Application of multi-modal temporal neural network based on enhanced sparrow optimization in lithium battery life prediction

This paper introduces the DeNet-Mamba-DC-SCSSA network, an advanced solution for predicting the Remaining Useful Life (RUL) of lithium-ion batteries, crucial for the safety and efficiency management of electric vehicles. Combining the robust Denoising Enhancement Network (DeNet), the Improved Sparro...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; pp. 27476 - 17
Main Authors: Liu, Zeyu, Du, Xiaofang, Shi, Yuhai
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 11.11.2024
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces the DeNet-Mamba-DC-SCSSA network, an advanced solution for predicting the Remaining Useful Life (RUL) of lithium-ion batteries, crucial for the safety and efficiency management of electric vehicles. Combining the robust Denoising Enhancement Network (DeNet), the Improved Sparrow Optimization Algorithm (SCSSA), the adept Mamba time-series model, and the proficient Dilated Convolution (DC), this model excels in precise noise handling and sophisticated feature extraction. DeNet diligently refines input data, mitigating noise interference, while Mamba skillfully captures sequential intricacies. DC, on the other hand, adeptly extracts features over varying time scales, ensuring meticulous RUL predictions.The model’s efficacy was rigorously tested on NASA and CALCE datasets and was benchmarked against cutting-edge algorithms. Remarkably, it reduced average RE and RMSE by 48.59% and 21.45%, respectively, showcasing its superior performance and accuracy. Further evaluation on the CALCE dataset against the latest methods affirmed its leading predictive precision and stability.The model’s robustness and practical applicability were further validated using real vehicle data from a new energy vehicle platform. In a challenging test, it accurately predicted the charging capacities corresponding to the mileage of four vehicles with minimal errors: 0.52 Ah, 1.03 Ah, 0.84 Ah, and 0.71 Ah. These results significantly surpassed those of other recent methods, highlighting the model’s exceptional generalizability and potential for real-world applications in electric vehicle battery management.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-78211-x