Evaluation metrics and statistical tests for machine learning

Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with statistics, it might be difficult to understand how to evaluate the performance of ML models and compare them with each other. Here, we introduce the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 14; číslo 1; s. 6086 - 14
Hlavní autori: Rainio, Oona, Teuho, Jarmo, Klén, Riku
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 13.03.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with statistics, it might be difficult to understand how to evaluate the performance of ML models and compare them with each other. Here, we introduce the most common evaluation metrics used for the typical supervised ML tasks including binary, multi-class, and multi-label classification, regression, image segmentation, object detection, and information retrieval. We explain how to choose a suitable statistical test for comparing models, how to obtain enough values of the metric for testing, and how to perform the test and interpret its results. We also present a few practical examples about comparing convolutional neural networks used to classify X-rays with different lung infections and detect cancer tumors in positron emission tomography images.
AbstractList Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with statistics, it might be difficult to understand how to evaluate the performance of ML models and compare them with each other. Here, we introduce the most common evaluation metrics used for the typical supervised ML tasks including binary, multi-class, and multi-label classification, regression, image segmentation, object detection, and information retrieval. We explain how to choose a suitable statistical test for comparing models, how to obtain enough values of the metric for testing, and how to perform the test and interpret its results. We also present a few practical examples about comparing convolutional neural networks used to classify X-rays with different lung infections and detect cancer tumors in positron emission tomography images.
Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with statistics, it might be difficult to understand how to evaluate the performance of ML models and compare them with each other. Here, we introduce the most common evaluation metrics used for the typical supervised ML tasks including binary, multi-class, and multi-label classification, regression, image segmentation, object detection, and information retrieval. We explain how to choose a suitable statistical test for comparing models, how to obtain enough values of the metric for testing, and how to perform the test and interpret its results. We also present a few practical examples about comparing convolutional neural networks used to classify X-rays with different lung infections and detect cancer tumors in positron emission tomography images.Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with statistics, it might be difficult to understand how to evaluate the performance of ML models and compare them with each other. Here, we introduce the most common evaluation metrics used for the typical supervised ML tasks including binary, multi-class, and multi-label classification, regression, image segmentation, object detection, and information retrieval. We explain how to choose a suitable statistical test for comparing models, how to obtain enough values of the metric for testing, and how to perform the test and interpret its results. We also present a few practical examples about comparing convolutional neural networks used to classify X-rays with different lung infections and detect cancer tumors in positron emission tomography images.
Abstract Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with statistics, it might be difficult to understand how to evaluate the performance of ML models and compare them with each other. Here, we introduce the most common evaluation metrics used for the typical supervised ML tasks including binary, multi-class, and multi-label classification, regression, image segmentation, object detection, and information retrieval. We explain how to choose a suitable statistical test for comparing models, how to obtain enough values of the metric for testing, and how to perform the test and interpret its results. We also present a few practical examples about comparing convolutional neural networks used to classify X-rays with different lung infections and detect cancer tumors in positron emission tomography images.
ArticleNumber 6086
Author Teuho, Jarmo
Klén, Riku
Rainio, Oona
Author_xml – sequence: 1
  givenname: Oona
  orcidid: 0000-0002-7775-7656
  surname: Rainio
  fullname: Rainio, Oona
  email: ormrai@utu.fi
  organization: Turku PET Centre, University of Turku and Turku University Hospital
– sequence: 2
  givenname: Jarmo
  orcidid: 0000-0001-9401-0725
  surname: Teuho
  fullname: Teuho, Jarmo
  organization: Turku PET Centre, University of Turku and Turku University Hospital
– sequence: 3
  givenname: Riku
  orcidid: 0000-0002-0982-8360
  surname: Klén
  fullname: Klén, Riku
  organization: Turku PET Centre, University of Turku and Turku University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38480847$$D View this record in MEDLINE/PubMed
BookMark eNp9UktPFTEYbQxGEPkDLswkbtwM9v1YGEMICgmJG103nT4uvZlpsZ0h-O8tdxCBBd20-XrO6en3nbdgL-XkAXiP4DGCRH6uFDEle4hpz7iAvL99BQ4wpKzHBOO9R-d9cFTrFrbFsKJIvQH7RFIJJRUH4MvZjRkXM8ecusnPJdrameS6OrdanaM1Yzf7Otcu5NJNxl7F5LvRm5Ji2rwDr4MZqz-63w_Br29nP0_P-8sf3y9OTy57yyiaeyKEs9wwwrhykLvBBz4EqQLlWAlFmXNhIJ4xg7zBxAXMMLfUOucUHBQmh-Bi1XXZbPV1iZMpf3Q2Ue8KuWy0Kc3s6LUUgVJEFQpuoGTAUiHFvJGDCJIb55rW11Xrehkm76xPczHjE9GnNyle6U2-0QgqIjhVTeHTvULJv5fWHD3Fav04muTzUjVWTCDOBaIN-vEZdJuXklqv7lCcIUIkbKgPjy09ePk3pgbAK8CWXGvx4QGCoL6Lg17joFsc9C4O-raR5DOSjfNu0u1bcXyZSlZqbe-kjS__bb_A-gvdwMot
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3584376
crossref_primary_10_1021_acsomega_5c00549
crossref_primary_10_3390_jimaging11020059
crossref_primary_10_1016_j_eswa_2025_128227
crossref_primary_10_1007_s11120_025_01140_x
crossref_primary_10_1016_j_bspc_2025_108470
crossref_primary_10_55056_jec_978
crossref_primary_10_1145_3742435
crossref_primary_10_1371_journal_pone_0328880
crossref_primary_10_1108_SEF_09_2024_0629
crossref_primary_10_3390_rs17172928
crossref_primary_10_1109_ACCESS_2025_3574451
crossref_primary_10_3390_w16202986
crossref_primary_10_1057_s41599_025_05490_8
crossref_primary_10_1016_j_jneumeth_2025_110555
crossref_primary_10_1016_j_tre_2024_103943
crossref_primary_10_7717_peerj_cs_2800
crossref_primary_10_1016_j_enbuild_2025_116465
crossref_primary_10_1109_ACCESS_2025_3555810
crossref_primary_10_1016_j_eswa_2025_128465
crossref_primary_10_1007_s11227_025_07522_1
crossref_primary_10_1016_j_econmod_2025_107225
crossref_primary_10_1109_ACCESS_2025_3600146
crossref_primary_10_1007_s13349_025_00908_y
crossref_primary_10_1016_j_compbiomed_2025_110347
crossref_primary_10_2196_66735
crossref_primary_10_1186_s13040_024_00410_z
crossref_primary_10_3390_s25103208
crossref_primary_10_1177_14759217251376610
crossref_primary_10_3390_s25082412
crossref_primary_10_1007_s11269_024_04069_3
crossref_primary_10_1016_j_cropro_2024_107035
crossref_primary_10_1007_s43621_025_01541_x
crossref_primary_10_1088_1361_6528_adf4ef
crossref_primary_10_1016_j_bir_2025_06_013
crossref_primary_10_1038_s41598_025_01860_z
crossref_primary_10_3390_systems12100415
crossref_primary_10_1007_s41060_025_00763_6
crossref_primary_10_1177_10732748251332803
crossref_primary_10_3390_w16223328
crossref_primary_10_1093_jamia_ocae290
crossref_primary_10_1038_s41598_025_08824_3
crossref_primary_10_1016_j_engappai_2024_109475
crossref_primary_10_1136_rmdopen_2024_004309
crossref_primary_10_1002_adma_202403411
crossref_primary_10_3390_app14083297
crossref_primary_10_1109_ACCESS_2025_3558878
crossref_primary_10_1016_j_jclepro_2024_143828
crossref_primary_10_3389_fdgth_2025_1484231
crossref_primary_10_1177_0272989X251343082
crossref_primary_10_1002_ima_23180
crossref_primary_10_3390_wevj16010036
crossref_primary_10_1016_j_neurol_2025_02_007
crossref_primary_10_1016_j_heliyon_2024_e38101
crossref_primary_10_1093_ofid_ofaf392
crossref_primary_10_1016_j_buildenv_2025_113286
crossref_primary_10_1016_j_mtchem_2025_102640
crossref_primary_10_3390_biomimetics10080488
crossref_primary_10_1016_j_ab_2024_115546
crossref_primary_10_2196_52794
crossref_primary_10_2196_58899
crossref_primary_10_1016_j_jpurol_2024_10_003
crossref_primary_10_1007_s12055_025_01941_8
crossref_primary_10_1016_j_imu_2025_101682
crossref_primary_10_1039_D5AN00117J
crossref_primary_10_1016_j_mtcomm_2024_111000
crossref_primary_10_1140_epjs_s11734_025_01720_x
crossref_primary_10_1158_1940_6207_CAPR_24_0253
crossref_primary_10_1016_j_ijpharm_2025_126046
crossref_primary_10_3390_diagnostics15182308
crossref_primary_10_1155_acis_9955073
crossref_primary_10_3390_su17167464
crossref_primary_10_1016_j_asoc_2024_112307
crossref_primary_10_3389_fgene_2025_1589999
crossref_primary_10_1007_s12539_025_00723_5
crossref_primary_10_1016_j_engappai_2025_111627
crossref_primary_10_1109_ACCESS_2025_3549271
crossref_primary_10_7717_peerj_cs_2333
crossref_primary_10_1109_ACCESS_2024_3434670
crossref_primary_10_1177_09544089251327716
crossref_primary_10_1016_j_jestch_2024_101883
crossref_primary_10_3390_agriengineering7010013
crossref_primary_10_1016_j_heliyon_2024_e39205
crossref_primary_10_2196_63701
crossref_primary_10_3390_metabo14090483
crossref_primary_10_1007_s00521_024_09897_3
crossref_primary_10_3390_molecules30143043
crossref_primary_10_1016_j_ecoenv_2025_118610
crossref_primary_10_1080_22797254_2025_2517381
crossref_primary_10_1007_s13246_025_01626_x
crossref_primary_10_1016_j_isci_2025_112593
crossref_primary_10_3389_fphys_2025_1659098
crossref_primary_10_1007_s13721_025_00556_8
crossref_primary_10_1007_s10439_024_03611_z
crossref_primary_10_3389_fdata_2025_1521653
crossref_primary_10_1016_j_ejvs_2024_07_003
crossref_primary_10_3390_rs17071189
crossref_primary_10_59400_sv3523
crossref_primary_10_1016_j_jsames_2025_105756
crossref_primary_10_1007_s42044_025_00288_y
crossref_primary_10_3390_fishes10070348
crossref_primary_10_1016_j_marenvres_2025_107170
crossref_primary_10_1016_j_scs_2025_106795
crossref_primary_10_1109_JSEN_2025_3587247
crossref_primary_10_1080_03091902_2025_2466834
crossref_primary_10_1016_j_intermet_2025_108921
crossref_primary_10_3390_en18102465
crossref_primary_10_1016_j_cscm_2024_e04106
crossref_primary_10_1007_s13369_025_10215_9
crossref_primary_10_1007_s10994_024_06701_0
crossref_primary_10_3389_fpsyt_2025_1648585
crossref_primary_10_1016_j_watres_2025_123884
crossref_primary_10_3390_s24165231
crossref_primary_10_1186_s12888_025_06536_6
crossref_primary_10_1007_s40171_025_00464_w
crossref_primary_10_1111_epi_18521
crossref_primary_10_1016_j_watres_2025_124616
crossref_primary_10_48084_etasr_10527
crossref_primary_10_1016_j_foodchem_2025_143346
crossref_primary_10_1016_j_semcancer_2025_02_009
crossref_primary_10_1038_s41598_024_71480_6
crossref_primary_10_1016_j_asoc_2024_112646
crossref_primary_10_1007_s11282_025_00839_w
crossref_primary_10_3390_ma18061386
crossref_primary_10_1016_j_compbiolchem_2025_108648
crossref_primary_10_1016_j_eswa_2025_127984
crossref_primary_10_1016_j_foreco_2025_123067
crossref_primary_10_3390_life15040594
crossref_primary_10_1016_j_ymeth_2025_03_023
crossref_primary_10_1371_journal_pone_0327137
crossref_primary_10_1007_s00603_024_04287_6
crossref_primary_10_1038_s41598_025_98366_5
crossref_primary_10_3390_app14219863
crossref_primary_10_3389_fmed_2025_1547588
crossref_primary_10_3390_a18060310
crossref_primary_10_3389_fmed_2025_1631565
crossref_primary_10_1016_j_cmpb_2025_109036
crossref_primary_10_1371_journal_pone_0319998
crossref_primary_10_1016_j_iot_2024_101284
crossref_primary_10_1007_s11600_025_01624_3
crossref_primary_10_1080_17477778_2025_2549092
crossref_primary_10_1140_epjds_s13688_025_00569_3
crossref_primary_10_1093_cjres_rsaf021
crossref_primary_10_1016_j_commatsci_2025_114200
crossref_primary_10_1016_j_jafrearsci_2024_105487
crossref_primary_10_3390_app142311342
crossref_primary_10_1016_j_engappai_2025_111815
crossref_primary_10_1093_nar_gkaf444
crossref_primary_10_1016_j_fuel_2025_136356
crossref_primary_10_1109_ACCESS_2025_3552529
crossref_primary_10_1051_itmconf_20246904008
crossref_primary_10_1093_bib_bbaf385
crossref_primary_10_3389_frai_2024_1325219
crossref_primary_10_3390_ijms26178407
crossref_primary_10_3390_polym17050700
crossref_primary_10_1177_20552076251350755
crossref_primary_10_1371_journal_pone_0312208
crossref_primary_10_1097_EDE_0000000000001803
crossref_primary_10_1186_s12879_025_10738_4
crossref_primary_10_3390_diagnostics15010105
crossref_primary_10_1038_s41598_025_02939_3
crossref_primary_10_1117_1_JMI_12_2_024007
crossref_primary_10_1080_08839514_2025_2515063
crossref_primary_10_1145_3699744
crossref_primary_10_15672_hujms_1608393
crossref_primary_10_3390_pharmaceutics17030308
crossref_primary_10_1021_acsomega_5c01473
crossref_primary_10_1145_3715159
crossref_primary_10_1016_j_jisa_2025_104096
crossref_primary_10_1021_acs_jcim_5c01609
crossref_primary_10_1109_ACCESS_2025_3607720
crossref_primary_10_1038_s41598_025_08004_3
crossref_primary_10_1186_s12859_025_06152_x
crossref_primary_10_3390_buildings14061878
crossref_primary_10_1002_spy2_403
crossref_primary_10_3390_s24175804
crossref_primary_10_1177_02537176241311196
crossref_primary_10_3389_fmars_2025_1549513
crossref_primary_10_3897_oneeco_10_e149055
crossref_primary_10_1109_ACCESS_2025_3593364
crossref_primary_10_3390_bioengineering12020144
crossref_primary_10_3390_app142210532
crossref_primary_10_3390_fi17040164
crossref_primary_10_1016_j_agwat_2025_109615
crossref_primary_10_1016_j_eij_2025_100775
crossref_primary_10_3389_fpls_2025_1513953
crossref_primary_10_1016_j_ijepes_2025_110526
crossref_primary_10_1016_j_seps_2025_102213
crossref_primary_10_1016_j_fuel_2024_134153
crossref_primary_10_3390_ijms252312942
crossref_primary_10_1016_j_forsciint_2025_112548
crossref_primary_10_1080_10589759_2025_2457593
crossref_primary_10_1080_1206212X_2025_2531033
crossref_primary_10_1109_ACCESS_2025_3540841
crossref_primary_10_1038_s41598_025_93505_4
crossref_primary_10_1016_j_jwpe_2025_108506
crossref_primary_10_1109_ACCESS_2025_3568831
crossref_primary_10_1186_s13321_025_01071_8
crossref_primary_10_3390_su16114411
crossref_primary_10_1016_j_compbiomed_2025_109988
crossref_primary_10_1088_1361_6560_adc96c
crossref_primary_10_3390_sci6040084
crossref_primary_10_1016_j_bspc_2024_107159
crossref_primary_10_1371_journal_pone_0327960
crossref_primary_10_1007_s00468_024_02573_y
crossref_primary_10_3390_buildings14123774
crossref_primary_10_3390_f16060938
crossref_primary_10_1038_s41598_025_04072_7
crossref_primary_10_3390_cancers17101604
crossref_primary_10_1016_j_mex_2025_103462
crossref_primary_10_1109_ACCESS_2025_3530927
crossref_primary_10_3390_fi17040176
crossref_primary_10_1007_s00330_025_11890_w
crossref_primary_10_1109_ACCESS_2024_3451012
crossref_primary_10_1007_s44352_025_00011_4
crossref_primary_10_3390_s25082496
crossref_primary_10_1007_s12672_025_02734_6
crossref_primary_10_1007_s10791_025_09549_7
crossref_primary_10_1016_j_eswa_2025_128871
crossref_primary_10_1007_s42452_025_06514_3
crossref_primary_10_1016_j_measurement_2025_118927
crossref_primary_10_1007_s10489_025_06461_x
crossref_primary_10_1016_j_isci_2025_111881
crossref_primary_10_1080_17452759_2024_2449171
crossref_primary_10_3389_frai_2025_1446876
crossref_primary_10_1007_s10044_025_01513_x
crossref_primary_10_1007_s10278_025_01535_1
crossref_primary_10_1007_s41060_024_00584_z
crossref_primary_10_1038_s41598_025_11116_5
crossref_primary_10_1109_ACCESS_2025_3526988
crossref_primary_10_1016_j_isatra_2024_12_008
crossref_primary_10_3390_s25020472
crossref_primary_10_1007_s11571_025_10253_x
crossref_primary_10_3389_fcimb_2025_1545646
crossref_primary_10_3390_min14111160
crossref_primary_10_1109_ACCESS_2025_3565901
crossref_primary_10_1109_ACCESS_2025_3584401
crossref_primary_10_3390_app15020861
crossref_primary_10_1108_IJPHM_08_2024_0089
crossref_primary_10_1016_j_compbiomed_2025_110392
crossref_primary_10_3390_electronics13183700
crossref_primary_10_1002_aisy_202500455
crossref_primary_10_1038_s41598_025_98473_3
crossref_primary_10_1007_s00521_025_11397_x
crossref_primary_10_1016_j_sab_2024_107111
crossref_primary_10_1038_s41598_025_09957_1
crossref_primary_10_1038_s41598_024_70545_w
crossref_primary_10_1186_s40537_025_01238_y
crossref_primary_10_1515_cppm_2025_0074
crossref_primary_10_3389_fneur_2025_1650350
crossref_primary_10_1016_j_ecoinf_2025_103260
crossref_primary_10_1016_j_compbiomed_2025_110267
crossref_primary_10_1109_JSEN_2024_3488278
crossref_primary_10_3390_land13122173
crossref_primary_10_1021_acs_jcim_4c02205
crossref_primary_10_3390_computers13100244
crossref_primary_10_1007_s10064_025_04161_x
crossref_primary_10_4271_10_08_04_0027
crossref_primary_10_1186_s13636_025_00416_3
crossref_primary_10_1016_j_epsr_2025_111973
crossref_primary_10_3390_su17030972
crossref_primary_10_1177_00368504251350763
crossref_primary_10_1038_s41598_025_12117_0
crossref_primary_10_1016_j_ejrad_2024_111712
crossref_primary_10_1016_j_ijbiomac_2025_139519
crossref_primary_10_1109_ACCESS_2024_3506773
crossref_primary_10_3390_app15010111
crossref_primary_10_1109_ACCESS_2024_3521497
crossref_primary_10_3390_electronics14010209
crossref_primary_10_1016_j_eswa_2025_126482
crossref_primary_10_3390_ph18060776
crossref_primary_10_1088_1741_2552_adf888
crossref_primary_10_1093_jamia_ocaf059
crossref_primary_10_1016_j_eswa_2025_127697
crossref_primary_10_1088_1752_7163_ad9b46
crossref_primary_10_1080_13683500_2025_2456080
crossref_primary_10_1016_j_atech_2025_100806
crossref_primary_10_1016_j_measurement_2025_118917
crossref_primary_10_1007_s11273_025_10066_z
crossref_primary_10_22399_ijcesen_1966
crossref_primary_10_1016_j_csbj_2024_10_019
crossref_primary_10_3390_neurosci6030073
crossref_primary_10_3389_fdata_2025_1522578
crossref_primary_10_1177_18724981241300907
crossref_primary_10_3390_app142210343
crossref_primary_10_3390_sym16101346
crossref_primary_10_1186_s41747_025_00599_6
crossref_primary_10_3390_jmse13091627
crossref_primary_10_3390_su17031261
crossref_primary_10_7717_peerj_cs_2436
crossref_primary_10_1038_s41746_025_01449_w
crossref_primary_10_1088_1361_6560_adf2f4
crossref_primary_10_1093_labmed_lmaf013
crossref_primary_10_1038_s41598_025_96100_9
crossref_primary_10_3390_technologies13010034
crossref_primary_10_1016_j_ejmp_2025_105066
crossref_primary_10_1148_radiol_241629
crossref_primary_10_1016_j_modpat_2024_100663
crossref_primary_10_1016_j_ejrai_2025_100030
crossref_primary_10_1007_s10343_024_01100_w
crossref_primary_10_1016_j_neunet_2025_107897
crossref_primary_10_3390_rs16132450
crossref_primary_10_1016_j_bios_2025_117394
crossref_primary_10_1016_j_compbiomed_2025_111107
crossref_primary_10_3390_data10030027
crossref_primary_10_1038_s41598_024_84360_w
crossref_primary_10_1016_j_ebiom_2024_105401
crossref_primary_10_1016_j_bspc_2025_108571
crossref_primary_10_1016_j_asoc_2025_113291
crossref_primary_10_3390_foods13243986
crossref_primary_10_1088_1757_899X_1327_1_012030
crossref_primary_10_1109_ACCESS_2025_3551152
crossref_primary_10_1186_s12984_025_01570_7
crossref_primary_10_3390_app15189894
crossref_primary_10_1016_j_addma_2025_104929
crossref_primary_10_3390_app15020933
crossref_primary_10_1016_j_asoc_2025_113298
crossref_primary_10_2196_72113
crossref_primary_10_1016_j_rineng_2025_105688
crossref_primary_10_3389_fvets_2024_1459553
crossref_primary_10_1016_j_engappai_2025_112186
crossref_primary_10_1007_s12016_025_09076_9
crossref_primary_10_1016_j_ins_2024_120786
crossref_primary_10_1021_acs_jcim_5c00927
crossref_primary_10_1080_1064119X_2025_2550000
crossref_primary_10_1038_s41598_024_70773_0
crossref_primary_10_1016_j_jbi_2025_104825
crossref_primary_10_1371_journal_pone_0305654
crossref_primary_10_1007_s42600_025_00417_3
crossref_primary_10_1016_j_sciaf_2024_e02398
crossref_primary_10_1007_s00330_024_11321_2
crossref_primary_10_1302_0301_620X_106B7_BJJ_2024_0136
crossref_primary_10_1142_S0218126625300065
crossref_primary_10_1016_j_aap_2024_107890
crossref_primary_10_1016_j_jclimf_2024_100058
crossref_primary_10_1002_cend_202400049
crossref_primary_10_1038_s41598_025_88251_6
crossref_primary_10_1080_13658816_2025_2512218
crossref_primary_10_1057_s41272_025_00546_5
crossref_primary_10_3390_foods14101808
crossref_primary_10_1007_s40860_025_00248_0
crossref_primary_10_1016_j_dcmed_2025_05_007
crossref_primary_10_1002_smsc_202500173
crossref_primary_10_1016_j_knosys_2025_114153
crossref_primary_10_1109_TDSC_2024_3520155
crossref_primary_10_1186_s12911_025_02865_4
Cites_doi 10.1007/s42600-023-00314-7
10.1007/s40846-023-00818-8
10.1016/j.eswa.2021.114820
10.2307/2531595
10.1093/biomet/52.3-4.591
10.1109/ACCESS.2020.3010287
10.1109/TIP.2011.2173206
10.1109/TNNLS.2021.3084827
10.7717/peerj.8052
10.1007/978-981-16-6265-2_3
10.1177/001316446002000104
10.1038/s41592-019-0686-2
10.1126/science.aaa8415
10.1002/cpe.3745
10.1145/1148170.1148262
10.1080/03610928008827904
10.1007/s10462-015-9433-y
10.1186/1471-2105-12-77
10.1016/j.jda.2012.10.002
10.1016/j.cell.2018.02.010
10.1109/ACCESS.2020.3031384
10.1007/978-3-319-24574-4_28
10.1109/IEMBS.2003.1279826
10.1007/978-3-031-13339-8
10.1016/j.asoc.2023.110020
10.1109/TKDE.2013.39
10.1201/9780429170140
10.1007/978-3-030-12939-2_43
10.1023/A:1009752403260
10.1002/9781118165881
10.1371/journal.pone.0177678
10.1007/s10278-023-00812-1
10.2307/1932409
10.1038/s41598-023-37603-1
10.1111/j.1469-8137.1912.tb05611.x
10.1007/978-3-319-05885-6_17
10.1080/00365510701666031
10.1177/0962280207087173
10.1016/j.compbiomed.2021.104319
10.1016/j.compbiomed.2021.104324
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1177/0962280214541852
10.1002/9781118346990
10.1177/1536867X0900900101
10.25080/Majora-92bf1922-011
10.1016/j.ifacol.2020.12.1888
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-56706-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_87f441491fdb43b289195ea8b7f86add
PMC10937649
38480847
10_1038_s41598_024_56706_x
Genre Journal Article
GrantInformation_xml – fundername: Suomen Kulttuurirahasto
  funderid: http://dx.doi.org/10.13039/501100003125
– fundername: Jenny ja Antti Wihurin Rahasto
  funderid: http://dx.doi.org/10.13039/501100004022
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-377dc6a53569d06dbef6bf89f46297945ddfb3e55a1ea23df2526c4cddd90b923
IEDL.DBID BENPR
ISICitedReferencesCount 420
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001185520800061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:42:00 EDT 2025
Tue Nov 04 02:06:21 EST 2025
Fri Sep 05 13:31:47 EDT 2025
Tue Oct 07 09:07:55 EDT 2025
Mon Jul 21 05:58:54 EDT 2025
Sat Nov 29 01:58:34 EST 2025
Tue Nov 18 22:24:37 EST 2025
Fri Feb 21 02:38:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Statistical testing
Medical images
Evaluation metrics
Machine learning
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-377dc6a53569d06dbef6bf89f46297945ddfb3e55a1ea23df2526c4cddd90b923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7775-7656
0000-0001-9401-0725
0000-0002-0982-8360
OpenAccessLink https://www.proquest.com/docview/2956513380?pq-origsite=%requestingapplication%
PMID 38480847
PQID 2956513380
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_87f441491fdb43b289195ea8b7f86add
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10937649
proquest_miscellaneous_2957166714
proquest_journals_2956513380
pubmed_primary_38480847
crossref_primary_10_1038_s41598_024_56706_x
crossref_citationtrail_10_1038_s41598_024_56706_x
springer_journals_10_1038_s41598_024_56706_x
PublicationCentury 2000
PublicationDate 2024-03-13
PublicationDateYYYYMMDD 2024-03-13
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Levene, Olkin, Hotelling (CR56) 1960
Debats, Litjens, Huisman (CR6) 2019; 7
Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, Müller (CR52) 2011; 12
CR36
CR34
Kermany, Goldbaum, Cai (CR63) 2018; 172
Corder, Foreman (CR43) 2009
Bartlett (CR55) 1937; 160
Xiao, Ye, Esteves, Rong (CR29) 2016; 28
Tohka, Van Gils (CR12) 2021; 132
Qin, Hotilovac (CR50) 2008; 17
Lantz (CR21) 2023
Manning, Schutze (CR25) 1999
Jekel (CR40) 2007
Shapiro, Wilk (CR54) 1965; 52
Jaccard (CR33) 1912; 11
Kim, Lee (CR46) 2017; 26
Youden (CR18) 1950; 3
Bethea, Duran, Boullion (CR53) 1995
Pepe, Longton, Janes (CR23) 2009; 9
DeLong, DeLong, Clarke-Pearson (CR49) 1988; 44
CR5
CR8
CR7
Yilmaz, Demirhan (CR27) 2023; 134
CR48
Dehmer, Basak (CR14) 2012
Planche, Andres (CR10) 2019
Santafe, Inza, Lozano (CR11) 2015; 44
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Jarrod Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Axalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (CR41) 2020; 17
Fox, Weisberg (CR57) 2019
Brunet, Vrscay, Wang (CR35) 2011; 21
(CR39) 2021
Sørensen (CR31) 1948; 5
Trajman, Luiz (CR47) 2008; 68
Sarkar, Sahoo (CR32) 2022
CR59
CR58
CR13
Šimundić (CR15) 2009; 19
Small Casler, Gawlik (CR16) 2022
Cohen (CR20) 1960; 20
Li, Liu, Yang, Peng, Zhou (CR9) 2021; 33
Rainio, Han, Teuho, Nesterov, Oikonen, Piirola, Laitinen, Tättäläinen, Knuuti, Klén (CR60) 2023; 36
Iman, Davenport (CR45) 1980; 9
Rahman, Khandakar, Qiblawey, Tahir, Kiranyaz, Kashem, Islam, Maadeed, Zughaier, Khan, Chowdhury (CR62) 2021; 132
Salzberg (CR44) 1997; 1
Demšar (CR4) 2006; 7
Lang, Secic (CR42) 2006
Rainio, Lahti, Anttinen, Ettala, Seppänen, Boström, Kemppainen, Klén (CR68) 2023
Jordan, Mitchell (CR1) 2015; 349
Zhang, Zhou (CR28) 2013; 26
Bertolini, Mezzogori, Neroni, Zammori (CR3) 2021; 175
Fradkov (CR2) 2020; 53
Hellström, Liedes, Rainio, Malaspina, Kemppainen, Klén (CR65) 2023; 13
Cox, Vladescu (CR17) 2023
Ronneberger, Fischer, Brox, Navab, Hornegger, Wells, Frangi (CR67) 2015
CR26
Emmert-Streib, Moutari, Dehmer (CR19) 2023
CR24
Dice (CR30) 1945; 26
Boughorbel, Jarray, El-Anbari (CR22) 2017; 12
Chowdhury, Rahman, Khandakar, Mazhar, Kadir, Mahbub, Islam, Khan, Iqbal, Al-Emadi, Reaz, Islam (CR61) 2020; 2020
van Rossum, Drake (CR38) 2009
Nakas, Bantis, Gatsonis (CR51) 2023
Rahman, Khandakar, Kadir, Islam, Islam, Mahbub, Ayari, Chowdhury (CR64) 2020; 8
Liedes, Hellström, Rainio, Murtojärvi, Malaspina, Hirvonen, Klén, Kemppainen (CR66) 2023
Dupret, Piwowarski (CR37) 2013; 18
MI Jordan (56706_CR1) 2015; 349
MEH Chowdhury (56706_CR61) 2020; 2020
AL Fradkov (56706_CR2) 2020; 53
ML Zhang (56706_CR28) 2013; 26
56706_CR8
DJ Cox (56706_CR17) 2023
C Manning (56706_CR25) 1999
56706_CR7
JF Jekel (56706_CR40) 2007
56706_CR5
B Lantz (56706_CR21) 2023
X Robin (56706_CR52) 2011; 12
DS Kermany (56706_CR63) 2018; 172
J Liedes (56706_CR66) 2023
J Cohen (56706_CR20) 1960; 20
P Jaccard (56706_CR33) 1912; 11
S Boughorbel (56706_CR22) 2017; 12
56706_CR36
56706_CR34
G van Rossum (56706_CR38) 2009
OA Debats (56706_CR6) 2019; 7
F Emmert-Streib (56706_CR19) 2023
AE Yilmaz (56706_CR27) 2023; 134
J Demšar (56706_CR4) 2006; 7
O Ronneberger (56706_CR67) 2015
56706_CR26
56706_CR24
WJ Youden (56706_CR18) 1950; 3
R Core Team (56706_CR39) 2021
(56706_CR16) 2022
Z Li (56706_CR9) 2021; 33
SS Shapiro (56706_CR54) 1965; 52
H Hellström (56706_CR65) 2023; 13
AM Šimundić (56706_CR15) 2009; 19
M Bertolini (56706_CR3) 2021; 175
T Sørensen (56706_CR31) 1948; 5
G Qin (56706_CR50) 2008; 17
M Dehmer (56706_CR14) 2012
M Pepe (56706_CR23) 2009; 9
T Rahman (56706_CR62) 2021; 132
LR Dice (56706_CR30) 1945; 26
C Xiao (56706_CR29) 2016; 28
J Fox (56706_CR57) 2019
S Kim (56706_CR46) 2017; 26
56706_CR59
T Rahman (56706_CR64) 2020; 8
56706_CR58
56706_CR13
D Brunet (56706_CR35) 2011; 21
O Rainio (56706_CR68) 2023
M Sarkar (56706_CR32) 2022
J Tohka (56706_CR12) 2021; 132
GW Corder (56706_CR43) 2009
O Rainio (56706_CR60) 2023; 36
G Dupret (56706_CR37) 2013; 18
G Santafe (56706_CR11) 2015; 44
SL Salzberg (56706_CR44) 1997; 1
H Levene (56706_CR56) 1960
RL Iman (56706_CR45) 1980; 9
A Trajman (56706_CR47) 2008; 68
CT Nakas (56706_CR51) 2023
B Planche (56706_CR10) 2019
P Virtanen (56706_CR41) 2020; 17
ER DeLong (56706_CR49) 1988; 44
RM Bethea (56706_CR53) 1995
TA Lang (56706_CR42) 2006
56706_CR48
MS Bartlett (56706_CR55) 1937; 160
38977765 - Sci Rep. 2024 Jul 8;14(1):15724. doi: 10.1038/s41598-024-66611-y
References_xml – year: 1999
  ident: CR25
  publication-title: Foundations of Statistical Natural Language Processing
– year: 2023
  ident: CR21
  publication-title: Machine Learning with R: Learn Techniques for Building and Improving Machine Learning Models, from Data Preparation to Model Tuning, Evaluation, and Working with Big Data
– start-page: 234
  year: 2015
  end-page: 241
  ident: CR67
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. MICCAI 2015
– year: 2009
  ident: CR43
  publication-title: Nonparametric Statistics for Non-statisticians
– volume: 17
  start-page: 207
  issue: 2
  year: 2008
  end-page: 221
  ident: CR50
  article-title: Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test
  publication-title: Stat. Methods Med. Res.
– start-page: 309
  year: 2022
  end-page: 335
  ident: CR32
  article-title: Intelligent image segmentation methods using deep convolutional neural network
  publication-title: Biomedical Signal and Image Processing with Artificial Intelligence
– volume: 33
  start-page: 6999
  issue: 12
  year: 2021
  ident: CR9
  article-title: A survey of convolutional neural networks: Analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 26
  start-page: 1819
  issue: 8
  year: 2013
  end-page: 1837
  ident: CR28
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 9
  start-page: 571
  year: 1980
  end-page: 595
  ident: CR45
  article-title: Approximations of the critical region of the Friedman statistic
  publication-title: Commun. Stat.
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  end-page: 272
  ident: CR41
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
– volume: 132
  year: 2021
  ident: CR12
  article-title: Evaluation of machine learning algorithms for health and wellness applications: a tutorial
  publication-title: Comput. Biol. Med.
– year: 2009
  ident: CR38
  publication-title: Python 3 Reference Manual
– ident: CR8
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  end-page: 46
  ident: CR20
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
– ident: CR58
– volume: 13
  start-page: 10528
  year: 2023
  ident: CR65
  article-title: Classification of head and neck cancer from PET images using convolutional neural networks
  publication-title: Sci. Rep.
– year: 2019
  ident: CR10
  publication-title: Hands-On Computer Vision with TensorFlow 2: Leverage Deep Learning to Create Powerful Image Processing Apps with TensorFlow 2.0 and Keras
– volume: 44
  start-page: 837
  issue: 3
  year: 1988
  end-page: 45
  ident: CR49
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
  publication-title: Biometrics
– volume: 11
  start-page: 37
  issue: 2
  year: 1912
  end-page: 50
  ident: CR33
  article-title: The Distribution of the Flora in the Alpine Zone.1
  publication-title: New Phytol.
– year: 2021
  ident: CR39
  publication-title: R: A Language and Environment for Statistical Computing
– year: 2019
  ident: CR57
  publication-title: An R Companion to Applied Regression
– year: 1995
  ident: CR53
  publication-title: Statistical Methods for Engineers and Scientists
– volume: 68
  start-page: 77
  issue: 1
  year: 2008
  end-page: 80
  ident: CR47
  article-title: McNemar chi2 test revisited: Comparing sensitivity and specificity of diagnostic examinations
  publication-title: Scand. J. Clin. Lab Invest.
– ident: CR36
– volume: 3
  start-page: 32
  issue: 1
  year: 1950
  end-page: 35
  ident: CR18
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
– ident: CR5
– volume: 160
  start-page: 268
  year: 1937
  end-page: 282
  ident: CR55
  article-title: Properties of sufficiency and statistical tests
  publication-title: Proc. R. Stat. Soc. Ser. A
– ident: CR26
– volume: 1
  start-page: 317
  year: 1997
  end-page: 328
  ident: CR44
  article-title: On comparing classifiers: Pitfalls to avoid and a recommended approach
  publication-title: Data Min. Knowl. Discov.
– volume: 21
  start-page: 1488
  issue: 4
  year: 2011
  end-page: 1499
  ident: CR35
  article-title: On the mathematical properties of the structural similarity index
  publication-title: IEEE Trans. Image Process.
– volume: 53
  start-page: 1385
  issue: 2
  year: 2020
  end-page: 1390
  ident: CR2
  article-title: Early history of machine learning
  publication-title: IFAC-PapersOnLine
– volume: 175
  year: 2021
  ident: CR3
  article-title: Machine Learning for industrial applications: A comprehensive literature review
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR4
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 1
  issue: 4
  year: 1948
  end-page: 34
  ident: CR31
  article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons
  publication-title: K. Dan. Vidensk. Selsk.
– year: 2012
  ident: CR14
  publication-title: Statistical and Machine Learning Approaches for Network Analysis
– year: 2022
  ident: CR16
  publication-title: Laboratory Screening and Diagnostic Evaluation: An Evidence-Based Approach
– volume: 26
  start-page: 142
  issue: 1
  year: 2017
  end-page: 154
  ident: CR46
  article-title: Does McNemar’s test compare the sensitivities and specificities of two diagnostic tests?
  publication-title: Stat. Methods Med. Res.
– year: 2023
  ident: CR17
  publication-title: Statistics for Applied Behavior Analysis Practitioners and Researchers
– volume: 132
  year: 2021
  ident: CR62
  article-title: Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images
  publication-title: Comput. Biol. Med.
– volume: 52
  start-page: 591
  issue: 3–4
  year: 1965
  end-page: 611
  ident: CR54
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
– year: 2007
  ident: CR40
  publication-title: Epidemiology, Biostatistics, and Preventive Medicine
– volume: 134
  year: 2023
  ident: CR27
  article-title: Weighted kappa measures for ordinal multi-class classification performance
  publication-title: Appl. Soft Comput.
– volume: 12
  issue: 6
  year: 2017
  ident: CR22
  article-title: Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric
  publication-title: PLoS ONE
– volume: 18
  start-page: 49
  year: 2013
  end-page: 62
  ident: CR37
  article-title: Model based comparison of discounted cumulative gain and average precision
  publication-title: J. Discrete Algorithms
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  end-page: 260
  ident: CR1
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
– year: 2023
  ident: CR68
  article-title: New method of using a convolutional neural network for 2D intraprostatic tumor segmentation from PET images
  publication-title: Res. Biomed. Eng.
  doi: 10.1007/s42600-023-00314-7
– volume: 7
  year: 2019
  ident: CR6
  article-title: Lymph node detection in MR Lymphography: False positive reduction using multi-view convolutional neural networks
  publication-title: PeerJ
– year: 2023
  ident: CR66
  article-title: Automatic segmentation of head and neck cancer from PET-MRI data using deep learning
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-023-00818-8
– volume: 44
  start-page: 467
  year: 2015
  end-page: 508
  ident: CR11
  article-title: Dealing with the evaluation of supervised classification algorithms
  publication-title: Artif. Intell. Rev.
– volume: 36
  start-page: 1885
  issue: 4
  year: 2023
  ident: CR60
  article-title: Carimas: An extensive medical imaging data processing tool for research
  publication-title: J. Digit. Imaging
– ident: CR48
– volume: 9
  start-page: 1
  year: 2009
  ident: CR23
  article-title: Estimation and comparison of receiver operating characteristic curves
  publication-title: Stata J.
– volume: 8
  start-page: 191586
  year: 2020
  end-page: 191601
  ident: CR64
  article-title: Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization
  publication-title: IEEE Access
– volume: 19
  start-page: 203
  issue: 4
  year: 2009
  end-page: 211
  ident: CR15
  article-title: Measures of diagnostic accuracy: Basic definitions
  publication-title: EJIFCC
– start-page: 278
  year: 1960
  end-page: 292
  ident: CR56
  article-title: Robust tests for equality of variances
  publication-title: Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling
– ident: CR13
– volume: 2020
  start-page: 132665
  issue: 8
  year: 2020
  end-page: 132676
  ident: CR61
  article-title: Can AI help in screening Viral and COVID-19 pneumonia?
  publication-title: IEEE Access
– ident: CR34
– year: 2006
  ident: CR42
  publication-title: How to Report Statistics in Medicine: Annotated Guidelines for Authors, Editors, and Reviewers
– volume: 28
  start-page: 3866
  year: 2016
  end-page: 3878
  ident: CR29
  article-title: Using Spearman’s correlation coefficients for exploratory data analysis on big dataset
  publication-title: Concurr. Comput. Pract. Exp.
– year: 2023
  ident: CR51
  publication-title: ROC Analysis for Classification and Prediction in Practice
– volume: 12
  start-page: 77
  year: 2011
  ident: CR52
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinform.
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  end-page: 1131.e9
  ident: CR63
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
– ident: CR7
– ident: CR59
– year: 2023
  ident: CR19
  publication-title: Elements of Data Science, Machine Learning, and Artificial Intelligence Using R
– ident: CR24
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  end-page: 302
  ident: CR30
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 175
  year: 2021
  ident: 56706_CR3
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114820
– volume: 44
  start-page: 837
  issue: 3
  year: 1988
  ident: 56706_CR49
  publication-title: Biometrics
  doi: 10.2307/2531595
– year: 2023
  ident: 56706_CR68
  publication-title: Res. Biomed. Eng.
  doi: 10.1007/s42600-023-00314-7
– ident: 56706_CR8
– volume: 52
  start-page: 591
  issue: 3–4
  year: 1965
  ident: 56706_CR54
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
– volume: 2020
  start-page: 132665
  issue: 8
  year: 2020
  ident: 56706_CR61
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010287
– volume-title: Machine Learning with R: Learn Techniques for Building and Improving Machine Learning Models, from Data Preparation to Model Tuning, Evaluation, and Working with Big Data
  year: 2023
  ident: 56706_CR21
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2021
  ident: 56706_CR39
– volume: 21
  start-page: 1488
  issue: 4
  year: 2011
  ident: 56706_CR35
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2173206
– volume: 33
  start-page: 6999
  issue: 12
  year: 2021
  ident: 56706_CR9
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
– volume: 7
  start-page: 1
  year: 2006
  ident: 56706_CR4
  publication-title: J. Mach. Learn. Res.
– volume: 7
  year: 2019
  ident: 56706_CR6
  publication-title: PeerJ
  doi: 10.7717/peerj.8052
– volume: 160
  start-page: 268
  year: 1937
  ident: 56706_CR55
  publication-title: Proc. R. Stat. Soc. Ser. A
– ident: 56706_CR5
  doi: 10.1007/978-981-16-6265-2_3
– volume-title: Epidemiology, Biostatistics, and Preventive Medicine
  year: 2007
  ident: 56706_CR40
– volume-title: Statistics for Applied Behavior Analysis Practitioners and Researchers
  year: 2023
  ident: 56706_CR17
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 56706_CR20
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume-title: Foundations of Statistical Natural Language Processing
  year: 1999
  ident: 56706_CR25
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 56706_CR41
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– ident: 56706_CR59
– ident: 56706_CR34
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 56706_CR1
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 28
  start-page: 3866
  year: 2016
  ident: 56706_CR29
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.3745
– ident: 56706_CR36
  doi: 10.1145/1148170.1148262
– volume: 9
  start-page: 571
  year: 1980
  ident: 56706_CR45
  publication-title: Commun. Stat.
  doi: 10.1080/03610928008827904
– volume: 44
  start-page: 467
  year: 2015
  ident: 56706_CR11
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-015-9433-y
– ident: 56706_CR13
– volume: 12
  start-page: 77
  year: 2011
  ident: 56706_CR52
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-12-77
– volume: 18
  start-page: 49
  year: 2013
  ident: 56706_CR37
  publication-title: J. Discrete Algorithms
  doi: 10.1016/j.jda.2012.10.002
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  ident: 56706_CR63
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 8
  start-page: 191586
  year: 2020
  ident: 56706_CR64
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031384
– start-page: 234
  volume-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. MICCAI 2015
  year: 2015
  ident: 56706_CR67
  doi: 10.1007/978-3-319-24574-4_28
– ident: 56706_CR7
  doi: 10.1109/IEMBS.2003.1279826
– volume-title: Elements of Data Science, Machine Learning, and Artificial Intelligence Using R
  year: 2023
  ident: 56706_CR19
  doi: 10.1007/978-3-031-13339-8
– volume-title: Hands-On Computer Vision with TensorFlow 2: Leverage Deep Learning to Create Powerful Image Processing Apps with TensorFlow 2.0 and Keras
  year: 2019
  ident: 56706_CR10
– volume: 134
  year: 2023
  ident: 56706_CR27
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110020
– volume: 26
  start-page: 1819
  issue: 8
  year: 2013
  ident: 56706_CR28
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.39
– ident: 56706_CR58
– volume-title: ROC Analysis for Classification and Prediction in Practice
  year: 2023
  ident: 56706_CR51
  doi: 10.1201/9780429170140
– volume-title: Python 3 Reference Manual
  year: 2009
  ident: 56706_CR38
– volume-title: How to Report Statistics in Medicine: Annotated Guidelines for Authors, Editors, and Reviewers
  year: 2006
  ident: 56706_CR42
– ident: 56706_CR24
  doi: 10.1007/978-3-030-12939-2_43
– volume: 1
  start-page: 317
  year: 1997
  ident: 56706_CR44
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009752403260
– volume-title: Nonparametric Statistics for Non-statisticians
  year: 2009
  ident: 56706_CR43
  doi: 10.1002/9781118165881
– volume: 12
  issue: 6
  year: 2017
  ident: 56706_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177678
– volume: 36
  start-page: 1885
  issue: 4
  year: 2023
  ident: 56706_CR60
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-023-00812-1
– volume-title: An R Companion to Applied Regression
  year: 2019
  ident: 56706_CR57
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 56706_CR30
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 13
  start-page: 10528
  year: 2023
  ident: 56706_CR65
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-37603-1
– volume: 11
  start-page: 37
  issue: 2
  year: 1912
  ident: 56706_CR33
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: 56706_CR26
  doi: 10.1007/978-3-319-05885-6_17
– start-page: 278
  volume-title: Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling
  year: 1960
  ident: 56706_CR56
– volume: 68
  start-page: 77
  issue: 1
  year: 2008
  ident: 56706_CR47
  publication-title: Scand. J. Clin. Lab Invest.
  doi: 10.1080/00365510701666031
– volume: 17
  start-page: 207
  issue: 2
  year: 2008
  ident: 56706_CR50
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280207087173
– volume: 132
  year: 2021
  ident: 56706_CR62
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104319
– year: 2023
  ident: 56706_CR66
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-023-00818-8
– volume: 19
  start-page: 203
  issue: 4
  year: 2009
  ident: 56706_CR15
  publication-title: EJIFCC
– volume: 132
  year: 2021
  ident: 56706_CR12
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104324
– start-page: 309
  volume-title: Biomedical Signal and Image Processing with Artificial Intelligence
  year: 2022
  ident: 56706_CR32
– volume-title: Statistical Methods for Engineers and Scientists
  year: 1995
  ident: 56706_CR53
– volume: 3
  start-page: 32
  issue: 1
  year: 1950
  ident: 56706_CR18
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 26
  start-page: 142
  issue: 1
  year: 2017
  ident: 56706_CR46
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280214541852
– volume-title: Statistical and Machine Learning Approaches for Network Analysis
  year: 2012
  ident: 56706_CR14
  doi: 10.1002/9781118346990
– volume: 5
  start-page: 1
  issue: 4
  year: 1948
  ident: 56706_CR31
  publication-title: K. Dan. Vidensk. Selsk.
– volume-title: Laboratory Screening and Diagnostic Evaluation: An Evidence-Based Approach
  year: 2022
  ident: 56706_CR16
– volume: 9
  start-page: 1
  year: 2009
  ident: 56706_CR23
  publication-title: Stata J.
  doi: 10.1177/1536867X0900900101
– ident: 56706_CR48
  doi: 10.25080/Majora-92bf1922-011
– volume: 53
  start-page: 1385
  issue: 2
  year: 2020
  ident: 56706_CR2
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2020.12.1888
– reference: 38977765 - Sci Rep. 2024 Jul 8;14(1):15724. doi: 10.1038/s41598-024-66611-y
SSID ssj0000529419
Score 2.751196
Snippet Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with...
Abstract Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6086
SubjectTerms 639/705/117
639/705/531
Accuracy
Bronchopulmonary infection
Classification
Evaluation metrics
Humanities and Social Sciences
Image processing
Image Processing, Computer-Assisted - methods
Information processing
Learning algorithms
Lung cancer
Machine Learning
Mathematical models
Medical images
multidisciplinary
Neural networks
Neural Networks, Computer
Performance evaluation
Positron emission tomography
Science
Science (multidisciplinary)
Statistical analysis
Statistical testing
Supervised Machine Learning
Tomography
X-rays
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kVPAirZ9bq6zgTZdms_mao4rFgxQPCr2FfKpgt9L3Ku1_30l237PPz4vXTQKzk5nMDJn8fgDPMHplpKfaJGrWCcdCh7x3HVIwFBglfa4gru_00ZE5Psb316i-Sk_YBA88Ke7A6EwRW2CfoxeDp_qgR5mc8TobRc5ZTl_Keq4VUxOqN0fR4_xKhg3mYEGRqrwm46KTSlMZfbERiSpg_--yzF-bJX-6Ma2B6HAHbs8ZZPtyknwXbqTxDtycOCUv70LJjWf87vak0GWFRevG2JaXQxWUmdZSerlctJSutie1lzK1M3nEp3vw8fDNh9dvu5kjoQtS9Es6H3QMyslBKoxMRZ-y8tlgFooj-ZqMMfshSen65PgQM5dcBRFijMg8ZXf3YWs8HdNDaDlKlExhwKhFyMZnLxy5NAuDN0HkBvqVvmyYAcQLj8VXWy-yB2MnHVvSsa06thcNPF-v-TbBZ_x19quyDeuZBfq6fiCDsLNB2H8ZRAP7q020sz8uLP2bKkw2hjXwdD1MnlSuR9yYTs_rHCoele5FAw-mPV9LMhhhGAXyBsyGNWyIujkyfvlc0boLXpdWAht4sTKcH3L9WRd7_0MXj-AWLxZf-g-Hfdhanp2nx7AdvpPBnT2pLnMFzc4ZLQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Evaluation metrics and statistical tests for machine learning
URI https://link.springer.com/article/10.1038/s41598-024-56706-x
https://www.ncbi.nlm.nih.gov/pubmed/38480847
https://www.proquest.com/docview/2956513380
https://www.proquest.com/docview/2957166714
https://pubmed.ncbi.nlm.nih.gov/PMC10937649
https://doaj.org/article/87f441491fdb43b289195ea8b7f86add
Volume 14
WOSCitedRecordID wos001185520800061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iMyBxYV8CZRQkbhA1i9cToqgVSHQUIZCGkxXbcYtEM2UyReXf8-x4Ug1LL1x8sB3Jzlv82c_-HsALaTUTVOPexPI8I01uMlkWTSZxMSTSUqwOJK4f-HwuFgtZxwO3Pl6r3PjE4Kjt0vgz8r0SgbzPRSLy12ffM581ykdXYwqNHZh6pjIygen-wbz-OJ6y-DgWKWR8LZNXYq_HFcu_KitJRhnH7fTF1ooUiPv_hjb_vDT5W-Q0LEiHt_93KnfgVoSi6ZtBd-7Ctba7BzeG5JQ_74MH2ZEIPD31ebdMnzadTf0TpMDujN8iTl33KeLe9DRcymzTmIXi-AF8Pjz49PZdFpMtZIaSYo2OhlvDGlpRJm3OrG4d005IR1gp0WiptU5XLaVN0TZlZV1JS2aIsdbKXCNMfAiTbtm1jyHF-UmaM2mk5cQ4oZ0mDfqG3FRaGOISKDY_XJnIRO4TYnxTISJeCTUISaGQVBCSukjg5fjN2cDDcWXvfS_Hsafn0A4Vy9WxiiapBHeIBYksnNWk0rjzLCRtG6G5EwzdfgK7G_GpaNi9upRdAs_HZjRJH2dpunZ5HvrgLpTxgiTwaFCacSSVICJHRJCA2FKnraFut3RfTwLttyf-4ozIBF5tNO9yXP_-F0-unsZTuFl6Y_BXFKtdmKxX5-0zuG5-oCqtZrDDFzyUYhZtaxaOLbA8Kmtfciyn9fuj-ssv5hcurg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qCggu7KWBAkGCE0RNHK8HhNiqVh1GHIo0NxPbcUFqM2VmCu2f4jfy7CzVsPTWA9fYkRzne5vf8_sAnipnuGQGYxMn8oxWuc0UKapMoTGkyjF8HJu4jsR4LCcT9XEFfvZ3YUJZZa8To6J2UxvOyDcJOvKBi0Tmr46-ZYE1KmRXewqNFha79ekPDNnmL3fe4f99RsjW-72321nHKpBZRosFSpRwllesZFy5nDtTe268VJ5yohCdzDlvypqxqqgrUjpPGOGWWuecyo0KjQ5Q5V9CPS5CCZmYiOFMJ2TNaKG6uzl5KTfnaB_DHTZCM8YFBu8nS_Yv0gT8zbf9s0TztzxtNH9bN_63jbsJ1ztHO33dSsYtWKmb23Clpd48vQMhhOjanKeHgVXMztOqcWm4YBV7V-O76IUv5il69elhLDmt045jY_8ufLqQta_BajNt6nVIcT8Vy7myyglqvTTe0Ao1X25LIy31CRT9D9a267Me6D4OdMz3l1K3oNAICh1BoU8SeD68c9R2GTl39puAm2Fm6BAeH0xn-7pTOFoKj54uVYV3hpYG4-pCsbqSRnjJ0aglsNHDRXdqa67PsJLAk2EYFU7IIlVNPT2OczDG5qKgCdxrQTqspJRU5ujvJCCX4Lu01OWR5uuX2NQ8tDUTnKoEXvRIP1vXv_fi_vmf8Riubu99GOnRznj3AVwjQRBDMWa5AauL2XH9EC7b7wir2aMoySl8vmgJ-AU_QoWF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qyiIu7IVAgSDBCaJJHK8HhIAyomoZzQGk3kxsxwWJZsrMFNq_xq_j2VmqYemtB66JIznO97b4-fsAnihnuGQGaxMn8oxWuc0UKapMYTCkyjG8HElcd8VkIvf21HQNfvZnYUJbZe8To6N2Mxv-kY8IJvJBi0TmI9-1RUy3xi8Pv2VBQSrstPZyGi1EduqTH1i-LV5sb-G3fkrI-O2HN--yTmEgs4wWS7Qu4SyvWMm4cjl3pvbceKk85UQhUplz3pQ1Y1VRV6R0njDCLbXOOZUbFUgP0P1fEJSxYF3vyXT4vxN20GihunM6eSlHC4yV4TwboRnjAgv545VYGCUD_pbn_tmu-duebQyF42v_8yJeh6tdAp6-ai3mBqzVzU241EpyntyCUFp09OfpQVAbs4u0alwaDl5FTmt8FrPz5SLFbD89iK2oddppb-zfho_nMvcNWG9mTX0XUlxbxXKurHKCWi-NN7RCj5jb0khLfQJF_7G17fjXgwzIVx37AEqpW4BoBIiOANHHCTwbnjls2UfOHP06YGgYGZjD44XZfF93jkhL4TEDpqrwztDSYL1dKFZX0ggvOQa7BDZ76OjOnS30KW4SeDzcRkcUdpeqpp4dxTFYe3NR0ATutIAdZlJKKnPMgxKQK1BemerqnebL50h2HujOBKcqgec96k_n9e-1uHf2azyCywh8vbs92bkPV0iwydCjWW7C-nJ-VD-Ai_Y7omr-MBp1Cp_O2wB-AXmwjlI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+metrics+and+statistical+tests+for+machine+learning&rft.jtitle=Scientific+reports&rft.au=Rainio%2C+Oona&rft.au=Teuho%2C+Jarmo&rft.au=Kl%C3%A9n%2C+Riku&rft.date=2024-03-13&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=6086&rft_id=info:doi/10.1038%2Fs41598-024-56706-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon