Enhanced cervical precancerous lesions detection and classification using Archimedes Optimization Algorithm with transfer learning
Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mi...
Uložené v:
| Vydané v: | Scientific reports Ročník 14; číslo 1; s. 12076 - 14 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
27.05.2024
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset. |
|---|---|
| AbstractList | Abstract Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset. Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset. Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset.Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset. |
| ArticleNumber | 12076 |
| Author | Al-shibly, Nasser M. Ragab, Mahmoud Mohamed, Roushdy M. Allogmani, Ayed S. |
| Author_xml | – sequence: 1 givenname: Ayed S. surname: Allogmani fullname: Allogmani, Ayed S. organization: University of Jeddah, College of Science and Arts at Khulis, Department of Biology – sequence: 2 givenname: Roushdy M. surname: Mohamed fullname: Mohamed, Roushdy M. email: mroushdy@uj.edu.sa organization: University of Jeddah, College of Science and Arts at Khulis, Department of Biology – sequence: 3 givenname: Nasser M. surname: Al-shibly fullname: Al-shibly, Nasser M. organization: Physiotherapy Department, College of Applied Health Sciences, Jerash University – sequence: 4 givenname: Mahmoud surname: Ragab fullname: Ragab, Mahmoud email: mragab@kau.edu.sa organization: Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38802525$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNURD_oH-CAInHhEvBnNjmhVVVKpUq9wNly7HHWq6y92ElbOPLLmd2U0vbQHBxr_LzvzNhzXByEGKAo3lHyiRLefM6CyrapCBNVzRYLXt29Ko4YEbJinLGDR_vD4jTnNcFPslbQ9k1xyJuGMMnkUfHnPKx0MGBLA-nGGz2U2wRmF0pxyuUA2ceQSwsjmBG3pQ7IDjpn7xDfh6bsQ18uk1n5DVjI5fV29Bv_ez5dDn1MflxtyltcyzHpkB0ktNYpoPBt8drpIcPp_f-k-PH1_PvZt-rq-uLybHlVGSnoWHHLoZWa2doaBjXB7jm4VmOfzNSad9Bp6hrpGNHadRYsdS1oYRhtqZGEnxSXs6-Neq22yW90-qWi9mofiKlXOo3eDKBqLjBZbWvOhJC87UQtMeuCSUu1A4teX2av7dRhywYCtjU8MX16EvxK9fFGUUo5oaJFh4_3Din-nCCPauOzgWHQAfDiFSc1orKREtEPz9B1nFLAu9pRpBaUsAap949Leqjl31sjwGbApJhzAveAUKJ2M6XmmVI4U2o_U-oORc0zkfHj_l2xLT-8LOWzNGOe0EP6X_YLqr9d4-TH |
| CitedBy_id | crossref_primary_10_1038_s41598_025_97719_4 crossref_primary_10_1007_s12672_025_03102_0 crossref_primary_10_1016_j_bspc_2025_107620 crossref_primary_10_3390_bioengineering12090954 |
| Cites_doi | 10.1007/s00521-023-08757-w 10.1016/j.eswa.2023.119741 10.1007/s10489-022-04299-1 10.1038/s41746-022-00559-z 10.59543/ijmscs.v2i.8337 10.1002/ima.22952 10.3390/healthcare11010055 10.1016/j.bspc.2021.103158 10.1155/2022/4688327 10.3390/s23020570 10.1016/j.advengsoft.2022.103361 10.1109/ACCESS.2021.3087022 10.1016/j.eswa.2023.122099 10.1016/j.pdpdt.2023.103557 10.1007/s11390-021-0849-3 10.3389/fpubh.2021.788376 10.1002/ijc.33879 10.3390/cancers14051159 10.1080/00051144.2024.2316503 10.32604/cmc.2022.020713 10.1007/s13042-024-02110-w 10.1109/ACCESS.2024.3351883 10.1109/ICSSIT55814.2023.10060959 10.1007/s00521-024-09497-1 10.1109/ACCESS.2024.3350212 10.1109/JSTARS.2023.3339297 10.1016/j.knosys.2024.111482 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-62773-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_6343e96d63244539b465dc2725d1afed PMC11130149 38802525 10_1038_s41598_024_62773_x |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-3d3e95a2d6dc2e605983ef9a2042c6a3beba1f85f20aafbded1f9ea4c2191c503 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001233645300092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:41:52 EDT 2025 Tue Nov 04 02:05:42 EST 2025 Fri Sep 05 09:01:47 EDT 2025 Tue Oct 07 07:53:57 EDT 2025 Wed Feb 19 02:07:10 EST 2025 Tue Nov 18 21:44:21 EST 2025 Sat Nov 29 02:13:09 EST 2025 Fri Feb 21 02:39:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Medical image Human papillomavirus Archimedes Optimization Algorithm Transfer learning Cervical cancer |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-3d3e95a2d6dc2e605983ef9a2042c6a3beba1f85f20aafbded1f9ea4c2191c503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/6343e96d63244539b465dc2725d1afed |
| PMID | 38802525 |
| PQID | 3060641028 |
| PQPubID | 2041939 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6343e96d63244539b465dc2725d1afed pubmedcentral_primary_oai_pubmedcentral_nih_gov_11130149 proquest_miscellaneous_3061135855 proquest_journals_3060641028 pubmed_primary_38802525 crossref_primary_10_1038_s41598_024_62773_x crossref_citationtrail_10_1038_s41598_024_62773_x springer_journals_10_1038_s41598_024_62773_x |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-27 |
| PublicationDateYYYYMMDD | 2024-05-27 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Chen, Liu, Wen, Zuo, Liu, Feng, Pang, Xiao (CR9) 2021; 36 Lilhore, Poongodi, Kaur, Simaiya, Algarni, Elmannai, Vijayakumar, Tunze, Hamdi (CR2) 2022; 2022 Khanarsa, Kitsiranuwat (CR18) 2024; 18 Senthilkumar, Ramakrishnan, Frnda, Ramachandran, Gupta, Tiwari, Shorfuzzaman, Mohammed (CR21) 2021; 9 CR19 Karaman, Pacal, Basturk, Akay, Nalbantoglu, Coskun, Sahin, Karaboga (CR27) 2023; 221 Karaman, Karaboga, Pacal, Akay, Basturk, Nalbantoglu, Coskun, Sahin (CR28) 2023; 53 CR13 Mukhlif, Al-Khateeb, Mohammed (CR24) 2023; 23 A Mansouri, Ragab (CR4) 2022; 11 Pacal, Kılıcarslan (CR25) 2023; 35 CR11 CR33 Xue, Wang, Qin, Yan, Qu, Seery, Jiang, Qiao (CR3) 2022; 5 CR32 CR31 CR30 Mehmood, Rizwan, Ml, Abbas (CR7) 2021; 9 Mukhlif, Al-Khateeb, Mohammed (CR23) 2023; 4 Kanavati, Hirose, Ishii, Fukuda, Ichihara, Tsuneki (CR10) 2022; 14 Seyala, Abdullah (CR22) 2024; 2 Tekchandani, Verma, Londhe, Jain, Tiwari (CR14) 2022; 71 Bhargava, Gairola, Vyas, Bhan (CR6) 2017 Syed, Altahan, Ahammad, Rajesh, Kalangi, Smirani, Hossain, Rashed (CR8) 2023; 175 CR26 Agustin, James, Simon (CR29) 2024; 65 Desai, Befano, Xue, Kelly, Campos, Egemen, Gage, Rodriguez, Sahasrabuddhe, Levitz, Pearlman, Jeronimo, Antani, Schiffman, de Sanjosé (CR1) 2022; 150 CR20 He, Wang, Zeng, Liang, Duan, Yang, Pan, He, Huang, Guan (CR16) 2024; 34 Jeyshri, Kowsigan (CR15) 2023; 11 Masri, Mokayed (CR5) 2021; 2 Kang, Liu, Ma, Chen, Lv, Chen (CR17) 2023; 42 Pacal (CR12) 2024; 238 J Jeyshri (62773_CR15) 2023; 11 62773_CR20 I Pacal (62773_CR25) 2023; 35 P Khanarsa (62773_CR18) 2024; 18 F Kanavati (62773_CR10) 2022; 14 N Seyala (62773_CR22) 2024; 2 ANA Masri (62773_CR5) 2021; 2 UK Lilhore (62773_CR2) 2022; 2022 A Karaman (62773_CR27) 2023; 221 AA Mukhlif (62773_CR23) 2023; 4 62773_CR26 KT Desai (62773_CR1) 2022; 150 A Karaman (62773_CR28) 2023; 53 S Agustin (62773_CR29) 2024; 65 H Chen (62773_CR9) 2021; 36 H Tekchandani (62773_CR14) 2022; 71 62773_CR30 62773_CR31 62773_CR32 M Mehmood (62773_CR7) 2021; 9 62773_CR11 62773_CR33 I Syed (62773_CR8) 2023; 175 Q He (62773_CR16) 2024; 34 P Xue (62773_CR3) 2022; 5 AA Mukhlif (62773_CR24) 2023; 23 62773_CR19 62773_CR13 A Bhargava (62773_CR6) 2017 Z Kang (62773_CR17) 2023; 42 R A Mansouri (62773_CR4) 2022; 11 G Senthilkumar (62773_CR21) 2021; 9 I Pacal (62773_CR12) 2024; 238 |
| References_xml | – volume: 35 start-page: 18813 issue: 25 year: 2023 end-page: 18828 ident: CR25 article-title: Deep learning-based approaches for robust classification of cervical cancer publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08757-w – volume: 221 year: 2023 ident: CR27 article-title: Robust real-time polyp detection system design based on YOLO algorithms by optimizing activation functions and hyper-parameters with artificial bee colony (ABC) publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119741 – volume: 53 start-page: 15603 issue: 12 year: 2023 end-page: 15620 ident: CR28 article-title: Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CC) polyp detection publication-title: Appl. Intell. doi: 10.1007/s10489-022-04299-1 – volume: 5 start-page: 19 issue: 1 year: 2022 ident: CR3 article-title: Deep learning in image-based breast and cervical cancer detection: A systematic review and meta-analysis publication-title: NPJ Digit. Med. doi: 10.1038/s41746-022-00559-z – volume: 2 start-page: 85 year: 2024 end-page: 95 ident: CR22 article-title: Cluster analysis on longitudinal data of patients with kidney dialysis using a smoothing cubic B-spline model publication-title: Int. J. Math. Stat. Comput. Sci. doi: 10.59543/ijmscs.v2i.8337 – volume: 34 issue: 1 year: 2024 ident: CR16 article-title: Registration-enhanced multiple instance learning for cervical cancer whole slide image classification publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22952 – ident: CR30 – volume: 2 start-page: 8 issue: 2 year: 2021 end-page: 58 ident: CR5 article-title: An efficient machine learning-based cervical cancer detection and classification publication-title: J. Cybersecur. Inf. Manag. – volume: 11 start-page: 55 issue: 1 year: 2022 ident: CR4 article-title: Equilibrium optimization algorithm with ensemble learning based cervical precancerous lesion classification model publication-title: Healthcare doi: 10.3390/healthcare11010055 – volume: 71 year: 2022 ident: CR14 article-title: Computer aided diagnosis system for cervical lymph nodes in CT images using deep learning publication-title: Biomedical Signal Process. Control doi: 10.1016/j.bspc.2021.103158 – volume: 2022 start-page: 1 year: 2022 end-page: 17 ident: CR2 article-title: Hybrid model for detection of cervical cancer using causal analysis and machine learning techniques publication-title: Comput. Math. Methods Med. doi: 10.1155/2022/4688327 – volume: 23 start-page: 570 issue: 2 year: 2023 ident: CR24 article-title: Incorporating a novel dual transfer learning approach for medical images publication-title: Sensors doi: 10.3390/s23020570 – ident: CR33 – volume: 175 start-page: 103361 year: 2023 ident: CR8 article-title: Skin disease detection using deep learning publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103361 – start-page: 1491 year: 2017 end-page: 1502 ident: CR6 article-title: Computer aided diagnosis of cervical cancer using HoG features and multi classifiers publication-title: Intelligent Communication, Control and Devices – volume: 9 start-page: 83876 year: 2021 end-page: 83886 ident: CR21 article-title: Incorporating artificial fish swarm in ensemble classification framework for recurrence prediction of cervical cancer publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3087022 – volume: 238 year: 2024 ident: CR12 article-title: Enhancing crop productivity and sustainability through disease identification in maize leaves: Exploiting a large dataset with an advanced vision transformer model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122099 – ident: CR19 – volume: 42 year: 2023 ident: CR17 article-title: Early screening of cervical cancer based on tissue Raman spectroscopy combined with deep learning algorithms publication-title: Photodiagnosis Photodynamic Ther. doi: 10.1016/j.pdpdt.2023.103557 – volume: 18 start-page: 101 issue: 1 year: 2024 end-page: 111 ident: CR18 article-title: Deep learning-based ensemble approach for conventional pap smear image classification publication-title: ECTI Trans. Comput. Inf. Technol. – ident: CR31 – ident: CR13 – ident: CR11 – ident: CR32 – volume: 4 start-page: 167 issue: 1 year: 2023 end-page: 180 ident: CR23 article-title: Classification of breast cancer images using new transfer learning techniques publication-title: Iraqi J. Comput. Sci. Math. – volume: 36 start-page: 347 issue: 2 year: 2021 end-page: 360 ident: CR9 article-title: CytoBrain: Cervical cancer screening system based on deep learning technology publication-title: J. Comput. Sci. Technol. doi: 10.1007/s11390-021-0849-3 – volume: 9 start-page: 788376 year: 2021 ident: CR7 article-title: Machine learning assisted cervical cancer detection publication-title: Front. Public Health doi: 10.3389/fpubh.2021.788376 – volume: 11 start-page: 763 issue: 2 year: 2023 end-page: 771 ident: CR15 article-title: Fusing expert knowledge and deep learning for accurate cervical cancer diagnosis in pap smear images: A multiscale U-Net with fuzzy automata publication-title: Int. J. Intell. Syst. Appl. Eng. – ident: CR26 – volume: 150 start-page: 741 issue: 5 year: 2022 end-page: 752 ident: CR1 article-title: The development of ‘automated visual evaluation’ for cervical cancer screening: The promise and challenges in adapting deep-learning for clinical testing publication-title: Int. J. Cancer doi: 10.1002/ijc.33879 – ident: CR20 – volume: 14 start-page: 1159 issue: 5 year: 2022 ident: CR10 article-title: A deep learning model for cervical cancer screening on liquid-based cytology specimens in whole slide images publication-title: Cancers doi: 10.3390/cancers14051159 – volume: 65 start-page: 726 issue: 3 year: 2024 end-page: 737 ident: CR29 article-title: Residual U-Net approach for thyroid nodule detection and classification from thyroid ultrasound images publication-title: Automatika doi: 10.1080/00051144.2024.2316503 – volume: 2022 start-page: 1 year: 2022 ident: 62773_CR2 publication-title: Comput. Math. Methods Med. doi: 10.1155/2022/4688327 – volume: 65 start-page: 726 issue: 3 year: 2024 ident: 62773_CR29 publication-title: Automatika doi: 10.1080/00051144.2024.2316503 – volume: 2 start-page: 8 issue: 2 year: 2021 ident: 62773_CR5 publication-title: J. Cybersecur. Inf. Manag. – volume: 175 start-page: 103361 year: 2023 ident: 62773_CR8 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103361 – volume: 9 start-page: 788376 year: 2021 ident: 62773_CR7 publication-title: Front. Public Health doi: 10.3389/fpubh.2021.788376 – volume: 71 year: 2022 ident: 62773_CR14 publication-title: Biomedical Signal Process. Control doi: 10.1016/j.bspc.2021.103158 – ident: 62773_CR19 doi: 10.32604/cmc.2022.020713 – volume: 34 issue: 1 year: 2024 ident: 62773_CR16 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22952 – ident: 62773_CR11 doi: 10.1007/s13042-024-02110-w – volume: 18 start-page: 101 issue: 1 year: 2024 ident: 62773_CR18 publication-title: ECTI Trans. Comput. Inf. Technol. – volume: 5 start-page: 19 issue: 1 year: 2022 ident: 62773_CR3 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-022-00559-z – volume: 36 start-page: 347 issue: 2 year: 2021 ident: 62773_CR9 publication-title: J. Comput. Sci. Technol. doi: 10.1007/s11390-021-0849-3 – ident: 62773_CR13 doi: 10.1109/ACCESS.2024.3351883 – volume: 53 start-page: 15603 issue: 12 year: 2023 ident: 62773_CR28 publication-title: Appl. Intell. doi: 10.1007/s10489-022-04299-1 – volume: 11 start-page: 55 issue: 1 year: 2022 ident: 62773_CR4 publication-title: Healthcare doi: 10.3390/healthcare11010055 – volume: 238 year: 2024 ident: 62773_CR12 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122099 – volume: 23 start-page: 570 issue: 2 year: 2023 ident: 62773_CR24 publication-title: Sensors doi: 10.3390/s23020570 – volume: 35 start-page: 18813 issue: 25 year: 2023 ident: 62773_CR25 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08757-w – ident: 62773_CR20 doi: 10.1109/ICSSIT55814.2023.10060959 – volume: 221 year: 2023 ident: 62773_CR27 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119741 – ident: 62773_CR31 doi: 10.1007/s00521-024-09497-1 – ident: 62773_CR32 doi: 10.1109/ACCESS.2024.3350212 – volume: 2 start-page: 85 year: 2024 ident: 62773_CR22 publication-title: Int. J. Math. Stat. Comput. Sci. doi: 10.59543/ijmscs.v2i.8337 – volume: 4 start-page: 167 issue: 1 year: 2023 ident: 62773_CR23 publication-title: Iraqi J. Comput. Sci. Math. – volume: 11 start-page: 763 issue: 2 year: 2023 ident: 62773_CR15 publication-title: Int. J. Intell. Syst. Appl. Eng. – ident: 62773_CR33 – volume: 42 year: 2023 ident: 62773_CR17 publication-title: Photodiagnosis Photodynamic Ther. doi: 10.1016/j.pdpdt.2023.103557 – ident: 62773_CR30 doi: 10.1109/JSTARS.2023.3339297 – start-page: 1491 volume-title: Intelligent Communication, Control and Devices year: 2017 ident: 62773_CR6 – ident: 62773_CR26 doi: 10.1016/j.knosys.2024.111482 – volume: 14 start-page: 1159 issue: 5 year: 2022 ident: 62773_CR10 publication-title: Cancers doi: 10.3390/cancers14051159 – volume: 9 start-page: 83876 year: 2021 ident: 62773_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3087022 – volume: 150 start-page: 741 issue: 5 year: 2022 ident: 62773_CR1 publication-title: Int. J. Cancer doi: 10.1002/ijc.33879 |
| SSID | ssj0000529419 |
| Score | 2.454525 |
| Snippet | Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV)... Abstract Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12076 |
| SubjectTerms | 639/705/117 639/705/258 Algorithms Archimedes Optimization Algorithm Cervical cancer Classification Early Detection of Cancer - methods Female Human papillomavirus Humanities and Social Sciences Humans Lesions Long short-term memory Low income areas Machine Learning Medical image multidisciplinary Optimization algorithms Precancerous Conditions - diagnosis Science Science (multidisciplinary) Transfer learning Uterine Cervical Neoplasms - diagnosis Uterine Cervical Neoplasms - virology |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0IICEhfe0IWCjMQNosZ2nI1PqKBWHKD0AKg3y6_sVtpmlyStypUvZ8bxploevXC1J5InM54Zz5OQVy73qgbNnHFZefRWqcy6IDOAry2YEFbEurVvH6eHh9XxsTpKDrcupVWuZWIU1H7p0Ee-C6YtaE9Uh29X3zOcGoXR1TRC4zq5AZYNw5SuT_xo9LFgFKtgKtXK5KLa7UBfYU0ZL7KST6ciu9jQR7Ft_99szT9TJn-Lm0Z1dHD3fxG5R-4kQ5TuDZxzn1wLzQNyaxhN-eMh-bnfzGNyAHVRmgDoCoQjLrXLs44uArrZOupDH5O5GmoagEVbHJOPIr0pJtXPaGxuC0iFjn4GAXWaKj_p3mIG5-rnpxSdwbSPJnRoaRpkMXtEvh7sf3n_IUvzGjInC9ZnwougpOG-9I4HeCepSoRaGQ6CwZVG2GANqytZ89yY2vrgWa2CKRxITeZkLh6TrWbZhG1ClcutYjiNxlYFdlBUvrCeO-skvJytnBC2ppp2qZk5ztRY6BhUF5UeKK2B0jpSWl9MyOvxm9XQyuNK6HfIDCMktuGOC8t2ptOt1qUoAOXSY8_7Qgpli1IC7lMuPTN18BOys-YBnWRDpy8ZYEJejttwqzFUY5oAREQYxgQ85QDTJwPnjSfB9j1cctipNnhy46ibO83JPHYOB8WGT2g1IW_W7Ht5rn__i6dXo_GM3OZ4o3KsbtwhW317Fp6Tm-68P-naF_FK_gJgv0HN priority: 102 providerName: ProQuest |
| Title | Enhanced cervical precancerous lesions detection and classification using Archimedes Optimization Algorithm with transfer learning |
| URI | https://link.springer.com/article/10.1038/s41598-024-62773-x https://www.ncbi.nlm.nih.gov/pubmed/38802525 https://www.proquest.com/docview/3060641028 https://www.proquest.com/docview/3061135855 https://pubmed.ncbi.nlm.nih.gov/PMC11130149 https://doaj.org/article/6343e96d63244539b465dc2725d1afed |
| Volume | 14 |
| WOSCitedRecordID | wos001233645300092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4k1KWRmJG0SN7TiJjy3aCiS6rBCg5RT5ld2VtmmVhKpc-eXMONmly_PCxYd4VvLOjOdhj78h5LlNnKrAM8dcFg5Pq1RsrJcx0FcGQggjwru1T2_zyaSYzdT0SqsvrAnr4YF7xh1kIhVeZQ5hxVMplEkz6SzPuXRMV96h9U1ydSWZ6lG9uUqZGl7JJKI4aMFT4WsynsYZz3MRX255ogDY_7so89diyZ9uTIMjOr5Dbg8RJD3sV36XXPP1PXKz7yn59T75Nq4X4Vaf2mAGgPQcrBp-aiDLpyuP52Mtdb4LVVg11TXQYhCNVUNBUBSr4ec0oNLCmnxL34FlOR2ebNLD1fysWXaLU4qnuLQLsa9v6NCBYv6AfDwef3j1Oh4aLcRWpqyLhQMWS81dBpz1kOCoQvhKaQ472mZaGG80qwpZ8UTryjjvWKW8Ti2YO2ZlIh6Snfqs9o8JVTYximEbGVOkCH2oXGoct8ZKSHmNjAhbM720Awo5NsNYleE2XBRlL6gSBFUGQZWXEXmx-c15j8HxV-ojlOWGEvGzwwfQqnLQqvJfWhWR_bUmlMOmbkvIriCAw4gsIs8207Ad8Y5F1x6EiDSMCcjB4J8-6hVnsxLE3eGSw0yxpVJbS92eqZeLAPkNHglzXxWRl2vt-7GuP_Ni73_w4gm5xXHbJPh4cZ_sdM0X_5TcsBfdsm1G5Ho-y8NYjMju0XgyfT8KexHGEz7FMYdxd_rmZPr5O1WiOkw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGFN22ggJHgRKMmdpyNDwgVaNWqy9JDQb2Z-JHdStvsskmhvfKD-I3MOMlWy6O3HrjGk8iefDNjj-dByAsTWVmAZQ6ZyCx6q2SojRMh0BcathCa-7y1z_3eYJAdHsr9JfKzy4XBsMpOJ3pFbScGfeQbsLUF64nm8M30a4hdo_B2tWuh0cBiz519hyNb9Xr3Pfzfl4xtbx282wnbrgKhEUlch9xyJ0XObGoNc7Cblxl3hcwZwNekOddO53GRiYJFeV5o62xcSJcnBmQ7NiLi8N0r5GqClcUwVJDtz306eGuWxLLNzYl4tlGBfcQcNpaEKev1eHi6YP98m4C_7W3_DNH87Z7Wm7_t2_8b4-6QW-1Gm242knGXLLnyHrnetN48u09-bJUjH_xAjdeWQDoF5Y-PZpOTio4duhEral3tg9VKmpdAi2cNDK7yeKaYNDCkvngvMNFV9CMo4OM2s5VujofAh3p0TNHZTWt_RHAz2jbqGD4gny6FAQ_Jcjkp3Sqh0kRaxthtR2cJVoiUNtGWGW2EYFyLgMQdSpRpi7Vjz5Cx8kEDPFMNshQgS3lkqdOAvJq_M21KlVxI_RbBN6fEMuP-wWQ2VK3WUilPYMmpxZr-ieBSJ6mAtfeYsHFeOBuQtQ5zqtV9lToHXECez4dBa-FVVF46-IlIE8ccjqqw0pUG6fOZYHkiJhiMZAsysDDVxZHyaOQro4PhRheBDMh6Jy7n8_o3Lx5dvIxn5MbOwYe-6u8O9h6TmwylOcJMzjWyXM9O3BNyzXyrj6rZU68OKPly2WL0C9C8oYI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jc9MwFNaUFBgu7EuggJiBE3hiS5ZjHRim0GbotIQcgCknYS1OOpM6IXahvfKz-HW8J9vphKW3Hrhazx5J_t6ip7cQ8tSEVuagmQMmUoveKhlo40QA9LkGE0Jzn7f2aa8_HKb7-3K0Rn62uTAYVtnKRC-o7cygj7wHpi1oT1SHvbwJixhtDV7NvwbYQQpvWtt2GjVEdt3Jdzi-lS93tuBfP2NssP3hzdug6TAQGBFHVcAtd1JkzCbWMAeWvUy5y2XGAMomybh2OovyVOQszLJcW2ejXLosNsDnkREhh-9eIOtgksesQ9ZHO-9Gn5ceHrxDiyPZZOqEPO2VoC0xo43FQcL6fR4cr2hD3zTgb5bunwGbv93aemU4uPY_b-N1crUxwelmzTM3yJorbpJLdVPOk1vkx3Yx8WER1Hg5CqRzUAv4aDE7KunUoYOxpNZVPoytoFkBtHgKwbArj3SK6QRj6sv6woa6kr4H0XzY5LzSzekY9qGaHFJ0g9PKHx7cgjYtPMa3ycdz2YA7pFPMCnePUGlCLSPsw6PTGGtHShtry4w2QjCuRZdELWKUacq4YzeRqfLhBDxVNcoUoEx5lKnjLnm-fGdeFzE5k_o1AnFJiQXI_YPZYqwaeaYSHsOSE4vV_mPBpY4TAWvvM2GjLHe2SzZa_KlGKpbqFHxd8mQ5DPIML6mywsFPRJoo4nCIhZXerVG_nAkWLmKCwUi6wg8rU10dKQ4mvmY6qHR0HsguedGyzum8_r0X989exmNyGbhH7e0Mdx-QKwwZO8QUzw3SqRZH7iG5aL5VB-XiUSMbKPly3nz0C-Sbq8s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cervical+precancerous+lesions+detection+and+classification+using+Archimedes+Optimization+Algorithm+with+transfer+learning&rft.jtitle=Scientific+reports&rft.au=Allogmani%2C+Ayed+S&rft.au=Mohamed%2C+Roushdy+M&rft.au=Al-Shibly%2C+Nasser+M&rft.au=Ragab%2C+Mahmoud&rft.date=2024-05-27&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=12076&rft_id=info:doi/10.1038%2Fs41598-024-62773-x&rft_id=info%3Apmid%2F38802525&rft.externalDocID=38802525 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |