZPr5O1WiOkw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGFN22ggJHgRKMmdpyNDwgVaNWqy9JDQb2Z-JHdStvsskmhvfKD-I3MOMlWy6O3HrjGk8iefDNjj-dByAsTWVmAZQ6ZyCx6q2SojRMh0BcathCa-7y1z_3eYJAdHsr9JfKzy4XBsMpOJ3pFbScGfeQbsLUF64nm8M30a4hdo_B2tWuh0cBiz519hyNb9Xr3Pfzfl4xtbx282wnbrgKhEUlch9xyJ0XObGoNc7Cblxl3hcwZwNekOddO53GRiYJFeV5o62xcSJcnBmQ7NiLi8N0r5GqClcUwVJDtz306eGuWxLLNzYl4tlGBfcQcNpaEKev1eHi6YP98m4C_7W3_DNH87Z7Wm7_t2_8b4-6QW-1Gm242knGXLLnyHrnetN48u09-bJUjH_xAjdeWQDoF5Y-PZpOTio4duhEral3tg9VKmpdAi2cNDK7yeKaYNDCkvngvMNFV9CMo4OM2s5VujofAh3p0TNHZTWt_RHAz2jbqGD4gny6FAQ_Jcjkp3Sqh0kRaxthtR2cJVoiUNtGWGW2EYFyLgMQdSpRpi7Vjz5Cx8kEDPFMNshQgS3lkqdOAvJq_M21KlVxI_RbBN6fEMuP-wWQ2VK3WUilPYMmpxZr-ieBSJ6mAtfeYsHFeOBuQtQ5zqtV9lToHXECez4dBa-FVVF46-IlIE8ccjqqw0pUG6fOZYHkiJhiMZAsysDDVxZHyaOQro4PhRheBDMh6Jy7n8_o3Lx5dvIxn5MbOwYe-6u8O9h6TmwylOcJMzjWyXM9O3BNyzXyrj6rZU68OKPly2WL0C9C8oYI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jc9MwFNaUFBgu7EuggJiBE3hiS5ZjHRim0GbotIQcgCknYS1OOpM6IXahvfKz-HW8J9vphKW3Hrhazx5J_t6ip7cQ8tSEVuagmQMmUoveKhlo40QA9LkGE0Jzn7f2aa8_HKb7-3K0Rn62uTAYVtnKRC-o7cygj7wHpi1oT1SHvbwJixhtDV7NvwbYQQpvWtt2GjVEdt3Jdzi-lS93tuBfP2NssP3hzdug6TAQGBFHVcAtd1JkzCbWMAeWvUy5y2XGAMomybh2OovyVOQszLJcW2ejXLosNsDnkREhh-9eIOtgksesQ9ZHO-9Gn5ceHrxDiyPZZOqEPO2VoC0xo43FQcL6fR4cr2hD3zTgb5bunwGbv93aemU4uPY_b-N1crUxwelmzTM3yJorbpJLdVPOk1vkx3Yx8WER1Hg5CqRzUAv4aDE7KunUoYOxpNZVPoytoFkBtHgKwbArj3SK6QRj6sv6woa6kr4H0XzY5LzSzekY9qGaHFJ0g9PKHx7cgjYtPMa3ycdz2YA7pFPMCnePUGlCLSPsw6PTGGtHShtry4w2QjCuRZdELWKUacq4YzeRqfLhBDxVNcoUoEx5lKnjLnm-fGdeFzE5k_o1AnFJiQXI_YPZYqwaeaYSHsOSE4vV_mPBpY4TAWvvM2GjLHe2SzZa_KlGKpbqFHxd8mQ5DPIML6mywsFPRJoo4nCIhZXerVG_nAkWLmKCwUi6wg8rU10dKQ4mvmY6qHR0HsguedGyzum8_r0X989exmNyGbhH7e0Mdx-QKwwZO8QUzw3SqRZH7iG5aL5VB-XiUSMbKPly3nz0C-Sbq8s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cervical+precancerous+lesions+detection+and+classification+using+Archimedes+Optimization+Algorithm+with+transfer+learning&rft.jtitle=Scientific+reports&rft.au=Allogmani%2C+Ayed+S&rft.au=Mohamed%2C+Roushdy+M&rft.au=Al-Shibly%2C+Nasser+M&rft.au=Ragab%2C+Mahmoud&rft.date=2024-05-27&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=12076&rft_id=info:doi/10.1038%2Fs41598-024-62773-x&rft_id=info%3Apmid%2F38802525&rft.externalDocID=38802525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon